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Abstract: This paper studies the sequential life testing problem in which the underly-

ing distribution of the length of life can be transformed to an exponential distribution

in a certain way. We obtain some asymptotic optimum properties of time-sequential

probability ratio tests (TSPRT), and give approximate formulas for the error proba-

bilities and for the expected number of failures of these tests, which improve some of

the results in Epstein and Sobel (1955).
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1. Introduction

This paper studies sequential life tests in which the underlying distribution

of the length of life has intensity of the form

h�(y) =
1

�
�(y); (1:1)

for y � 0; where �(t) is a known positive continuous function with
R
1

0
�(t)dt =1;

and � is a parameter of interest. We are interested in testing the hypothesis

H0 : � = �0 versus the hypothesis H1 : � = �1: The test is carried out by drawing

n items at random from the population and placing them on a life test where

one may curtail the experiment at the failure times and make a terminal decision

so as to reduce the on-test time. We study this time-sequential testing problem

with time censoring data.

The preceding time-sequential hypothesis testing problem in the exponential

case was studied by Epstein and Sobel (1955), who proposed a continuous ana-

logue of the SPRT of Wald for the problem and used a Wald approximation to

obtain some formulas for the operating characteristic curve, expected number of

failures, and the expected waiting time. Time-sequential testing problems were

also studied by Dvoretzky, Kiefer and Wolfowitz (1953), Kiefer and Wolfowitz

(1956) and Bhat (1988) in the context of stochastic processes. They argued that,
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in their models, the time-sequential probability ratio test (TSPRT) enjoys opti-

mum properties similar to those of the classical SPRT of Wald (cf. Wald and

Wolfowitz (1948)).

In this paper, we obtain an asymptotic optimum property of TSPRT for

(1:1); and apply the result of Siegmund (1975) to get approximate formulas for

the error probabilities and for the expected number of failures of the TSPRT.

To establish the optimal properties, we follow the classical approach of Wald

and Wolfowitz (1948) to introduce a Bayes auxiliary problem. Instead of working

on this Bayes problem as an optimal (time-sequential) stopping time problem on

its own, we transform and reduce it to a Wald-Wolfowitz type SPRT problem

with an upper bound n on the total number of observations. Although the �nite

horizon introduces non-stationarity into the problem, we can apply the optimal

stopping theory of Chow, Robbins and Siegmund (1971, Chap: 5) to show that its

Bayes solution is a generalized time-sequential probability ratio test (GTSPRT)

in the sense that the stopping time is de�ned by random boundaries. With this

result, we then proceed to get the asymptotic optimum property of the TSPRT

with constant boundaries.

The plan of this paper is as follows. Section 2 describes the time-sequential

testing problem and proposes a test. Section 3 transforms the model (1:1) to the

exponential case, reformulate the problem as a classical Wald-Wolfowitz problem

with �nite horizon and �nds the optimal GTSPRT. Section 4 establishes an

asymptotic optimum property of the TSPRT by results in Section 3. Section

5 gives approximate formulas for the error probabilities and for the expected

number of failures, which are an improvement of some of the results in Epstein

and Sobel (1955). A simulation study of the error probabilities and the expected

number of failures of the TSPRT is given to illustrate the previous discussion.

Time-sequential tests have been used worldwide by governments and indus-

tries in connection with quality control and procurement activities. We refer the

readers to Basu (1991) for a survey and other related references.

2. Time-Sequential Tests

Let Y1; : : : ; Yn be a sequence of i.i.d: non-negative random variables with

intensity function (1:1) relative to the Lebesgue measure on the real line, where

� is the parameter of interest. Let �0 < �1 be two positive numbers. We are

interested in testing the hypothesis H0 : � = �0 versus the hypothesis H1 : � = �1
in the life testing context. We would like to curtail experimentation at the failures

Yn1; : : : ; Ynn and make a terminal decision so as to reduce the on-test time, where

Yn1; : : : ; Ynn are the order statistics of Y1; : : : ; Yn:

Let Yn0 = 0, W
(n)
0 = 0, F

(n)

k = �fYn1; : : : ; Ynkg, Y
(n)

k = (Yn1; : : : ; Ynk); Z
(n)

k =
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(n�k+1)(Ynk�Ynk�1); andW
(n)

k = Z
(n)
1 +� � �+Z

(n)

k ; for k = 1; : : : ; n: Let Li(Y
(n)

k )

be the likelihood of the experiment at Y
(n)

k under the hypothesis Hi; i = 0; 1; and

let L
(n)

k = L1(Y
(n)

k )=L0(Y
(n)

k ) be the likelihood ratio at Y
(n)

k :

A time-sequential test of the simple hypothesis H0 : � = �0 versus the simple

alternative H1 : � = �1 is given by an F
(n)

k -stopping time �n; together with a deci-

sion rule �n associated with �n. The statistical problem is to �nd a time-sequential

test (�n; �n) so that with given bounds on the error probabilities, Ei(W
(n)
�n

) is min-

imal for i = 0; 1: Here Ei is the expectation taken when Hi is true.

The time-sequential test we propose, called the time-sequential probability

ratio test (TSPRT), is of the form

�̂n = inff1 � k � n : L
(n)

k =2 (u; v)g; (2:1)

where u < 1 < v are positive and inffg = n; and the terminal decision rule �̂n
rejects H0 if and only if either �̂n = k < n and L

(n)

k � v or �̂n = n and L(n)n � 1:

We show that the TSPRT is asymptotically optimal in the sense of asymptot-

ically minimizing the expected on-test time both under H0 and under H1 among

all tests having no larger error probabilities.

To establish the optimal properties, we follow Wald and Wolfowitz (1948) to

consider the following Bayes auxiliary problem. Let � ( and (1��) ) be the prior

probability that H0 ( and H1 ) is true. Let a > 0 ( and b > 0 ) be the terminal

loss of accepting H1 when H0 ( and accepting H0 when H1 ) is true. We assume

that the cost per unit time on test is c > 0: Then the risk of a time-sequential

test (�n; �n) is given by

n(�; �n; �n; a; b; c) = �[a�0 + cE0(W
(n)
�n

)] + (1� �)[b�1 + cE1(W
(n)
�n

)]; (2:2)

where �0 and �1 are respectively the type 1 and type 2 error probabilities of

(�n; �n): The Bayes procedure is to �nd a test (��n ; �
�

n) which minimizes (2:2) for

given �; a; b and c: Note that the Bayes problem can be studied as an optimal

stopping problem.

3. The Bayes Problem

We introduce the following transformation to simplify the discussion. Let

Tk = �(Yk); k = 1; : : : ; n;

where �(t) =
R t
0
�(y)dy; for t � 0: Then the random variables T1; : : : ; Tn are i.i.d.

exponential with intensity 1=�; and Tnk = �(Ynk) for k = 1; : : : ; n; where Tn1 �

� � � � Tnn are the order statistics of T1; : : : ; Tn. It can be shown that the tests

based on (Yn1; : : : ; Ynk) can be transformed to be tests based on (Tn1; : : : ; Tnk) in
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a unique way, and the likelihood ratio L1(T
(n)

k )=L0(T
(n)

k ) at T
(n)

k is equal to that

at Y
(n)

k in a natural way, where T
(n)

k = (Tn1; : : : ; Tnk): With this understanding,

it is just natural to consider the transformed data.

Note that the on-test time based on (Tn1; : : : ; Tnk) becomes
Pk

i=1 �(Yni) +

(n�k)�(Ynk); which can be expressed as a sum of k i.i.d: random variables having

intensity 1=�:

With this transformation, we may assume without loss of generality that Yi

is an exponential distribution with intensity 1=�; i.e. �(y) = 1 in Model (1:1): In

this situation, the random variables Z
(n)
1 ; : : : ; Z(n)

n de�ned in Section 2 are also

i.i.d. with intensity 1=�: Then for any stopping time �n, Ei(W
(n)
�n

) = �iEi(�n),

i = 0; 1; by Wald's Lemma. Hence, instead of formulating the Bayes problem

in terms of the W (n)
�n

and the posterior probability �(n)�n
in favor of H0; we can

reformulate it in terms of �n and �(n)�n
:

This reformulation simpli�es the problem and brings it closer to the classical

Wald-Wolfowitz theorem on the Bayes character of the sequential probability

ratio test with the following di�erences; namely, (i) while the classical theorem

assumes cost c per observation, the present setting assumes cost c�0 under H0

and c�1 under H1; and (ii) the present problem has a �nite horizon n while the

classical problem does not impose an upper bound on the stopping rules.

For (i), we can use a rescaling to transform the problem to one having a

sampling cost c0 per observation under both H0 and H1 as follows. Let �0 =

��0/[��0+(1��)�1], a
0 = �a/�0, b0 = (1��)b/(1��0) and c0 = c[��0+(1��)�1],

then

n(�; �n; �n; a; b; c) = �0[a0�0 + c0E0(�n)] + (1� �0)[b0�1 + c0E1(�n)]; (3:1)

which will be denoted by 0n(�
0; �n; �n; a

0; b0; c0): Note also the one to one corre-

spondence between �0; a0; b0; c0 and �; a; b; c respectively.

For (ii), the �nite horizon introduces non-stationarity into the problem. Ap-

plying the optimal stopping theorem of Chow, Robbins and Siegmund (1971,

Chap: 5) for the non-stationary Markov case, we get the GSPRT instead of the

SPRT as the optimal solution. In fact, a careful analysis by the method of back-

ward induction gives the following neat formula for the boundaries de�ning the

test statistic.

Theorem 3.1. If a > c�0 and b > c�1; then there exist two monotone sequences

fAkg
1

k=0
and fBkg

1

k=0
of positive numbers, such that Ak & A and Bk % B for

some positive numbers A and B; and the Bayes procedure (��n ; �
�

n) with respect

to �; a; b and c is given by

��n = inff1 � k � n : L
(n)

k =2 (
�(1�Bn�k)

(1� �)Bn�k

;
�(1�An�k)

(1� �)An�k

)g;
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and rejects H0 if and only if L
(n)
��
n

� �(1�An���
n
)/[(1� �)An���

n
]:

Note that the two monotone sequences fAkg and fBkg in Theorem 3.1 are

determined uniquely by a; b and c. The proof of Theorem 3.1 is omitted because

it is tedious and it follows basically the classical pattern. If a � c�0 or b � c�1;

then the Bayes procedure takes no observation.

4. The Asymptotic Optimum Properties

Since Ak is decreasing to A and Bk is increasing to B in Theorem 3.1, it is

natural to consider the time-sequential test (�̂n; �̂n) de�ned as (2:1): The main

result in this section is to establish the asymptotic optimum properties of (�̂n; �̂n):

Theorem 4.1. The time-sequential test (�̂n; �̂n) de�ned as (2:1) is asymptotic

Bayes in the sense that given any � with 0 < � < 1; there exist numbers 0 <

w� < 1 and c� > 0 such that

lim
n!1

0n(�; �̂n; �̂n; 1�w
�; w�; c�) = lim

n!1
[ inf
(�n;�n)2�n

0n(�; �n; �n; 1�w
�; w�; c�)]; (4:1)

where �n is the set of all time-sequential tests.

Proof. Let X1;X2; : : : be a sequence of i.i.d. exponential random variables with

density g�(x) = (1=�) exp[(�1=�)x]: Assume that (��; ��) is the Wald SPRT of

the hypothesis H0 versus the hypothesis H1 with boundary (u; v); that is, the

stopping rule

�� = inffk � 1 : Lk =2 (u; v)g; (4:2)

and H0 is rejected if and only if L�� � v; where Lk =
Qk

i=1[g�1(Xi)=g�0(Xi)] is

the likelihood ratio based on X1; : : : ; Xk: Let �
� ^ n be the minimum of �� and

n: Since �̂n has the same distribution as �� ^n; which converges almost surely to

��; it follows that, for any given constants �0; a0; b0 and c0;

lim
n!1

0n(�
0; �̂n; �̂n; a

0; b0; c0) = �0[a0�+ c0E0(�
�)] + (1� �0)[b0� + c0E1(�

�)]; (4:3)

where � and � are respectively the type 1 and type 2 error probabilities of

(��; ��): Thus, the theorem follows from (4:3) and the Bayesian property of the

Wald SPRT. This completes the proof.

Theorem 4.2. Let (�̂n; �̂n) be the TSPRT de�ned as (2:1); and let �0 �

�0(�̂n; �̂n) and �1 � �1(�̂n; �̂n) be respectively the type 1 and type 2 error proba-

bilities of (�̂n; �̂n). Assume (�n; �n) is any time-sequential test of H0 versus H1;

and let �00 � �00(�n; �n) and �01 � �01(�n; �n) be respectively the type 1 and type 2

error probabilities of (�n; �n): If

lim
n!1

[�i(�̂n; �̂n)� �0i(�n; �n)] � 0; i = 0; 1; (4:4)
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then we have

lim sup
n!1

[Ei(�̂n)�Ei(�n)] � 0; i = 0; 1: (4:5)

Proof. Given � with 0 < � < 1; it follows from Theorem 4.1 that there exist

numbers 0 < w� < 1 and c� > 0 such that (4:1) holds. Hence, using (4:1) and

(3:1); we have

lim
n!1

f�[(1� w�)�0 + c�E0(�̂n)] + (1� �)[w��1 + c�E1(�̂n)]g

� lim inf
n!1

f�[(1 � w�)�00 + c�E0(�n)] + (1� �)[w��01 + c�E1(�n)]g: (4:6)

By (4:4) and (4:6); we obtain

lim
n!1

[�E0(�̂n) + (1� �)E1(�̂n)] � lim inf
n!1

[�E0(�n) + (1� �)E1(�n)]:

Thus, (4:5) holds, since � is arbitrary in (0; 1). This completes the proof.

Note that it follows from (4:5) and Wald's identity that

lim sup
n!1

[Ei(W�̂n)�Ei(W�n)] � 0; i = 0; 1;

where Wk =
Pk

i=1 �(Yni) + (n� k)�(Ynk):

5. The Error Probabilities and the Expected Number of Failures

Epstein and Sobel (1955) use the Wald approximation to get approximate

formulas for the operating characteristic curve, the expected number of failures,

and the expected waiting time. In this section, we make use of the results of

Siegmund (1975) to improve the formulas for the error probabilities and the

expected number of failures of the TSPRT.

Let (�̂n; �̂n) be the TSPRT de�ned as (2:1); and let �0(�̂n; �̂n) and �1(�̂n; �̂n)

be respectively the type 1 and type 2 error probabilities of (�̂n; �̂n): Assume that

(��; ��) is the Wald SPRT de�ned as (4:2):

Since �̂n and �� ^n have the same distribution, we get �0(�̂n; �̂n) ! �,

�1(�̂n; �̂n) ! � and Ei(�̂n) ! Ei(�
�), i = 0; 1, as n ! 1, where � and � are

respectively the type 1 and type 2 error probabilities of (��; ��): This together

with the approximation of Siegmund (1975) (see also Woodroofe (1982, Chap: 3,

Sec: 1)) gives the following results:

Theorem 5.1. Let �0 = log(�0=�1)+1�(�0=�1) and �1 = log(�0=�1)�1+(�1=�0).

Then

� =
�0

�1v
+ o(

1

v
) and � =

��0�1u

�1�0
+ o(u);



TIME-SEQUENTIAL TEST 257

as u! 0+ and v !1:

Theorem 5.2.

E1(�
�) =

1

�1
(log v +

�1

�0
� 1) + o(1)

and

E0(�
�) =

�1

�0
[� log u+

�0
2 + (1� �0=�1)

2

�2�0
�

1X
k=1

1

k
�k] + o(1);

as u! 0+, v !1 with u log v ! 0 and v�1 log(1=u)! 0; where

�k = k�0 +

Z k�0�1 log(�1=�0)

�1��0

0

[k log
�1

�0
� (

1

�0
�

1

�1
)t]

1

�(k)�0
k
tk�1e�

1
�0

tdt:

It follows from the preceeding theorems that, if 1=u, v and n are su�ciently

large, we have the following approximate formulas:

�0(�̂n; �̂n) �
�0

�1v
; (5:1)

�1(�̂n; �̂n) �
��0�1u

�1�0
; (5:2)

E1(�̂n) �
1

�1
(log v +

�1

�0
� 1); (5:3)

E0(�̂n) �
�1

�0
[� log u+

�0
2 + (1� �0=�1)

2

�2�0
�

1X
k=1

1

k
�k]: (5:4)

It is not di�cult to see the right-hand sides of (5.1), (5.2), (5.3) and (5.4)

are functions of h = �1=�0 for given u and v: Based on (5:1) � (5:4); we give in

Table 1-1 approximate values of Ei(�̂n); i = 0; 1, for four values of h; and for the

four number pairs (�; �) which can be formed from the numbers 0:01 and 0:05:

Table 1-2 gives the approximate values of expected number of failures based on

Epstein and Sobel (1955). It is clear that these two approximations can be quite

di�erent. In fact, from Wald's approximations,

� � (
1

u
� 1)/(

v

u
� 1); (5:5)

� � (v � 1)/(
v

u
� 1): (5:6)

Since (1=u�1)/(v=u�1) � 1=v and (v�1)/(v=u�1) � u as u! 0+ and v !1;

we know the approximations (5:5) and (5:6) are asymptotically incorrect by a

constant factor, as shown in Theorem 5.1.

A simulation study for the comparisons between (5:1)�(5:2) and (5:5)�(5:6)

has been carried out. We give, in Table 2-1 and Table 2-2, simulation results
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for the error probabilities and the expected number of failures of �̂n; which are

respectively de�ned by (5:1) � (5:2) and (5:5) � (5:6) for � = � = 0:01; four

values of h and several di�erent values of n:

For example, in Table 2-1, if �̂n is de�ned by (5.1) and (5.2) with h = 2; n =

120; and � = � = 0:01; then the simulation values of error probability and

expected number of failures of �̂n are 0:009 and 23:91 under H0 ( and 0:012 and

15:86 under H1 ). The Wald's approximation values of error probability and the

expected number of failures of �̂n; based on Epstein and Sobel (1955), are 0:020

and 21:80 under H0 ( and 0:012 and 12:42 under H1 ). The approximation values

of error probability and the expected number of failures of �̂n; based on Siegmund

(1975), used in this paper, are 0:010 and 23:93 under H0 ( and 0:010 and 16:01

under H1 ). It is clear that the approximation based on (5:1) � (5:4) is better

than that of Epstein and Sobel (1955).

Acknowledgements

This work is based on part of my Ph.D. dissertation at National Central

University, Taiwan, R.O.C. I wish to thank my advisor Professor I-Shou Chang

for his guidence and helpful comments. The author thanks the referee, whose

comments helped to clarify several important points.



TIME-SEQUENTIAL TEST 259

Table 1-1. Approximate values of Ei(�̂n), i = 0; 1; based on (5:1) � (5:4), for various

values of �; � and h = �1=�0:

h 3/2 2 5/2 3

H � �
� 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

H0 0.01 64.33 42.02 23.93 15.60 14.65 9.56 10.74 7.02

0.05 64.33 42.02 23.93 15.60 14.65 9.56 10.74 7.02

H1 0.01 49.71 49.71 16.01 16.01 8.89 8.89 6.11 6.11

0.05 32.69 32.69 10.76 10.76 6.13 6.13 4.32 4.32

Table 1-2. Approximate values of Ei(�̂n), i = 0; 1; based on Epstein and Sobel (1955);

for various values of �; � and h = �1=�0:

h 3/2 2 5/2 3

H � �
� 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

H0 0.01 62.43 40.35 23.31 15.07 14.24 9.20 10.43 6.74

0.05 57.91 36.74 21.63 13.72 13.21 8.38 9.67 6.14

H1 0.01 47.64 44.18 14.68 13.61 7.71 7.16 5.00 4.63

0.05 30.79 28.03 9.48 8.64 4.99 4.54 3.23 2.94

Table 2-1. Simulation values of error probabilities and expected number of failures of

(�̂n; �̂n); which are de�ned by (5:1) � (5:2) with � = � = 0:01 for various values of

h = �1=�0 and for several di�erent values of n:

h 3/2 2 5/2 3

�i Ei(�̂n) �i Ei(�̂n) �i Ei(�̂n) �i Ei(�̂n)

H0 n = 40 0.080 37.21 0.018 22.34 0.012 14.83 0.014 10.40

n = 80 0.036 55.23 0.010 24.35 0.015 13.96 0.011 10.69

n = 120 0.012 61.78 0.009 23.91 0.014 14.57 0.008 10.58

H1 n = 40 0.122 32.50 0.018 15.01 0.013 8.65 0.007 6.08

n = 80 0.052 43.73 0.014 16.45 0.011 8.70 0.005 5.80

n = 120 0.024 48.09 0.012 15.86 0.008 8.94 0.009 5.99

E-S H0 0.015 60.19 0.020 21.80 0.025 12.98 0.030 9.29

H1 0.011 43.39 0.012 12.42 0.013 6.14 0.014 3.77

Sieg. H0 0.010 64.33 0.010 23.93 0.010 14.65 0.010 10.74

H1 0.010 49.71 0.010 16.01 0.010 8.89 0.010 6.11
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Table 2-2. Simulation values of error probabilities and expected number of failures of

(�̂n; �̂n); which are de�ned by (5:5) � (5:6) with � = � = 0:01 for various values of

h = �1=�0 and for several di�erent values of n:

h 3/2 2 5/2 3

�i Ei(�̂n) �i Ei(�̂n) �i Ei(�̂n) �i Ei(�̂n)

H0 n = 40 0.090 38.19 0.014 23.30 0.009 15.44 0.007 11.55

n = 80 0.038 55.35 0.003 25.02 0.004 15.29 0.001 11.44

n = 120 0.014 62.92 0.003 24.72 0.004 15.68 0.003 11.41

H1 n = 40 0.113 33.54 0.019 16.99 0.009 10.32 0.009 7.02

n = 80 0.048 47.02 0.008 17.49 0.012 10.68 0.005 7.33

n = 120 0.018 52.80 0.013 18.15 0.010 10.38 0.009 7.32

E-S H0 0.010 62.43 0.010 23.31 0.010 14.24 0.010 10.43

H1 0.010 47.64 0.010 14.68 0.010 7.71 0.010 5.00

Sieg. H0 0.007 66.07 0.005 25.08 0.004 15.58 0.003 11.56

H1 0.009 53.90 0.008 18.23 0.007 10.44 0.007 7.32
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