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ESTIMATION OF THE MEAN FUNCTION OF POINT
PROCESSES BASED ON PANEL COUNT DATA
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Abstract. This article discusses estimation of the mean function of point processes
when only incomplete data are available. Specifically, we consider situations in which
each individual who gives rise to a point process is observed only at discrete time points
and no information about the histories of the subject between observation times is
available. Data structures of this type occur, for example, in many clinical trials and
reliability studies in which it is impractical to keep subjects under observation over
the entire study period. The main difficulty in estimating the mean function in such
situations is that observation times usually differ between study subjects. In this
paper, a simple and consistent estimator of the mean function of point processes is
presented. Following two illustrative examples, a small simulation study demonstrates
that the presented estimator is satisfactory in the cases considered.
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1. Introduction

This article considers estimation of the mean function (MF) of point pro-
cesses when only incomplete data are available. Specifically, we consider situa-
tions in which each individual gives rise to a sequence of events over time. Let
N;(t) represent the number of events that occur in [0,¢] from the ith subject
with N;(0) = 0 and let A(t) = E[N;(t)] be the mean function of the process N;,
i =1,...,n. Suppose that for each subject, observations are taken only at dis-
crete time points and no information about the status between observation times
is available. Thus the data for the #th individual consist only of the numbers
of the events that have occurred prior to each observation time and the timing
of events is not known. We refer to this kind of data as panel count data (see
Kalbfleisch and Lawless (1981, 1985) and Groeneboom and Wellner (1992)). Our
main focus will be on the estimation of the MF when the data on individuals are
panel count data.

Panel count data arise if it is impractical to keep subjects under observation
over the entire study period. For example, such data arise in clinical trials, espe-
cially of chronic diseases, such as studies of epileptic seizures, bladder cancer and
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gallstones, in which patients visit the clinic center for periodic evaluation. A reli-
ability study of repairable systems in engineering provides another area in which
panel count data are encountered. In this case, it is common to have collections
of the same type of equipment or systems that generate point events (failures).
Here, again, if the data are obtained from periodic inspection of the items under
test and comprise counts of failures up to the inspection times, panel count data
are obtained. For example, Gaver and O’Muircheartaigh (1987) discuss three
sets of data arising from such reliability studies. Other similar situations occur,
for example, in animal tumorgenicity experiments and in sociology. In sociology,
panel count data are often referred to as event-count data.

The main difficulty in estimating the MF with panel count data is that
observation times usually differ between subjects. Suppose, for example, that
there are two individuals in a study and one observation is taken on each of the
two subjects at time ¢;; thus N;(¢;) = n; is the number of events occurring by ¢;
from the ¢th individual, + = 1,2. Suppose that the aim is to estimate the MF,
A(t), of the underlying process. It is obvious that only values of A at #; and i,
are estimable. If t; = t5, A(¢;) can be simply estimated by (n, +n2)/2. However,
the estimation is not straightforward if ¢, # t,.

An important special case of panel count data is current status data (e.g.,
see Diamond, McDonald, and Shah (1986) and Sun and Kalbfleisch (1993)), in
which only one observation is taken for each subject in the study. For exam-
ple, Sun and Kalbfleisch (1993) discuss a set of current status data on counts
of multiple tumors in a tumorgenicity experiment. Table 1 presents another set
of current status data from a reliability study of nuclear power generation sys-
tems. With current status data, several authors have supposed a Poisson process
as the underlying process for which the estimation of the MF is equivalent to
the simultaneous estimation of several Poisson means. For example, Gaver and
O’Muircheartaigh (1987) propose an empirical Bayes procedure which assumes
that all systems in the study arise from an independent sampling of a superpop-
ulation.

Section 2 presents a simple and consistent estimator of a MF which is based
on isotonic regression (Barlow, Bartholomew, Bremner, and Brunk (1972)). The
idea is to pool all observations together and estimate the MF by taking into
account its monotonic property. A similar estimator in the context of interval-
censored data has been discussed by Groeneboom and Wellner (1992). In Section 3,
two examples illustrate the approach. Following the examples, a small simulation
study is presented which suggests that the proposed method is quite satisfactory.
Section 4 concludes with some discussion.

As most authors (e.g., Thall and Lachin (1988)), we assume that the sequence
of observation times for each individual is distributed independently of the un-
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derlying process. This includes, for example, situations in which the observation
times are fixed in advance. If the times at which individuals are observed depend
upon the underlying point process, the nature of this dependence would need to
be modeled and the methods suggested here would, of course, be inappropriate.

2. Estimation of the MF

Suppose that there are n independent individuals in a study and that each
gives rise to a point process. Let N; and A be as defined in the previous section,
and suppose that N; is observed only at discrete time points. Let 0 < #;; <
-+ < 1; n, denote the observation times for the ith individual and n; ; denote the
observation on the ith individual at time ¢, ;, i.e., n;; = Ni(t;;), 7 = 1,...,m;,
i=1,...,n. In the following, estimation of the A(t) will be restricted to values
of t corresponding to the distinct observation times.

We begin by examing some very simple situations.

2.1. Some preliminary remarks

Suppose first that m; = mand ¢,; = ¢;, 4« = 1,...,n, j = 1,...,m, so
that all items are observed at the same times ty,...,t,. Since A(t) = E{N;(t)},

i =1,...n, a natural estimator of A(¢;) is

n

A(t;) = Z nij/n="mn;,7=1....,m. (2.1)
i=1
A simple generalization of the above estimator leads to the Nelson-Aalen
estimator (c.f. Andersen and Borgan (1985)). Suppose that the situation is as
above except that the ith individual is observed only at times ;, j = 1,...,m;,
with m; < m. Let Y;; = 1if j <m,; and Y;; = 0 otherwise. The Nelson-Aalen
estimator of A(t;) can be written as

J

A= SEUY Tl = )/Z Y, (2.2)

=1 i=1
where nyjo =0,2=1,...,n. lf m; =m,1=1,...,m, the above estimator reduces
to (2.1).

Unfortunately, extension of the Nelson-Aalen estimator to more general data
structures is not at all straightforward. In the general case discussed in the next
section, we consider an alternative approach.

2.2. A general case

Let sq,...,S,, denote the ordered distinct observation times in the set {¢; ;; j
=1,...,m;, i =1,...,n}. Let [; and #; denote the number and mean values
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respectively of observations made at s; and let A; = A(s;), j = 1,...,m. Note
that because of the order restriction A; < --- < A,,,, we cannot simply estimate
A(s;) by n;. The order restriction does not cause any trouble in the above simple
case giving rise to (2.1) since, in this case, 7y < --- < fi,,. More generally, the
Nelson-Aalen estimator in (2.2) incorporates the order restriction by estimating
the increments A(s;) — A(s;_;).

We define estimates Ay, ..., A,, as those A;’s that minimize the sum

>y — AP (2.3)
j=1

subject to the order restriction Ay < --- < A,,. This is the isotonic regression
based on {n,,...,n,,} with weights {l,,...,l,,}. Obviously if n; < --- < 7,
A=m;i=1,...,m.

Using the max-min formula for isotonic regression (see Barlow, Bartholomew,
Bremner, and Brunk (1972)), we find that

Aj = I£1<aj}_( Igr_l(z I, 1) /(Z ld= Igip I{,%X(‘Zl?, Ty) /(Z )., (2.4)

The Aj’s can also be written as the form

Ay =3 tini /S i, jeS, i=1,....m. (2.5)

i€S, i€S,.

The S,’s are called blocks and constitute the increasing and adjacent partition
of {1,...,m} determined by the pool-adjacent-violators, the up-and-down, or
other algorithms (see Barlow, Bartholomew, Bremner, and Brunk (1972) and
Robertson, Wright, and Dykstra (1988)). In the following, the estimator given
by (2.4) or (2.5) is referred to as the isotonic regression (IR) estimator.

Remark A. For current status data, and under a Poisson assumption for the
Nj’s, the proposed estimator (2.4) is the maximum likelihood estimator of A.
This follows since, in this case, the likelihood function is

m
> _[7; log Ay — A;]
j=1

and maximization of the above likelihood function is equivalent to minimization
of (2.3) subject to the order restriction A; < --- < A,,. In more general panel
count data, under a Poisson assumption, the IR estimator does not reduce to the
maximum likelihood estimate. In general, the m.l.e. is very complicated in this
case (see Section 4 for more remarks).
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Remark B. The IR estimator of the MF is constructed by taking into account
the order among observations from different individuals which is required by the
property of the MF A. Another way to estimate the MF is to estimate the rate
function and then use the integral of the rate estimator as an estimator of the
MF. For example, Thall and Lachin (1988) describe a method for estimation of
the rate function. In their method, the rate function for the ith individual is
assumed constant between observation times and estimated as 5\1(1‘) = (ng; —
’J’ngj_l)/(t?;_j = tj!j_]_) for t € (té,j—lgti,j]: 1 = ]_) , . At time t, the overall
(average) rate function for all individuals on study is estimated as an average of
estimated rate functions over individuals on study at ¢.

Remark C. An estimate of the variance of A(s;) = A; (j = 1,...,m) can be
heuristically obtained as follows. Let S, be the block containing j. Note that
A(S ;) is the sample mean of the observations obtained at a neighbourhood of s;
and placed in the same block by the algorithm. If, indeed, these observations
were independent with the same mean, a simple estimate of the variance of f\j

could be obtained from the sample variance,

Y [nix — A(sy)PP/e;, (2.6)
il
where the summation is over U, = {(i,{); t;y = s,, u € S,} and b, = |U,|.
It should be noted that the observations contributing to (2.6) are in fact not
ii.d. Some simulations (see Section 3) have indicated that it gives a reasonable
estimate of precision, however.

The strong consistency of the estimator (2.4) or (2.5) is discussed in the
Appendix. Under certain conditions, the proposed estimator converges almost
surely to A as the number of individuals observed approaches infinity. The main
conditions are as follows: first, at each given observation time, the number of the
observations taken in any neighbourhood of it goes to infinity as n does. The
necessity of this can be seen as follows. Suppose that there is an observation
time, ¢y say, which is isolated from all other observation times. Then it is clear
that A will not converge to A at #, (assuming that A is strictly increasing in a
neighbourhood of #y). The second condition required for the consistency of the
proposed estimator is that no process is observed with a high frequency around
a single time point. In other words, the number of observations from one process
around a single time point is finite when n goes to infinity. In the case of current
status data, uniform consistency of the proposed estimator can be obtained and
is also discussed in the Appendix.

In essence, the method proposed here treats each of the Y1, m,; observa-
tions as independent observations on current status. This will be a satisfactory
approach provided observations on each of the processes are fairly well spaced.
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Clearly, for example, if one process is observed very often in the neighbourhood
of a time, 1, say, this approach would give more emphases to this process in
estimating A(#,). The second condition above is a reflection of this potential
difficulty and suggests that the approach described here is best used when the
spacings of observations are similar in the observed samples.

3. Examples and Simulation

The estimation of the MF of point processes proposed in the previous section
is illustrated in two examples. The first example is also discussed in Gaver
and O’Muircheartaigh (1987) and concerns the reliability of nuclear plants. The
second example (Thall and Lachin (1988)) concerns a study of the incidence of
nausea of patients with floating gallstones. The results of a small simulation
study of the estimator (2.4) and its variance estimator (2.6) are also presented.

3.1. Example 1

Table 1 presents the observation times (one per plant) and the correspond-
ing observed numbers of losses of feedwater flow for 30 nuclear plants. The IR
estimator of the average number of losses of feedwater flow for a nuclear plant
based on these data is displayed in Figure 1. For comparison, the total number
of losses of feedwater flow divided by the number of systems at each distinct ob-
servation time (the n;’s) is also shown. The IR estimator is obtained by pooling
the 7;’s according to the order restriction. These results are similar to those
given in Gaver and O’Muircheartaigh (1987), who model the numbers of losses

of feedwater flow as homogeneous Poisson processes with i.i.d. intensities.

Table 1. Panel count data about losses of feedwater flow

Observation times ¢; (in years) and observed numbers n;

System t; m; System t; n; System #; n; System t; n;
1 15 4 9 4 13 17 2 11 25 1 1
2 12 40 10 3 4 18 2 1 26 3 10
3 8 0 11 4 27 19 2 0 27 2 5
4 8 10 12 4 14 20 1 3 28 4 16
5 6 14 13 4 10 21 1 5 29 3 14
6 5 31 14 2 7 22 1 6 30 11 58
7 5 2 15 3 4 23 5 35
8 4 4 16 3 3 24 3 12
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3.2. Example 2

Consider the data presented in Table 1 of Thall and Lachin (1988), which give
the successive visit-times in study weeks and the associated counts of episodes
of nausea for 113 patients with floating gallstones. These data comprise the first
year follow up of two groups, placebo (48) and high-dose chenodiol (65), from the
National Cooperative Gallstone Study. The whole study consists of 916 patients
who were randomized to the placebo, low dose, or high dose group and treated
for up to two years.

During the study patients were scheduled to return for clinic visits at 1, 2, 3,
6, 9, and 12 months, and, on each occasion, asked to report the total numbers of
each type of symptom that had occurred since the last visit. It can be seen from
their table, however, that actual visitation times differ from patient to patient.
For example, the first visit times ranged from 3 to 9 weeks and some patients did
not complete the full schedule.

Figure 2 shows the estimates of the MF of occurrence of nausea for the
patients in the placebo and high-dose groups. The estimated MF for the placebo
group is higher than that for the high-dose group over the first 40 weeks. Most



286 J. SUN AND J. D. KALBFLEISCH

of this difference is due to an early difference in the event rate over the first 10
weeks. After 40 weeks, the high-dose group has a slightly higher estimated MF
than the placebo group for a period of time. At the end of the year, however,
the estimated MF of the placebo group jumps sharply over that of the high-dose
group. These seem to differ in a substantial way from the trend exhibited in
Figure 2 of Thall and Lachin (1988). That figure shows estimated event rates of
the two groups based on the first year of the study and suggests that the event
rate of the high-dose group is never lower than that of the placebo group after
week 19,

Also shown in Figure 2 are 95% confidence intervals at several time points
for the MF of occurrence of nausea for the high-dose group based on the variance
formula (2.6). Pointwise comparisons indicate significant differences between the
groups at early times (before 30 weeks), but not for later times.

3.3. A simulation study

To investigate the adequacy of the estimator (2.4) and the variance estimator
(2.6), a simulation study was performed. For each of n = 50 individuals, four
observations from a Poisson process with the MF A(¢) = 10t were generated.
The observation times were generated from the uniform distribution U[0,1]. The
process was replicated 100 times with the 200 observation times held fixed. Figure
3 shows the average of the MF estimates (dot line in the middle) and the average
of the 95% confidence bands (dot lines) based on the estimators (2.4) and (2.6)
respectively. The pointwise sample variances of the MF estimates were also
calculated and the corresponding 95% intervals (broken lines) are also displayed
in Figure 3. For comparison, the pointwise mean estimate (solid line) of the MF
using the parametric assumption A(t) = At is also shown in Figure 3, where A
is an unknown parameter.

It can be seen from Figure 3 that the two MF estimators, the IR and para-
metric mean estimators, are very close except at the last several observation
times. The two variance estimates of the MF are almost identical, which sug-
gests that the variance estimate given by (2.6) is quite acceptable. Similar results
are also shown by other simulation data, in which one, two or eight observations
are observed for each individual.

4, Discussion

A simple and consistent estimator of the MF of a recurrent event based on
panel count data is presented. The proposed estimator does not assume any
explicit model for the underlying process. In the case when an explicit model
for the underlying process is assumed, for example, under a Poisson assumption,
an alternative to the IR estimator of a MF is the maximum likelihood estimate
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which can be obtained fairly generally using the EM algorithm, which although
being a straightforward method gives rise to rather complicated equations.

As usual, the actual observation times are assumed to be non-informative
about the MF in the above discussion. That is, the time at which a subject
visits the clinical center is independent of his disease status in the case of clinical
trials. It should be noted that this is sometimes not the case. For example, an
early visit by a subject may be caused by a worsening of the disease (e.g., Gruger,
Kay, and Schumacher (1991)). In this case, methods which take this into account
need to be used. The approximate variance formula given in (2.6) will be most
satisfactory in large data sets where the b,’s are not small. One case in which
this formula is not valid is that the b,’s are equal to one and in this situation,
alternative variance estimates are needed.

124 —— Parametric estimator
- IR, estimator f
——~ CI by Sample variance /

MF

0.0 0.2 04 0.6 0.8 1.0
time

Figure 3. Estimators of the MF from simulation data
It would be useful to derive the asymptotic distribution of the IR estima-

tor. The asymptotic distribution of this type of estimator at a point has been
discussed by Brunk (1970) and other authors in the context of isotonic regres-
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sion. Brunk assumed that for each fixed n, one observation is made at each of
the observation points {1/n,2/n,...,n/n} and all observations are independent.
Under these and some other assumptions, he derived the asymptotic distribution
with norming constants of order n'/? and the asymptotic p.d.f. expressed in term
of partial derivatives of a particular solution to the heat equation. Groeneboom
and Wellner (1992) also studied asymptotic distributions for estimators of the

isotonic-type in the context of interval-censored data.
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Appendix

Consistency of the estimator (2.2). Suppose that A(Z) is a continuous
function. Let T, = {t;;, 7 =1,...,m;, i =1,...,n} and k, = |T,|, the number
of observations for the given n. Let A,(#) be defined by (2.4), I =1,...,k,. The
following conditions are sufficient for the strong consistency property of A,

Condition I. For each ¢, € |J,~, T, and ecach interval .J containing ¢,
limsup,,_, . kyn /1,(J) < oo, where I,,(.J) denotes the number of times in 7}, which
lie in the interval J.

Condition II. For each ¢, € Ule T, there exists an interval J; containing
t; such that limsup Uin(Jo) < oo for all ¢, where U, (Jy) denotes the number

of observations with observation times in 7, (] Jy from the ith process.

Theorem 1. If Conditions I and I hold and Var[N (t)] < oo, then for each
t e Us, Ty, as n — o0,

n—oo

Pr{A,(t;) — A(t;) =0} =1.

The proof of Theorem 1 uses Theorem 6.1 of Brunk (1958) and follows the
same line of the proof as Theorem 4.1 of Brunk (1970).

For current status data, uniform consistency of A, can be obtained. Suppose
that all observation time points belong to the interval [0,1] and A, (t) is defined
as above at the observation times ¢;;’s. Suppose that f\n(t) 1s extended and
defined on the interval [0, 1] subject to the monotonic restriction. Let I,,(J) be
defined as in Condition I.

Theorem 2. If for each subinterval J of (0, 1), limsup,_, . n/I,(J) < oo and

for t € (0,1), Var[N(t)] < oo, then

Pr{ lim sup |ﬂn(t) - A)|=0}=1,

=00 G <t<h
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where 0 <a <b < 1.
Theorem 2 follows directly from Theorem 4.1 of Brunk (1970).
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