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Abstract: Let F and G be cumulative distribution functions and denote by h the

Radon-Nikodym derivative of G with respect to F . Two i.i.d: samples of sizes n

and m = m(n) pertaining respectively to F and G are given. The uniform rate of

convergence of the grade estimate ĥn;m of the Radon-Nikodym derivative is shown to

be O
�
(logm=(mbm))

1=2
+ b2m

�
a.s., where fbmg denotes the bandwidth parameter.

The proof uses the exponential inequality for the oscillation modulus of continuity

for empirical processes given by Mason, Shorack and Wellner (1983). The result is

applied to study asymptotic properties of a discriminant rule pertaining to ĥn;m. It

is established that its risk converges exponentially fast to Bayes risk. Finally, an

estimator for Gini separation measure is introduced and its rate of strong consistency

is obtained.
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1. Introduction

Let F and G be two distribution functions on R such that G is absolutely

continuous with respect to (w.r.t.) F . In this paper we deal with estimation of

the Radon-Nikodym derivative of G w.r.t: F , denoted by h(x) = (dG=dF )(x).

Observe that the problem reduces to estimation of the density ratio when the

densities of F and G exist. The latter case was studied by Silverman (1978),

Absava and Nadareishvili (1985) and �Cwik and Mielniczuk (1989). The estimate

introduced in the last paper is now considered in the above more general setting,

and the rates of its uniform almost sure (a.s.) convergence are derived. The main

conceptual tool to study this problem is the so-called grade density de�ned in

De�nition 1.1 below.

Let PF be the probability distribution pertaining to the cumulative distribu-

tion function F and let T be a measurable function. The probability distribution

PF transformed by T is de�ned as the probability distribution P
T
F such that

P
T
F (A) = PF (T

�1(A)) for any Borel set A.
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De�nition 1.1. Denote by eF and eG the distribution functions of PF and PG,

respectively, transformed by F . The grade density g (of G w.r.t: F ) is the Radon-

Nikodym derivative d eG=d eF .
The interdependence between the existence of h and the grade density g is

given in the following lemma. Let F�1(x) = inffs : F (s) � xg.
Lemma 1.1

(a) If G is absolutely continuous w.r.t: F then eG is absolutely continuous w.r.t: eF
and g(x) = h � F�1(x) = h (F�1(x)) :

(b) If F is strictly increasing and eG is absolutely continuous w.r.t: eF then G is

absolutely continuous w.r.t: F and h(x) = g � F (x):
Proof

(a) Observe that, for A being a Borel set,

PeG(A) = PG(F
�1(A)) =

Z
F�1(A)

h(x)dF (x) =

Z
F�1(A)

h(F�1 � F (x))dF (x):

The last equality follows from the fact that PF (x : F�1 � F (x) 6= x) = 0: Using

the change of variable formula (cf. e.g. Shorack and Wellner (1986), p.25) it

follows that the last expression is equal to
R
A h(F

�1(x))d eF (x):
(b) Reasoning analogously we haveZ
A

g � F (s)dF (s)=
Z
F (A)

g(y)d eF (y)=PeG(F (A))=PG(x : F (x) 2 F (A))=PG(A);

where in the �rst and in the last equality we used the fact that F is strictly

increasing.

Observe that, in view of Lemma 1.1 (a),

g(F (x)) = h(F�1 � F (x)) = h(x) (1:1)

with the last equality holding outside a set of PF -measure 0. Thus g � F de�nes

a version of the Radon-Nikodym derivative dG=dF . It is this version which will

be considered in this paper. Moreover, note that if F is continuous then the

grade density is equal to the density of F (Y ) w.r.t: Lebesgue measure, where Y

is distributed according to G. Throughout the rest of the paper we assume that

F is continuous.

To �x the idea, we consider the grade density in some simple examples.

(i) Let F and G be exponential distribution functions with parameters 1 and

� (� > 1), respectively. The grade density g(t) of G w.r.t: F is given by

g(t) = �(1 � t)(��1)on [0; 1], and zero outside this closed interval. Hence, g is
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continuous on the interval ]0; 1] with a right-hand limit at 0, and a discontinuity

in 0.

(ii) Let F be the standard normalN(0; 1) distribution function andG the mixture

of F and the normal distribution function N(0;�2) (� < 1) with a mixing propor-

tion p. The corresponding grade density equals g(t) = p+(1�p) expf�[(F )�1(t)]2

(1=�2 � 1)=2g=�, and zero outside the interval [0; 1]. Hence this grade density

is continuous on ]0; 1[ with the right-hand limit in 0 and the left-hand limit in 1

equal to p. Note that there is a discontinuity in both points 0 and 1.

The above examples indicate that the discontinuity of g at the boundary

points may occur. In both cases the grade density g is a continuous function on

the interval [0; 1], when considered on this interval only. This convention will be

adapted in Theorem 2.1 (see also the comments preceding Theorem 2.1).

We now de�ne the estimate ĥn;m of the Radon-Nikodym derivative h. Con-

sider X1; : : : ;Xn an i.i.d: sample with distribution function F and Y1; : : : ; Ym
an i.i.d: sample with distribution function G. The samples X1; : : : ;Xn and

Y1; : : : ; Ym do not need to be mutually independent. An estimator of h(x) is

given by

ĥn;m(x) =
1

mbm

mX
i=1

K
�Fn(x)� Fn(Yi)

bm

�
; (1:2)

where K is a bounded probability density function with support contained in

] � A;A], A some positive constant and fbmg is a sequence of positive numbers

(bandwidths) tending to zero. Fn is the empirical distribution function based on

the �rst sample X1; : : : ;Xn. Thus ĥn;m is the usual kernel estimate (cf. Parzen

(1962)) pertaining to the transformed sample Fn(Y1); : : : ; Fn(Ym) and calculated

at the point Fn(x) (see also formula (1.1)). For the introduction to, and the

motivation for, this estimate see �Cwik and Mielniczuk (1989). They proved, un-

der appropriate conditions, uniform strong consistency and pointwise asymptotic

normality of ĥn;m. We will assume throughout that m = m(n).

The paper is organized as follows. In Section 2 we state the main result

concerning the rate of uniform a.s. convergence of ĥn;m. We also indicate the

basic technical tools needed for establishing this result. These tools consist of

some exponential inequalities. The technical parts of the proofs are postponed

to the Appendix. In Section 3 the main exponential inequality is used to study

the properties of the discriminant rule based on ĥn;m in the classical discriminant

theory model. Also, the rate of convergence for an estimator of a certain measure

of separation between F and G is derived from the main result.

2. The Main Result

The basic tool to obtain an exponential inequality for ĥn;m is the following
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result on the local oscillation of the uniform empirical process, due to Mason,

Shorack and Wellner (1983). Denote

!n(a) =
p
n sup

0�x;y�1
jx�yj�a

j[�n(x)� �(x)]� [�n(y)� �(y)]j;

with � the uniform distribution function on [0; 1] and �n the empirical distribu-

tion function based on a sample of size n from �. In the next lemma the function

 is de�ned as  (x) = (2(x + 1) log(x+ 1) � 2x)=x2. Properties of the function

 , which are relevant here, are that it is decreasing for x � �1 with  (0) = 1.

Lemma 2.1 (Mason, Shorack and Wellner (1983)). Let 0 < a � � � 1=2. Then

for all s > 0

Pf!n(a) � s
p
ag � 20

a�3
exp

�
�(1� �)4

s2

2
 (

sp
na

)

�
:

A �rst result of this type was obtained by Stute (1982a), but with more restric-

tions on the domain of the parameters a; �; s and n.

The next lemma opens the way to obtain our main result, the uniform al-

most sure order of convergence for the estimator ĥn;m. The lemma evaluates the

di�erence between ĥn;m(x) and Eehm(x), where
ehm(x) = 1

mbm

mX
i=1

K
�F (x)� F (Yi)

bm

�
:

In the proofs of our results C denotes the constant appearing in the Dvoretzky-

Kiefer-Wolfowitz (1956) inequality. Massart (1990) proved that the Dvoretzky-

Kiefer-Wolfowitz inequality holds with C = 2.

Lemma 2.2. Let G0 = supx g(x) <1. Suppose K is a symmetric, three times

boundedly di�erentiable kernel with support contained in ] � A;A], for some

A > 0. Assume further that m = m(n)!1, as n!1. Then, for " � "0, for

some "0 > 0, and for all n,

Pfsup
x
jĥn;m(x)�Eehm(x)j > "g

� c1

bm

�
exp(�c2n"2bm) + exp(�c3n"2=3b5=3m ) + exp(�c4m"2bm)

�
+ c5 exp(�c6nb2m) + c7 exp(�c8mb2m);

with ci; i = 1; : : : ; 8, positive constants.

The proof of Lemma 2.2 relies on the decomposition

ĥn;m(x)�Eehm(x) = hĥn;m(x)� ehm(x)i+ hehm(x)�Eehm(x)i : (2:1)
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The second term in this decomposition is a centered kernel estimate based on

the i.i.d: sample F (Y1); : : : ; F (Ym), and its supremum distance is related to the

oscillation modulus of the empirical process based on this sample. The �rst term

in the above decomposition is dealt with via a Taylor expansion. It is shown

that the terms in this expansion are bounded, outside a set of exponentially

small probability, by some powers of oscillation of the empirical process based

on the sample X1; : : : ;Xn. The technical details of the proof of Lemma 2.2 are

postponed to the Appendix.

The exponential bound established in the above lemma will be used later in

Section 3 in an application of discriminant analysis.

An exponential bound for Pfsupx jĥn;m(x) � Eehm(x)j > "g in the case of a

non-smooth kernel K is investigated in the sequel. For simplicity we only state

the result for the uniform kernel: K(x) = 1=2, if x 2 [�1; 1].
Lemma 2.3. Let G0 = supx g(x) < 1 and assume that m = m(n) ! 1, as

n!1. Then, for each " > 0, and for all n,

Pfsup
x
jĥn;m(x)�Eehm(x)j > "g

� C

�
exp(�1

2
n�2b2m) + 2 exp(� 1

32
m"2b2m) + exp(�1

2
m"2b2m)

�

with � = min
�
1=2; "=(8G0)

�
.

The proof of Lemma 2.3 is similar to that of Lemma 2.2. The major di�erence

is that here, due to the non-smoothness of the kernel, we can not rely on a Taylor

expansion in order to deal with ĥn;m(x)� ehm(x). Here, we handle this di�erence
by using some elementary considerations, and by applying the Dvoretzky-Kiefer

-Wolfowitz (1956) inequality instead of Lemma 2.1. Details of the proof are

postponed to the Appendix.

Observe however, that the bound in Lemma 2.3 is signi�cantly weaker than

the bound in Lemma 2.2 for small " and large n.

The main result of the paper is stated in Theorem 2.1. In this theorem

the smoothness conditions on the grade density g are restricted to the interval

[0; 1]. This means, for example, that continuity of g on [0; 1] is equivalent to

continuity of g on ]0; 1[ and the existence of the right-hand limit of g at 0 and the

left-hand limit of g at 1. The kernel density estimate of a compactly supported

density with nonzero values at the boundary points is not consistent at these

points. This observation leads to the restriction of the domain to the interval

[(A+ ")bm; 1� (A+ ")bm], with A > 0; " > 0, in the formulation of the theorem.

Further, it is important to note that the order of convergence established in

the theorem is close to the exact uniform almost sure order of convergence
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O((log b�1
m =(mbm))

1=2 + b2m) of the kernel estimate for a two times boundedly

di�erentiable density based on an i.i.d: sample of size m pertaining to it (cf.

Stute (1982b)).

Theorem 2.1. Let g be two times boundedly di�erentiable on [0; 1]. Suppose

K is a symmetric, three times boundedly di�erentiable kernel with support con-

tained in ]�A;A], for some A > 0. Assume that m = m(n) " 1 when n!1
in such a way that lim sup(m(n)=n) <1 and (m(n)b2m(n))=(logm(n)) ! 1, as

n!1. Then, for each " > 0,

sup jĥn;m(x)� h(x)j = O
�
(logm=(mbm))

1=2
+ b2m

�
; a.s.,

as n!1, where the supremum is taken over the set fx : (A+ ")bm � Fn(x) �
1� (A+ ")bmg.
Proof. Consider the decomposition

ĥn;m(x)� h(x) =
h
ĥn;m(x)�Eehm(x)i+ hEehm(x)� h(x)

i
: (2:2)

The order of the overall supremum of the �rst term on the right-hand side is

O(
�
logm=(mbm))

1=2
�
a.s. This follows immediately from Lemma 2.2 by taking

" = "m = c(logm=(mbm))
1=2, c an appropriate positive constant, and using the

Borel-Cantelli lemma together with the conditions on m(n) and fbmg. Note that
the second term on the right-hand side of (2.2) is the bias of a kernel grade density

estimate, based on the sample F (Y1); : : : ; F (Ym), at the point F (x). Hence, it is

of order O(b2m), uniformly for all x such that Abm � F (x) � 1�Abm.

The conclusion of the theorem follows from the fact that the domain fx :

(A + ")bm � Fn(x) � 1 � (A + ")bmg is included almost surely in the above

mentioned domain by Smirnov's law of the iterated logarithm (see e.g. Shorack

and Wellner (1986), p.504).

Remark 2.1.

(i) Concerning the extension of the domain of the uniformity in the above result

to R, the following two remarks can be made :

(a) Consider a modi�ed kernel estimator, de�ned as

ĥ(M)
n;m(x) =

1

mbm

mX
i=1

K
�Fn(x)� Fn(Yi)

bm

�
+

1

mbm

mX
i=1

K
�Fn(x) + Fn(Yi)

bm

�
+

1

mbm

mX
i=1

K
�Fn(x)� 2 + Fn(Yi)

bm

�
:

This estimator is based on the augmented data set Fn(Y1); : : : ; Fn(Ym),
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�Fn(Y1); : : : ;�Fn(Ym); 2�Fn(Y1); : : : ; 2�Fn(Ym) i.e: the original data-points
and their reections w.r.t: the boundary points 0 and 1 (see Schuster (1985)).

Reasoning analogously as in the proofs of Theorem 2.1 and Lemma 2.2 we

can establish that the almost sure rate of convergence for supx jĥ(M)
n;m(x) �

Eeh(M)
m (x)j is O((logm=(mbm))1=2), where eh(M)

m relates to ĥ(M)
n;m in the same

way as ehm relates to ĥn;m: A one-term Taylor expansion shows that jEeh(M)
m (x)

�h(x)j = O(bm) uniformly for x such that F (x) 2 [0; Abm[ [ ]1�Abm; 1] and
is O(b2m) uniformly for x such that F (x) 2 [Abm; 1 � Abm] since eh(M)

m (x) =ehm(x) on the last domain. Whence,
R
(Eeh(M)

m (x) �h(x))2dF (x) = O(b3m)

under the conditions of the theorem.

(b) If g is two times boundedly di�erentiable on R, then it is clear from the

proof of the theorem that the following result holds

sup
x
jĥn;m(x)� h(x)j = O

�
(logm=(mbm))

1=2
+ b2m

�
a.s.

(ii) For the uniform kernel Lemma 2.3 yields the weaker result

sup
x
jĥn;m(x)�Eehm(x)j = O

�
(logm=(mbm))

1=4
�

a.s.,

under the stronger condition m(n)b3m(n)=(logm(n))!1, as n!1. Hence

the exponential bound obtained for the uniform kernel yields a weaker rate

of convergence than in the case of a three times boundedly di�erentiable

kernel. Technically, this is due to the fact that the proof of Lemma 2.3 relies

on the Dvoretzky-Kiefer-Wolfowitz (1956) inequality while the inequality of

Mason, Shorack and Wellner (1983) is used to prove Lemma 2.2. In case of

the uniform kernel the analogue of Theorem 2.1 is

sup jĥn;m(x)� h(x)j = O
�
(logm=(mbm))

1=4
+ b2m

�
; a.s.,

where the supremum is taken over the set fx : (1 + ")bm � Fn(x) � 1� (1 +

")bmg, under the condition that g is two times boundedly di�erentiable on

[0; 1] and the above mentioned condition on fbmg.

3. Applications

We focus on two applications of the results obtained in Section 2. The �rst

concerns the rate of convergence for some estimator of Gini separation measure.

In a second application we investigate the properties of a discriminant rule per-

taining to ĥn;m.

Gini separation measure di�erentiates numerically between the distribution

functions F and G. The measure is de�ned as follows. Let the Neyman-Pearson
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curve be the plot of the errors of the second and the �rst kind for the most

powerful test for testing H0 : F against H1 : G, considered as a function of the

rejection level. Gini separation measure J is de�ned as the area between the

Neyman-Pearson curve and the diagonal y(x) = 1 � x of the unit square. For

comments on these de�nitions and related estimation problems see e.g. �Cwik

and Mielniczuk (1990). The name, Gini separation measure, pertains to the fact

that J is equal to Gini index of the distribution function of h(X1), provided that

this function is continuous. This remark and one of the de�nitions of Gini index

(cf. e.g. Arnold (1987), p.42) yields J = 2�1EjW1 � W2j, where W1 and W2

are independent r.v.'s distributed according to F h, the distribution function of

h(X1). The above formula motivates the following estimator of J

Ĵ =
1

2n2

X
i;j

jĥ(M)
n;m(Xi)� ĥ(M)

n;m(Xj)j;

where ĥ(M)
n;m is the modi�ed estimate de�ned in Remark 2.1 (i).

In the following theorem we establish the strong consistency of the estimator Ĵ .

Theorem 3.1. Suppose that the conditions of Theorem 2:1 hold. Assume

further that lim sup(bm(n) log n)=(logm(n)) <1. Then

jĴ � J j = O
�
(logm=(mbm))

1=2
+ b2m

�
a.s., as n!1:

Proof. Let eJ =
1

2n2

X
i;j

jh(Xi)� h(Xj)j:

Observe that the proof of Theorem 2.1 yields

1

2n2

������
X

i;j2An

jĥ(M)
n;m(Xi)� ĥ(M)

n;m(Xj)j �
X

i;j2An

jh(Xi)� h(Xj)j
������

= O

�� logm
mbm

�1=2
+ b2m

�
;

where An = fi � n : F (Xi) 2 [Abm; 1 � Abm]g. The number of elements

in the complement of this set (with respect to f1; � � � ; ng), denoted by Bn =

f1; : : : ; ngnAn, is O(nbm) a.s. Hence, using Remark 2.1 (i) it is easy to see that

1

2n2

������
X

i or j2Bn

jĥ(M)
n;m(Xi)� ĥ(M)

n;m(Xj)j �
X

i or j2Bn

jh(Xi)� h(Xj)j
������

= O

�
n(nbm)

n2

�� logm
mbm

�1=2
+ bm

��
= O

�� logm
mbm

�1=2
+ b2m

�
a.s.
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Finally, note that j eJ � J j = O
�
(log n=n)1=2

�
a.s. by applying Theorem A in Ser-

ing (1980), p.201. The conditions on m(n) and fbmg imply that O((log n=n)1=2)

= O((logm=(mbm))
1=2).

A challenging open problem is to verify whether Ĵ has the parametric rate

of convergence O((logm=m)1=2).

We now deal with the second application, concerning the classical discrimi-

nant model.

Let (Z; I) be a bivariate random variable. I is a class indicator admitting

two values 1 and 2 only. Assume that the distribution function of the conditional

r.v. (ZjI = 2) is absolutely continuous w.r.t: the distribution function of the con-

ditional r.v. (ZjI = 1). Further, suppose that the latter function is continuous.

The respective Radon-Nikodym derivative will be denoted by h. Consider an

i.i.d: sample (Z1; I1); : : : ; (Zn; In) where (Zi; Ii); i = 1; : : : ; n, has the same law

as (Z; I) and is independent of (Z; I). Our aim will be to construct a discrimi-

nant rule Î = Î(Z; (Z1; I1); : : : ; (Zn; In)), based on adaptation of ĥ, for which the

conditional probability of misallocation

Ln = PfÎ(Z) 6= Ij(Z1; I1); : : : ; (Zn; In)g

is close, in some sense, to

L� = inf
k
Pfk(Z) 6= Ig = PfI(Z) 6= Ig;

where the in�mum is taken over all possible decision rules, and where I(z) is the

so-called Bayes rule de�ned as follows

I(z) =

�
1; if w(z) � 1;

2; otherwise,

with w(z) = ((1 � �)=�)h(z) and � = P (I = 1). We assume � to belong to the

interval ]0; 1[ (for a general introduction to discriminant problems refer to Hand

(1981); for the nonparametric approach see Chapter 10 in Devroye and Gy�or�

(1985)).

Let n1 (respectively n2) be the number of elements in the sample pertaining

to the �rst (I = 1) (resp. to the second (I = 2)) class i.e. ni = #fj : Ij = ig; i =
1; 2. If n1 > 0 put

j1 =minfi : Ii = 1g;
jl =minfi : i > jl�1 and Ii = 1g; l = 2; : : : ; n1:

De�ne (X1; : : : ;Xn1) = (Zj1 ; : : : ; Zjn1 ) and let (Y1; : : : ; Yn2) be the remaining part

of the Zi's. ThusX1; : : : ;Xn1 (resp. Y1; : : : ; Yn2) is an i.i.d: sequence pertaining to
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the distribution function F (resp. G) of (ZjI = 1) (resp. (ZjI = 2)) with random

sample size n1 (resp: n2). Note that n1 � Bin(n;�). Consider the adaptation of

ĥ, given by (1.2), to this situation, namely

ĥn1;n2(z) =

8<: 1

n2b(n2)

n2P
i=1

K(
Fn1

(z)�Fn1
(Yi)

b(n2)
); if n1n2 6= 0,

0; if n1 = 0 or n2 = 0,

where Fn1 ; Gn2 are empirical distribution functions pertaining to the �rst, re-

spectively the second sample, and b(n) = bn. The natural empirical analogue of

the Bayes rule, based on ĥn1;n2 , will be the rule În1;n2 de�ned as follows

În1;n2(z) =

�
1; if ŵn1;n2(z) � 1,

2; otherwise,

where

ŵn1;n2(z) =

�
(n2=n1)ĥn1;n2(z); if n1 > 0,

2; if n1 = 0.
(3:1)

Note that

ŵn1;n2(z) =

8<: 1

n1b(n2)

n2P
i=1

K(
Fn1

(z)�Fn1
(Yi)

b(n2)
); if n1n2 6= 0,

2Ifn1 = 0g; otherwise.

In order to prove results concerning the behaviour of the conditional proba-

bility of error Ln associated with the rule În1;n2 we need a result on uniform

strong consistency of ŵn1;n2 . Throughout the rest of this section assume that

Dn1;n2 = fn1n2 6= 0g occurs, in the sense that every event should be considered

as intersected with Dn1;n2 . This will cause no trouble since

P (Dc
n1;n2

) = (1� �)n + �n � 2 exp(nmax(ln(1� �); ln�))

and the majorization is summable.

First we state the following lemma.

Lemma 3.1. There exists "0 > 0 and constants D1;D2 > 0 such that, for

" � "0,

P

�
jn2
n1

� 1� �

�
j > "

�
� D1 exp(�D2n"

2):

Proof. The proof follows from Bernstein's inequality (see e.g. Sering (1980),

p.95), the following Taylor expansion

f(") =
1� � + "

� � "
=

1� �

�
+

"

�2
+O("2);
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valid for small ", and an analogous expansion for (1� � � ")=(� + ").

Theorem 3.2. Suppose g is boundedly di�erentiable on R. Assume that K

satis�es the conditions of Theorem 2:1. If

(i) b(n) # 0 as n!1,

(ii)
P
n

(b(n))�1 exp(�cnb2(n)) <1 for any c > 0,

then sup
x
jŵn1;n2(x)� w(x)j converges completely to 0.

Proof. For n1 and n2 deterministic, observe that

Pfsup
x
jĥn1;n2(x)� h(x)j > "g � Pfsup

x
jĥn1;n2(x)�Eehn2(x)j > "

2
g

for any " �xed and n2 su�ciently large.

An exponential bound for the last probability is given in Lemma 2.2.

Now let n1 = n1(n) and n2 = n2(n) be random variables such that n1 � Bin(n;�)

and n2 = n� n1. Note that

Pfsup
x
jĥn1;n2(x)� h(x)j>"g�P

�
fsup

x
jĥn1;n2(x)� h(x)j>"g\Bc

n1

�
+PfBn1g;

(3:2)

where Bn1 = fjn1=n� �j > �g, with � = min(�=2; (1 � �)=2).

According to Bernstein's inequality

PfBn1g � c1 exp(�c2n�2): (3:3)

Moreover, the �rst term on the right-hand side of (3.2) is less than or equal to

X
Pfsup

x
jĥi;n�i(x)� h(x)j > "gPfn1 = ig;

where i sums from [n(� � �)] to [n(� + �)], and can be bounded, for su�ciently

large n, by

c1
1

b(n� [n(� � �)])

�
exp(�c2[n(� � �)]"2b(n� [n(� � �)]))

+ exp(�c3[n(� � �)]"2=3b5=3(n� [n(� � �)]))

+ exp(�c4(n� [n(� + �)])"2b(n� [n(� � �)]))
�

+ c5 exp(�c6[n(� � �)]b2(n� [n(� � �)]))

+ c7 exp(�c8(n� [n(� + �)])b2(n� [n(� � �)])): (3:4)
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In order to obtain the above bound the monotonicity of b(n) was used. Finally

Pfsup
x
jŵn1;n2(x)� w(x)j > "g

� P

�
fjn2
n1

� 1� �

�
jG0 >

"

2
g [ fsup

x
jĥn1;n2(x)� h(x)jn2

n1
>
"

2
g
�

� P

�
jn2
n1

� 1� �

�
j > "

2G0

�
+ P

�
fsup

x
jĥn1;n2(x)� h(x)jn2

n1
>
"

2
g \ fn2

n1
� 1� �

�
+

"

2G0

g
�
:

Let "�0 = 2G0min("0; (1 � �)=�) where "0 is the constant appearing in Lemma

3.1. For " � "�0 the above sum is less than or equal to

P

�
jn2
n1

� 1� �

�
j > "

2G0

�
+ P

�
sup
x
jĥn1;n2(x)� h(x)j > �"

4(1� �)

�
:

Using Lemma 3.1, Inequality (3.2), expressions (3.3) and (3.4) together with

assumption (ii) completes the proof.

Let Ln be the probability of misallocation for the rule În1;n2 de�ned in (3.1).

A simple application of Theorem 3.2 leads to the following corollary. Gh denotes

the distribution function of h(Y1).

Corollary 3.1. Suppose g is boundedly di�erentiable on R. Let K satisfy the

conditions of Theorem 2:1: Assume that F h and Gh satisfy a Lipschitz condition

(with Lipschitz constant L) in the point �=(1 � �). If nb2(n)= log n ! 1, as

n!1, then Ln converges to L� completely.

Proof. The proof is based on the following decompositions

Ln = (1� �)

Z
fy:ŵn1;n2

(y)�1g

dG(y) + �

Z
fx:ŵn1;n2

(x)>1g

dF (x)

and

L� = (1� �)

Z
fy:w(y)�1g

dG(y) + �

Z
fx:w(x)>1g

dF (x):

Moreover,

PfjLn � L�j > "g � PffjLn � L�j > "g \Ac
n1;n2

g+ PfAn1;n2g;
where An1;n2 = fsupx jŵn1;n2(x) � w(x)j > �g with � a �xed constant, small

enough such that an exponential bound for PfAn1;n2g is valid. Let us observe

that on the set Ac
n1;n2

,

j
Z
fy:ŵn1;n2

(y)�1g

dG(y)�
Z
fy:w(y)�1g

dG(y)j

�
Z
fy:1��<w(y)�1+�g

dG(y) = Gh(
�

1� �
(1 + �))�Gh(

�

1� �
(1� �)) � L2�

�

1� �
:
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Since the analogous decomposition can be written for the second terms of Lnand

L�, it is easily seen that the �rst term of the majorant is equal to 0 if � �
"(1 � �)=(2�L). This observation completes the proof of the corollary.

Remark 3.1. The Lipschitz condition imposed on F h and Gh, in Corollary 3.1

is implied by the following condition on the grade density g:

�fw : g(w) 2 ]x; y]g � L�jy�xj 8x; y in a neighbourhood of �=(1��); (3:5)

where � denotes the Lebesgue measure. To see this, �rst of all observe that

g(U) � F h where U is a uniform [0; 1] distributed r.v. Thus,

F h(x) =

Z
fs:g(s)�xg

ds = �fs : g(s) � xg

and the Lipschitz condition for F h is equivalent to (3.5). Further,

Gh(x)�Gh(y) =

Z
fx<h(s)�yg

h(s)dF (s) � yPF (Bx;y);

where Bx;y = fs : h(s) 2 ]x; y]g. Now, the above reasoning yields

PF (Bx;y) = �fw : g(w) 2 ]x; y]g � L�jy � xj;

which implies the Lipschitz condition for Gh at �=(1� �).

Appendix

Proof of Lemma 2.2. Details of the proof are given for the special case m = n.

Put ĥn(x) = ĥn;n(x). In this special case the bound simpli�es to,

Pfsup
x
jĥn(x)�Eehn(x)j > "g

� c1

bn

�
exp(�c2n"2bn) + exp(�c3n"2=3b5=3n )

�
+ c4 exp(�c5nb2n):

In the sequel of this proof ci; i = 1; : : : ; 13, denote positive constants and

Ki = supx jK(i)(x)j; i = 1; 2; 3.

We have

Pfsup
x
jĥn(x)�Eehn(x)j > "g

� Pfsup
x
jĥn(x)� ehn(x)j > "

2
g+ Pfsup

x
jehn(x)�Eehn(x)j > "

2
g: (A:1)
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Now consider the �rst probability on the right-hand side of (A.1). Using Taylor's

theorem we get

ĥn(x)� ehn(x) = 1

nb2n

nX
i=1

K 0

�F (x)� F (Yi)

bn

�
(an(x)� an(Yi))

+
1

2nb3n

nX
i=1

K 00

�F (x)� F (Yi)

bn

�
(an(x)� an(Yi))

2

+
1

6nb4n

nX
i=1

K 000(�ni(x))(an(x)� an(Yi))
3

� I1 + I2 + I3; say;

where an(x) = Fn(x) � F (x) and �ni(x) lies between (F (x) � F (Yi))=bn and

(Fn(x)� Fn(Yi))=bn. Therefore,

Pfsup
x
jĥn(x)� ehn(x)j > "

2
g �

3X
i=1

Pffsup
x
jIij > "

6
g \ Ac

ng+ PfAng; (A:2)

where

An = fsup
x
jFn(x)� F (x)j > Abn

2
g:

Applying the Dvoretzky-Kiefer-Wolfowitz (1956) inequality yields

P (An) � C exp(�A
2

2
nb2n): (A:3)

Since K has support contained in ]�A;A], only those Yi's for which jFn(x)�
Fn(Yi)j � Abn will contribute to the estimator ĥn(x). Denoting Sn = f(x; y) :
jF (x)� F (y)j � 2Abng, this implies that

fsup
x
jI1j > "

6
g \Ac

n

�
n
sup
Sn

jan(x)� an(y)j 1
bn

sup
x
(
1

nbn

nX
i=1

jK 0(
F (x)� F (Yi)

bn
)j) > "

6

o
�
n
sup
Sn

jan(x)� an(y)j > "bn

6K1(2AG0 + 1)

o
[Bn; (A:4)

where

Bn =

(
sup
x
(
1

nbn

nX
i=1

jK 0(
F (x)� F (Yi)

bn
)j) > K1(2AG0 + 1)

)
:
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Using Lemma 2.1 with a = 2Abn and s = (6(2A)1=2K1(2AG0+1))
�1"(nbn)

1=2,

it follows that the probability of the �rst event on the right-hand side of (A.4) is

bounded by
c1

bn
exp

�
�c2n"2bn ( 1

12AK1(2AG0 + 1)
")

�
; (A:5)

and  ((12AK1(2AG0 + 1))�1") is bounded from below for " bounded.

It remains to bound P (Bn). Note that, since K has support contained in

]�A;A], the assumption on g implies that

P (Bn) � Pfsup
x
(#fi : F (x)�Abn�F (Yi)�F (x) +Abng=n)>bn(2AG0 + 1)g

� Pfsup
x
j#fi : F (x)�Abn � F (Yi) � F (x) +Abng=n

� PfF (x)�Abn � F (Y1) � F (x) +Abngj > bng:

Note that jHn(a�)�H(a�)j � supx jHn(x)�H(x)j, where Hn denotes the

empirical distribution function pertaining to the sample F (Y1); : : : ; F (Yn), and

H is the distribution function of F (Y1). Whence, applying the Dvoretzky-Kiefer

-Wolfowitz (1956) inequality, it follows that

P (Bn) � C exp(�1

2
nb2n): (A:6)

We can treat the terms I2 and I3 using the same kind of arguments. The

resulting bound is

c3

bn
exp

�
�c4n"bn (( 1

12A2K2(2AG0 + 1)
")1=2)

�
+ C exp(�1

2
nb2n) (A:7)

in case of I2, and in case of I3 we obtain

c5

bn
exp

 
�c6n"2=3b5=3n  (

1

K
1=3
3 2A

"1=3b1=3n )

!
: (A:8)

Note that for " bounded the �rst term in (A.7) is less than the term in (A.5), for

appropriate choices of the constants.

Hence, combining (A.2) { (A.8), we have,

Pfsup
x
jĥn(x)� ehn(x)j > "

2
g (A:9)

� c7

bn

�
exp(�c8n"2bn) + exp(�c9n"2=3b5=3n )

�
+ c10 exp(�c11nb2n):
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For the second term on the right-hand side of (2.1) use integration by parts

and write

ehn(x)�Eehn(x) = 1

bn

Z
K
�F (x)� t

bn

�
d(Hn �H)(t)

=� 1

bn

Z
[F (x)�Abn;F (x)+Abn[

[Hn(t�)�H(t�)

�Hn(F (x)�Abn�) +H(F (x) �Abn�)]dK
�F (x)� t

bn

�
:

Thus,

Pfsup
x
jehn(x)�Eehn(x)j > "

2
g (A:10)

� Pf 1
bn

sup
S

jan(x)� an(y)j:Var(K) � "

2
g;

where S = f(x; y) : jx� yj � 2Abng, an(x) = Hn(x)�H(x), and Var(K) denotes

the total variation of the kernelK. Note that under the conditions on K, Var(K)

is �nite. By applying Lemma 2.1 the probability on the right-hand side can be

bounded by
c12

bn
exp(�c13n"2bn): (A:11)

Combination of (A.1), (A.9), (A.10) and (A.11) completes the proof.

In the case of general m(n), additional terms will show up in the �nal ex-

ponential bound. These appear when dealing with the terms leading to bounds

(A.6) and (A.11).

Proof of Lemma 2.3. Let m = n. As in the proof of Lemma 2.2, exponential

bounds for the two probabilities on the right-hand side of (2.1) will be obtained.

For the �rst probability

Pfsup
x
jĥn(x)� ehn(x)j > "

2
g � P

�
fsup

x
jĥn(x)� ehn(x)j > "

2
g \Ac

n

�
+ P (An);

(A:12)

where

An = fsup
x
jFn(x)� F (x)j > �bn

2
g:

On the set Ac
n the following inequalities hold

1

2nbn
#fi : �(1� �)bn � F (Yi)� F (x) � (1� �)bng � ĥn(x)

� 1

2nbn
#fi : �(1 + �)bn � F (Yi)� F (x) � (1 + �)bng:



ESTIMATION OF THE RADON-NIKODYM DERIVATIVE 277

Therefore,

P

�
fsup

x
jĥn(x)� ehn(x)j > "

2
g \Ac

n

�
� P

�
1

2nbn
max(sup

x
#fi : F (Yi)� F (x) 2 [�bn;�(1� �)bn] [ [(1 � �)bn; bn]g;

sup
x

#fi : F (Yi)� F (x) 2 [�(1 + �)bn;�bn] [ [bn; (1 + �)bn]g) > "

2

�
� P

�
sup
x

#fi : F (x)� (1 + �)bn � F (Yi) � F (x)� (1� �)bng=n > "

2
bn

�
+ P

�
sup
x

#fi : F (x) + (1� �)bn � F (Yi) � F (x) + (1 + �)bng=n > "

2
bn

�
:

Each of these two probabilities can be treated in the same way. We discuss

only one of them. The �rst probability can be bounded by

P

�
sup
x
j #fi : F (x)� (1 + �)bn � F (Yi) � F (x)� (1� �)bng=n

� PfF (x)� (1 + �)bn � F (Y1) � F (x)� (1� �)bngj > "

4
bn

�
;

using the condition on g and the de�nition of �.

Application of the Dvoretzky-Kiefer-Wolfowitz (1956) inequality leads to

P

�
fsup

x
jĥn(x)� ehn(x)j > "

2
g \Ac

n

�
� 2C exp(� 1

32
n"2b2n):

The second probability on the right-hand side of (2.1) is dealt with analogously as

P (Bn) in the proof of Lemma 2.2. Using the Dvoretzky-Kiefer-Wolfowitz (1956)

inequality for An, and collecting all obtained bounds we get the result.
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