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Abstract: Box and Hunter (1961) made an important observation that any fractional

factorial design of resolutionR has the property that when projected onto anyR�1

factors it becomes a full factorial design. This has a signi�cant implication for sta-

tistical analysis. We observe that the Plackett-Burman and related designs have a

hidden projection property with an analogous implication for the analysis. Because

of complex aliasing, these designs have traditionally been used for screening main

e�ects only. The hidden projection property suggests that complex aliasing actually

allows some interactions to be entertained and estimated without making additional

runs and provides an explanation for the success of an analysis strategy due to Hamada

and Wu (1992). We give a detailed study of the hidden projection property for 12-run

and 20-run designs with two levels and an 18-run design with three levels.
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1. Introduction

In the classic work of Box and Hunter (1961), they de�ned the resolution

of a fractional factorial design to be the shortest wordlength R of the de�ning

contrasts for the design. They further noted that the notion of resolution has an

interesting statistical interpretation, that is, when the design is projected onto

any subset of R�1 factors, it is a full factorial design. Therefore all the main ef-

fects and interactions among R�1 factors are orthogonal and estimable, if other

factors have negligible e�ects. Although this geometric projection property is

obvious from the notion of strength in Rao's (1947) earlier work on orthogonal

arrays, its full statistical implications were recognized and exploited by Box and

Hunter. Lin and Draper (1992), and, independently, Box and Bisgaard (1993),

extended this projection property to Plackett-Burman (PB) designs, which can-

not be de�ned by a group of de�ning contrasts. (Henceforth we shall refer to Lin

and Draper (1992) as LD.)

The projective rationale has two aspects. The �rst and obvious one is the

geometric projection, which was adopted by LD. Take the 12-run PB design as
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an example. LD showed that when projected onto any four factors, the design

needs one additional run to make it into a 24�1 design with resolution IV and �ve

additional runs to make it into a full factorial design. The second and the more

important aspect is the ability to entertain the estimation of interactions. For

the usual 2n�k designs (i.e., n factors with 2n�k runs) with de�ning contrasts,

these two aspects are equivalent. For the PB designs, however, the second aspect

can be achieved even when geometric projection does not lead to a full factorial

design or a fractional factorial design with high resolution . For the same example,

we show in Section 2 that all the six two-factor interactions (2�'s) among the

four factors can be estimated without adding runs. (The same observation was

made by Lin and Draper (1993) in a di�erent context.) By contrast the 24�1

design obtained by adding one run has the de�ning relation I = 1234 and only

allows three out of the six 2�'s to be estimated because the six 2�'s are aliased in

three pairs. A design is said to possess a hidden projection property if it allows

some (or all) interactions to be estimated even when the projected design does

not have the right resolution or other combinatorial design property for the same

interactions to be estimated. For the PB designs their hidden projection property

is a result of the complex aliasing patterns between the interactions and the main

e�ects. For the 12-run design with four factors 1, 2, 3, and 4, any 2�, say the

interaction between 1 and 2, is orthogonal to the main e�ects 1 and 2, and is

partially aliased with the main e�ects 3 and 4 with correlation 1/3 or �1=3. Any

other 2� enjoys a similar property. No 2� is fully aliased with any main e�ect,

thus making it possible for all six 2�'s to be estimated along with the four main

e�ects.

The hidden projection property provides an explanation for the success of an

analysis strategy due to Hamada and Wu (1992) for entertaining and estimating

interactions from PB-type experiments. Because of the complex aliasing, the PB

designs have been used traditionally as a screening design, i.e., for estimating

main e�ects only. The hidden projection property suggests that some interac-

tions can be entertained and estimated without making additional runs at other

settings.

In Section 2 we give a detailed analysis of the hidden projection property

of the 12-run PB design for projections onto 3 to 6 factors. The results show

that the number of estimable 2�'s is equal or close to the maximum degrees of

freedom remaining for interactions. That is, no additional runs are necessary if

only a moderate number of 2�'s are to be entertained. In Section 3 we extend the

study to three 20-run designs including the PB design. The same approach can

be applied to study the hidden projection property of 16-run designs based on the

four Hadamard matrices of order 16 (Hall (1961)), which are not equivalent to the

regular 16-run design de�ned by a group of de�ning contrasts. However, as shown
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by Sun and Wu (1993), some (but not all) of the factors in these 16-run designs

also satisfy a group of de�ning contrasts, thus making it less attractive from the

hidden-projective point of view. The hidden projection property of designs with

more than two levels can also be studied. An important example is the 18-run

orthogonal array with seven 3-level factors, which has complex aliasing patterns.

In Section 4 we study the hidden projection property of this array. By following

the same approach we can study the hidden projection property for many other

designs with complex aliasing. Finally it is shown in Section 5 how the hidden

projection rationale can be exploited in data analysis and for run size savings.

Its advantages are demonstrated by reanalyzing the data in LD. In particular, we

can identify the same 2� as in the analysis of LD by adding only one run instead

of the six runs required by the geometric projection approach.

2. Hidden Projections of the 12-Run Plackett-Burman Design

There are two general questions to be answered. (i) If n factors are to be

studied, which n columns should be assigned to the n factors? Since any set of

n columns are orthogonal, we must compare them in terms of their ability in

entertaining k 2�'s in addition to the n main e�ects. (ii) For each assignment,

main e�ect analysis may reveal that only n1 factors (i.e. n1 columns), n1 < n,

are signi�cant. We can then raise the question (i) for these n1 factors. Since the

projection onto n1 columns varies with the outcome of the analysis, it will be

desirable to study this problem for all (or most) projections. The information

obtained will be useful for experimenters in contemplating the choice of designs.

Beyond knowing the estimability of the main e�ects and a given set of 2�'s,

it is desirable to have an estimation e�ciency measure for the purpose of compar-

ison. In this paper we adopt the following D criterion for measuring the overall

e�ciency for estimating the collection of e�ects:

jXtXj1=k; (1)

where X = [x1=kx1k; : : : ;xk=kxkk], and xi is the coe�cient vector of the ith

e�ect. Because the columns of X are standardized, (1) achieves its maximum

1 if and only if the xi's are orthogonal to each other, i.e., when the array is

orthogonal. The vector 1 is not included in X since it is orthogonal to the xi's.

For the estimation of each individual e�ect, we use the following Ds criterion for

measuring its e�ciency:

fx
t
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t

i
xi; (2)

where X(i) is obtained from X by deleting xi. Note that (2) attains its upper

bound 1 if and only if xi is orthogonal to the other columns in X.
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In this section we consider questions (i) and (ii) for the 12-run PB design

(Table 1) with four to six factors. When collapsed onto any three factors, it

consists of two parts: a 23 design with eight points and a 23�1 design with

four points (see LD). So the three main e�ects and four interactions can all be

estimated with high e�ciency. When collapsed onto four factors, in addition to

the four main e�ects, there are still seven degrees of freedom left. Can they be

used to estimate the six 2�'s without adding more runs? Before answering this

question, we should address the issue of choice of columns for the factors. The

choice of n factors is equivalent to the choice of a 12�n submatrix of the matrix

given in Table 1. Two such matrices are said to be (combinatorially) equivalent

if one can be obtained from the other by permutations of rows, columns and

sign changes. In the context of design theory we refer to this equivalence as

(combinatorial) equivalence of two factor assignments. It turns out that any four

columns of the matrix in Table 1 can be chosen for the four factors because it is

known (Draper (1985), Wang (1989)) that, except for n = 5 and 6, any 12 � n

submatrices are equivalent.

Table 1. 12-run Plackett-Burman Design

run 1 2 3 4 5 6 7 8 9 10 11

1 + + � + + + � � � + �

2 � + + � + + + � � � +

3 + � + + � + + + � � �

4 � + � + + � + + + � �

5 � � + � + + � + + + �

6 � � � + � + + � + + +

7 + � � � + � + + � + +

8 + + � � � + � + + � +

9 + + + � � � + � + + �

10 � + + + � � � + � + +

11 + � + + + � � � + � +

12 � � � � � � � � � � �

For n = 4, we give in Table 2 the values of D and Ds for 10 cases. The last

one consisting of four main e�ects and six 2�'s is the most comprehensive. From

their Ds values we can see that all the 2�'s and the main e�ects can be estimated

without adding runs. This estimability result was �rst observed by Lin and

Draper (1993). The �rst nine cases in Table 2 represent all possible submodels

of the comprehensive model of case 10. We further elaborate this point by the

use of graphs. As in Wu and Chen (1992), we can represent any model consisting
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of main e�ects and selected 2�'s by a graph in which nodes represent factors

and any line connecting two nodes represents the 2� between the two factors

represented by the two nodes. For example, case 10 can be represented by the

following complete graph

•

• •

•1

2 3

4

Then the �rst nine cases correspond to all possible (non-isomorphic) subgraphs

of this complete graph. (Two graphs are isomorphic if one can be obtained by

permuting the nodes of the other graph.) We de�ne a graph model to be the

class of models (consisting of main e�ects and 2�'s) that can be represented by a

graph. All the models within the same class are said to be graphically equivalent.

For example, the model for case 4 and the modelM = f1;2;3;4;14;24;34g are

di�erent but both can be represented by the following graph

and therefore are graphically equivalent. Since a graph can represent di�erent

models, we do not usually put the factor labels for the nodes. An important

question is whether graphically equivalent models have the same statistical ef-

�ciencies. Take, for example, the two models considered above. The D value

for model M is :89 and the Ds values for the seven e�ects are :74, :74, :74, 1,

:74, :74, :74, which are equivalent to the D and Ds values for case 4 of Table

2 after changing 1 to 4 and 4 to 1. We call two graphically equivalent models

e�ciency equivalent if the D and Ds values of one model are the same as the

other model after relabelling the factor names. In general graphical equivalence

does not imply e�ciency equivalence. (One such example will be given in Figure

3.) For each of the 10 graph models in Table 2, graphical equivalence does imply

e�ciency equivalence. Therefore one set of D and Ds values represent all the

models for the same graph.
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Table 2. Estimation e�ciency for four factors and h interactions, h = 1; : : : ; 6. The Ds

e�ciency is given for each e�ect.

D e�ect

case value 1 2 3 4 12 13 14 23 24 34

1 .95 1 1 .88 .88 .78

2 .92 1 .87 .87 .75 .76 .76

3 .89 .85 .85 .85 .85 .63 .63

4 .89 1 .74 .74 .74 .74 .74 .74

5 .89 .87 .87 .87 .62 .74 .74 .74

6 .87 .85 .85 .74 .74 .76 .63 .63

7 .85 .85 .73 .73 .62 .73 .73 .62 .62

8 .83 .73 .73 .73 .73 .63 .63 .63 .63

9 .82 .72 .72 .62 .62 .72 .62 .62 .62 .62

10 .80 .62 .62 .62 .62 .62 .62 .62 .62 .62 .62

For n = 5, there are two non-isomorphic 12� 5 submatrices: design 5.1 and

design 5.2 in the notation of LD. Design 5.1 has two repeated runs, i.e., two

runs with the same level combination. For example, in the design consisting of

columns 1, 2, 3, 4, and 10, runs 3 and 11 are identical. On the other hand,

design 5.2 has two mirror image runs. For example, runs 7 and 11 are two mirror

runs in the design consisting of columns 1 to 5. We �rst study the properties of

design 5.1. Because design 5.1 has two repeated runs, there are only 10 degrees

of freedom for estimating e�ects. Consequently, it can entertain at most �ve

2�'s. It is easy to show that there are altogether four graphically non-equivalent

models for estimating �ve 2�'s and the �ve main e�ects. As in the case of n = 4,

all the graphically equivalent models (i.e., those having the same graph) have

the same e�ciencies. Therefore we can give one set of D and Ds values for each

graph as is done in Figure 1. The total number of models for each graph (from

left to right in Figure 1) is 30, 60, 60, and 12 respectively. For models with fewer

2�'s the e�ciencies will be higher. The details are omitted.

Figure 1. Four graphically non-equivalent models with �ve 2�'s for design 5.1.
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The situation for design 5.2 is more complicated. Models that are graphi-

cally equivalent may not be equivalent in terms of e�ciency or even estimability.

Before giving the details on the non-equivalence, we �rst note that, unlike design

5.1, there are 11 degrees of freedom for e�ect estimation, which allow six 2�'s

to be estimated in addition to the �ve main e�ects. Altogether there are �ve,

six and respectively six non-isomorphic graphs representing models with six, �ve

and respectively four 2�'s (in addition to the �ve main e�ects). These graphs are

given in Figure 2 as graphs 1 to 5, 6 to 11, and respectively 12 to 17. To illustrate

the problem of non-equivalence we use graph 17 as an example. In Figure 3 we

give representations of four models by using di�erent factor labels for the �ve

nodes in graph 17. The model for the left graph is not estimable. The models

for the remaining graphs are estimable but have non-equivalent e�ciencies.

Figure 2. Graphically non-equivalent models for design 5.2 with h 2�'s, h = 6, 5, 4.
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Figure 3. Four e�ciency non-equivalent models for model 17 in Figure 2. The labels for

the nodes indicate the column numbers in Table 1.
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These 17 graphs are further studied in Table 3 under cases 1 to 17 using the
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same order. For the �rst �ve graphs (with 6 2�'s) only graph 3 (i.e., case 3) has

equivalence in estimability. It happens to be a complete graph for four of its �ve

nodes. Recall that case 10 of Table 2 has a complete graph with four nodes and

also has e�ciency-equivalence (which implies estimability-equivalence). Among

the next six graphs, graphs 6 and 10 have estimability-equivalence. For graph 6

this property follows from the fact that it is a subgraph of graph 3. For graph 10

we cannot provide an explanation. For the last six graphs (with four 2�'s) only

graph 17 does not have estimability equivalence. For graphs with three or fewer

2�'s all models are estimable. Its details are omitted. By examining the ratios

ne=n in the second column of Table 3 we �nd that the percent of non-estimable

models drops from 99/170 to 5/21, 1/21 and 0 as the number of 2�'s drops from

six to three. Because estimable models for the same graph may have di�erent D

and Ds values, we give, in Table 3, the range of such values over these models.

Noting that the e�ciency for estimating main e�ects tends to be higher than for

estimating 2�'s, we give the range of Ds values for main e�ects and 2�'s in two

separate columns.

Table 3. E�ciencies of graphically non-equivalent models for design 5.2 with h interac-

tions, h = 6, 5, 4.

model range of range of Ds for range of Ds

number ne=n D values main e�ects for 2�'s

1 40/60 .69{.69 .20{.50 .20{.50

2 1/15 .69{.69 .33{.50 .20{.50

3 5/5 .69{.69 .17{.50 .20{.50

4 20/60 .69{.69 .29{.50 .20{.50

5 10/60 .69{.69 .29{.50 .22{.50

6 30/30 .71{.78 .21{.72 .22{.59

7 50/60 .71{.77 .24{.67 .22{.67

8 40/60 .71{.71 .29{.67 .22{.51

9 2/12 .76{.76 .58{.58 .52{.52

10 30/30 .71{.78 .24{.83 .22{.59

11 40/60 .71{.71 .33{.67 .22{.51

12 5/5 .81{.81 .59{1.0 .59{.59

13 60/60 .74{.81 .25{.84 .26{.67

14 60/60 .74{.81 .31{.83 .26{.67

15 10/10 .74{.74 .42{.70 .26{.52

16 15/15 .74{.81 .29{.73 .26{.59

17 50/60 .74{.79 .34{.75 .26{.53

Note: ne = number of estimable models, n = total number of models for a given graph.
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Based on the previous information for designs 5.1 and 5.2, we conclude that

design 5.2 has better overall properties for the following reasons:

1. It allows six 2�'s to be estimated in 71 models while design 5.1 does not

allow any model with six 2�'s to be estimated. Note that 71 is obtained by

adding up the ne values in the �rst 5 rows of Table 3.

2. Design 5.2 has 192 estimable models with �ve 2�'s, which can be grouped

into six graph models, while design 5.1 has 162 such models grouped into

four graph models. Furthermore the four graphs are part of the six graphs.

3. For the same graph model design 5.2 has higher overall e�ciencies than

design 5.1.

If there are �ve factors in an experiment, we should choose design 5.2 for the

�ve factors. If there are more than �ve factors, projections (after data analysis)

onto �ve factors can lead to either design 5.1 or 5.2. In this case the key issue

is the capacities of design 5.1 and 5.2 for estimating interactions, which were

studied in the previous paragraphs. A similar remark can be made for n = 6 in

this section and other comparisons in Sections 3 and 4.

By contrast the geometric projection approach would require adding six and

respectively ten runs for designs 5.1 and 5.2 so that the augmented designs have

resolution V (see LD). If only six or fewer 2�'s are to be entertained, the hidden

projection approach will be preferred.

For n = 6, there are two non-isomorphic 12�6 submatrices (see LD). Design

6.1 is characterized by having no mirror runs (e.g. columns 1 to 6) while design 6.2

has two mirror image runs (e.g. runs 7 and 11 are mirror image runs in columns

1 to 5 and 7). To save space we only briey discuss the hidden projection

property of designs 6.1 and 6.2. Design 6.1 allows any model with three 2�'s to

be estimated. (There are �ve such graph models.) It does not, however, allow all

models with four 2�'s to be estimated. The estimable ones can be grouped into

seven graphs. Estimable models with �ve 2�'s can be grouped into 15 graphs.

The percent of estimable models varies greatly among the 15 graph models,

ranging from 1/6 to 90/90. The D value ranges from .61 to .74. The Ds values

vary wildly from .05 to .8 for the main e�ects, and from .06 to .5 for the 2�'s.

The small Ds values for some models can be explained by the fact that these

models are close to being non-estimable. For design 6.2 the estimable models

with �ve 2�'s can be grouped into 7 graphs, which are part of the 15 graphs

for design 6.1, and the percent of estimable models ranges from 30/180 to 6/6.

Unlike design 6.1 it does not allow all models with three 2�'s to be estimated.

Overall design 6.1 is preferred. The inferiority of design 6.2 may be explained as

follows. Its two mirror image runs in design 6.2 provide no information about

any 2� because any 2� column in the two runs is either (1; 1)t or (�1;�1)t, and
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therefore is confounded with the grand mean.

Finally we note that the 8-run design can also be used to study four to

seven factors and respectively three to zero 2�'s. The choice between the 12-run

and the 8-run designs depends on the trade-o� between run size and the desired

number of estimable 2�'s.

3. Hidden Projections of Three 20-Run Designs

According to Hall (1965), there are three non-isomorphic Hadamard matrices

of order 20, which he called class N, P and Q. Our computer search shows that

class Q is equivalent to the cyclic design studied by Plackett and Burman (1946),

a fact not pointed out by Hall.

Table 4. Class Q Hadamard matrix of order 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

+ + + + + + + + � � � � � � � � � � � �

+ + + � + � � � + � + � � + + � � � + +

+ + + � � + � � + � � + + � � + + � � +

+ + + � � � + � � + � + � � + + � + + �

+ + + � � � � + � + + � + + � � + + � �

+ + � � + + + + + + + + + + + + � � � �

+ + � + + + � � + + � � � + � + + + + �

+ + � + + � � + � � + + � � + + + + � +

+ + � + � + + � � + + � + � + � + � + +

+ + � + � � + + + � � + + + � � � + + +

+ � + � + + + + + + + + � � � � + + + +

+ � + + + + � � � + � + + + + � � + � +

+ � + + + � + � � � + + + + � + + � + �

+ � + + � + � + + � + � + � + + � + + �

+ � + + � � + + + + � � � + + + + � � +

+ � � + � � � � + + + + � � � � � � � �

+ � � � + � + � + � � � + � + � + + � �

+ � � � + � � + � + � � + � � + � � + +

+ � � � � + + � � � + � � + � + � + � +

+ � � � � + � + � � � + � + + � + � + �

Note that in Table 4, the column (labelled 0) consisting of all +'s cannot be

used to study a factor e�ect. Similarly, for Classes N and P, only 19 columns can

be used for studying factor e�ects.

For each of the three designs, projection onto any three columns consists of
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at least one 23, thus allowing all the factorial e�ects to be estimated with high

e�ciency. Details on the geometric projection property for n = 3 can be found

in LD.

For n = 4 and 5, the hidden projection approach reveals some interesting

aspects that are missed by the geometric projection approach. First we review

the geometric projection property. According to LD, for each of N, P and Q,

there are three non-isomorphic 20� 4 submatrices:

1. Design 20-4.1. It has �ve runs with two repeats. As a result it has 15 out of

the 16 (= 24) level combinations.

2. Design 20-4.2. It has one run with three repeats and six runs with two

repeats and therefore has only 12 out of the 16 level combinations.

3. Design 20-4.3. It has one run with three repeats and six runs with two

repeats and therefore has only 12 out of the 16 level combinations.

Designs 20-4.1 to 20-4.3 require the addition of 1, 4 and 4 runs respectively

to complete a full factorial 24. If we are primarily interested in estimating the

four main e�ects and six 2�'s, there is no need to add runs for estimating the ten

e�ects. Using the hidden projection property, we have the estimation e�ciencies

for design 20-4.1: D = :93, Ds = :86 for each of the ten e�ects. For 20-4.2 (using

columns 1, 2, 3, 4 of Table 4), D = :8, Ds = :81 for 4, 14, 24, 34, and Ds = :53

for 1, 2, 3, 12, 13, 23. For design 20-4.3, D = :8, Ds = :81 for each main e�ect,

Ds = :53 for each 2�. So if the 3-factor and 4-factor interactions are of little

interest, which is usually the case, the hidden projection property would allow

us to estimate the 2�'s without adding runs.

Among the three projections, 20-4.1 is the best in terms of the geometric

projection (i.e., smallest number of additional runs required) as well as the hidden

projection property (i.e., high D and Ds values). For each of N, P and Q, 20-

4.1 appears 2736 times, 20-4.2 912 times, and 20-4.3 228 times. So there is no

di�erence among N, P and Q when n = 4.

For n = 5, there are respectively 10, 10, 9 non-equivalent 20� 5 submatrices

for N, P and Q corresponding to the same matrices, which Lin and Draper

(1991) called design 20-5.1 to 20-5.10. Note that design 20-5.10 was missing in

their collection for Q. (For brevity sake, we drop 20 in 20-5.i in the remainder of

the section. To save space we refer to their paper for these designs.) The number

of additional runs required to make a full factorial 25 ranges from 12 to 19 (Lin

and Draper (1991)). If, however, the 2�'s are of primary interest, we need to

add fewer runs to complete a 25�1 resolution V design de�ned by 5 = �1234

because in any resolution V design, all the 2�'s are estimable. Our calculations

show that, among the ten 20 � 5 submatrices, one requires adding three runs,

two require adding four runs, and the rest require adding six to nine runs. These
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are substantially smaller than the 12 to 19 runs as previously indicated.

By contrast the hidden projection property would allow most or all of the

2�'s to be estimated without adding any run. Straight but tedious calculations

show that for designs 5.1, 5.4, 5.3 and 5.5, all the 10 2�'s are estimable with

5.1 and 5.4 having higher overall estimation e�ciencies than 5.3 and 5.5. For

designs 5.2, 5.6, 5.7 and 5.8, nine 2�'s are estimable while for designs 5.9 and

5.10, only seven are estimable. The results can be explained by the structures

of the designs. Design 5.1 has no run with repeats, 5.4 has one run with two

repeats, and the rest have at least two runs with repeats. The worst are designs

5.9 and 5.10 with six and seven runs with repeats respectively.

We can compare N, P and Q in term of the frequencies of the best designs

5.1 and 5.4 among the projections. The best is Q, which has 1881 projections of

design 5.1 and 1368 projections of design 5.4, while N has 1680 of design 5.1 and

1488 of design 5.2 and P has 1296 of design 5.1 and 1728 of design 5.2. Recall

that Q does not have the \worst" design 5.10 among its projections, which may

partially explain its superiority.

We conclude the section with a summary of results for n = 6. There are 59,

56 and 50 non-equivalent 20 � 6 submatrices for N, P and Q respectively. The

complexity may explain why Lin and Draper (1991) did not study the geometric

projection for n = 6. Among the 59 submatrices, 20 have no repeated runs. At

most 13 2�'s can be estimated. In Table 5 we give the percentages and cumulative

percentages of projections that allow h 2�'s to be estimated, h = 13; 12; 11; 10; 7.

Since at least 99.7% of the projections will allow 10 or more 2�'s to be estimated

(with average e�ciencies approximately D = :65, Ds = :37 for main e�ects,

and Ds = :32 for 2�'s), the hidden projection property suggests that usually no

additional runs are needed for studying important 2�'s. In practice, the number

of important 2�'s seldom exceeds six. Design Q is again the best among N, P

and Q because all of its 20� 6 submatrices can entertain at least 10 2�'s!

Table 5. Percentages and cumulative percentages (in parentheses) of 20� 6 submatrices

of N, P and Q that can entertain h 2�'s, h = 13; 12; 11; 10; 7.

h

design 13 12 11 10 7

N 33.0(33.0) 47.9(80.9) 12.4(93.3) 6.6(99.9) 0.1(100)

P 39.0(39.0) 42.1(81.1) 11.2(92.3) 7.4(99.7) 0.3(100)

Q 29.4(29.4) 51.5(80.9) 13.2(94.1) 5.9(100)

4. Hidden Projections of L18(3
7)

The hidden projection property also holds for three-level designs with com-

plex aliasing. To save space we only consider the orthogonal array L18(3
7) (Ma-
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suyama (1957)) given in Table 6. This array plays an ubiquitous role in practical

experimentation and in theoretical research because it is the smallest orthogonal

array with three levels and complex aliasing.

Table 6. 18-run Orthogonal Array

run 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 0 1 1 1 1 1 1

3 0 2 2 2 2 2 2

4 1 0 0 1 1 2 2

5 1 1 1 2 2 0 0

6 1 2 2 0 0 1 1

7 2 0 1 0 2 1 2

8 2 1 2 1 0 2 0

9 2 2 0 2 1 0 1

10 0 0 2 2 1 1 0

11 0 1 0 0 2 2 1

12 0 2 1 1 0 0 2

13 1 0 1 2 0 2 1

14 1 1 2 0 1 0 2

15 1 2 0 1 2 1 0

16 2 0 2 1 2 0 1

17 2 1 0 2 0 1 2

18 2 2 1 0 1 2 0

For three factors (i.e. n = 3), there are three non-isomorphic 18� 3 subma-

trices given as follows.

1. Design 18-3.1. It is a 2/3 fraction of 33, consisting of one 1/3 fraction de�ned

by C = A +B(mod 3), and another 1/3 fraction de�ned by C = A +B+

1(mod 3), where A and B are any two of the three columns. Any three

columns in Table 6 not containing column 1 form a design of this type.

2. Design 18-3.2. It consists of two 1/3 fractions of 33 in which the two fractions

share three points in common. For instance, in columns 1, 2 and 7, run 7

through run 15 form a 1/3 fraction de�ned by col 7 = col 2+ col 1(mod 3),

and the remaining runs form another 1/3 fraction de�ned by col 7 = col 2+

2�col 1(mod 3), where col is an abbreviation for column. These two fractions

share (0,0,0), (1,0,1) and (2,0,2).

3. Design 18-3.3. It contains two identical replicates of a 1/3 fraction of 33.

Only one choice of three columns (columns 1, 3 and 4) is of this type.
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Obviously design 18-3.1 is the best because it has 17 df's for estimating e�ects

while designs 18-3.2 and 18-3.3 have, respectively, 14 and 8 df's. For e�ciency

comparison we consider design 18-3.1 with quantitative factors only. For each

quantitative factor, we use ` = (�1; 0; 1) for its linear e�ect and q = (1;�2; 1)

for its quadratic e�ect. The four df's for each 2� are represented by the linear-

by-linear (` � `), linear-by-quadratic (` � q), quadratic-by-linear (q � `), and

quadratic-by-quadratic (q � q) e�ects. The model consists of the grand mean,

the three main e�ects A, B, C (with 6 df's) and the ` � `, ` � q, and q � `

components of A�B, B�C, A�C (with 9 df's). For this model, the overall D

e�ciency is 0.83. The individual Ds e�ciencies are: 0.78 for `, 0.76 for q, 0.48

for ` � `, and 0.6 for ` � q and q � q. Because the model has 16 df's, there are

two remaining df's, which allow for estimating two of the three q � q e�ects.

For four factors (i.e. n = 4), there are four non-isomorphic 18�4 submatrices

given as follows:

1. Design 18-4.1. Any four columns not containing column 1 form a design of

this type. Note that any three columns of this design form a design 18-3.1.

2. Design 18-4.2. One set of its three columns is a design 18-3.2 and the re-

maining three sets are design 18-3.1. Columns 1, 2, 3, and 6 form a design

of this type.

3. Design 18-4.3. One set of its three columns is a design 18-3.3 and the re-

maining three sets are design 18-3.1. Columns 1, 2, 3, and 7 form a design

of this type.

4. Design 18-4.4. One set of its three columns is a design 18-3.1 and the re-

maining three sets are design 18-3.2. Columns 1, 2, 4, 7 form a design of

this type.

Any of the four designs allows the four main e�ects (8 df's altogether) and

the ` � ` components of the six interactions to be estimated. Their e�ciencies

are given in Table 7. Overall designs 18-4.1 and 18-4.2 are better than the other

two.

Table 7. D and Ds e�ciencies for 18 runs in 4 factors

e�ect
design linear quadratic linear�linear

D A B C D A B C D AB AC AD BC BD CD

18-4.1 .82 .62 .62 .62 .62 .87 .87 .87 .87 .53 .54 .54 .54 .54 .53

18-4.2 .84 .85 .78 .70 .85 .61 .91 .72 .74 .55 .49 .49 .51 .58 .57

18-4.3 .73 .44 .27 .54 .27 .65 .82 .78 .82 .33 .30 .33 .58 .35 .58

18-4.4 .72 .42 .51 .75 .51 .41 .57 .47 .57 .33 .25 .33 .49 .27 .49

Note: We use columns 2, 3, 4, 5 for 18-4.1, columns 1, 2, 3, 6 for 18-4.2, columns 1,

2, 3, 4 for 18-4.3, and columns 1, 2, 4, 7 for 18-4.4.
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For n = 5 the same method can be used to �nd out how many ` � ` e�ects (in

addition to the main e�ects) can be estimated. The details are omitted.

5. An Illustrative Example

In this section we illustrate the hidden projection approach to analysis by

reanalyzing an example reported in LD. To save space we refer to LD for the data

and design matrix. Initially a 12-run PB design was used to study 10 factors.

Using standard analysis they identi�ed �ve signi�cant main e�ects 1, 3, 7, 8 and

10. Then they added six more runs, labelled 13 to 18, to make it a resolution

V design. Based on the augmented data, they found the 7�8 interaction to be

signi�cant.

Using the hidden projection property, we can entertain and analyze some

2�'s based on the original 12 runs. Since columns 1, 3, 7, 8 and 10 form design

5.1, the collapsed design can entertain at most �ve 2�'s whose graphs are given in

Figure 1. It is known from the discussion in Section 2 that any set of three 2�'s

among these �ve factors are estimable. So we can study any three 2�'s without

adding runs. Using forward selection in regression analysis with the �ve main

e�ects and the 10 2�'s as candidate variables, we did not �nd any signi�cant 2�

since their partial t values are small. Although the hidden projection property

allows us to estimate any three 2�'s, the original data is su�ciently noisy to mask

the signi�cance of any 2�. In order to detect the signi�cance of some 2�'s, we

need to add runs that give the maximum amount of information for this purpose.

Suppose the objective is to be able to estimate one more 2�, say, xy. Since design

5.1 has 11 distinct runs, there are 21 remaining factor level combinations in the 25

design. To select one additional run from among the 21 factor level combinations,

we use the D criterion for the overall model (�ve main e�ects plus xy) and the

Ds criterion for estimating xy. It turns out that the combination in run no. 14

of LD is the best, with D = :96 and Ds = :83 for any xy. (Note that run no.

14 is the mirror image of the two repeated runs, no. 5 and no. 10 in the design

matrix of LD.) By adding this run to the original data and repeating the forward

selection for model search, the variables are entered in the order: 10, 7, 8, 1, 3,

7�8 and the partial t value for 7�8 is 2.55. The �tted model is

ŷ = 72:3 + 22:1x10 + 16:4x7 + 11:5x8 � 8:9x1 � 6:4x3 + 2:4x7x8

and the adjusted R2 increases from 98.3% to 99.1% by adding x7x8. So we can

reproduce results and conclusions very close to those in LD by adding only one

run.



250 J. C. WANG AND C. F. JEFF WU

Acknowledgements

This research was supported by the Natural Sciences and Engineering Re-

search Council of Canada, General Motors of Canada, the Manufacturing Re-

search Corporation of Ontario and the National Science Foundation.

References

Box, G. E. P. and Hunter, J. S. (1961). The 2k�p fractional factorial designs. Technometrics 3,

311-351, 449-458.

Box, G. E. P. and Bisgaard, S. (1993). George's column. What can you �nd out from twelve

experimental runs? Quality Engrg. 5, 663-668.

Draper, N. R. (1985). Small composite designs. Technometrics 27, 173-180.

Hall, M. Jr. (1961). Hadamard matrices of order 16. Research Summary 1, 21-26, Jet Propul-

sion Laboratory, Pasadena, California.

Hall, M. Jr. (1965). Hadamard matrix of order 20. Jet Propulsion Laboratory Technical Report

No. 32-761.

Hamada, M. and Wu, C. F. J. (1992). Analysis of designed experiments with complex aliasing.

J. Quality Technology 24, 130-137.

Lin, D. K. J. and Draper, N. R. (1991). Projection properties of Plackett and Burman designs.

Technical Report 885, University of Wisconsin, Department of Statistics.

Lin, D. K. J. and Draper, N. R. (1992). Projection properties of Plackett and Burman designs.

Technometrics 34, 423-428.

Lin, D. K. J. and Draper, N. R. (1993). Generating alias relationships for two-level Plackett

and Burman designs. Comput. Statist. Data Anal. 15, 147-157.

Masuyama, M. (1957). On di�erence sets for constructing orthogonal arrays of index two and

strength two. Rep. Statist. Appl. Res., JUSE 5, 27-34.

Plackett, R. L. and Burman, J. P. (1946). The design of optimum multifactorial experiments.

Biometrika 33, 305-325.

Rao, C. R. (1947). Factorial experiments derivable from combinatorial arrangements of arrays.

J. Roy. Statist. Soc., Supplement 9, 128-139.

Sun, D. X. and Wu, C. F. J. (1993). Statistical properties of Hadamard matrices of order 16.

Quality Through Engineering Design (Edited by W. Kuo), 169-179, Elsevier.

Wang, J. C. (1989). Orthogonal arrays and nearly orthogonal arrays with mixed levels: Con-

struction and applications. Unpublished Ph: D: thesis. Department of Statistics, University

of Wisconsin-Madison.

Wu, C. F. J. and Chen, Y. (1992). A graph-aided method for planning two-level experiments

when certain interactions are important. Technometrics 34, 162-175.

Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008,

U.S.A

Department of Statistics, University of Michigan, Ann Arbor, MI 48109-1027, U.S.A.

(Received January 1993; accepted August 1994)


