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Abstract: Traditional methods of assessing the geometric integrity of any �nely engi-

neered product requires the use of �xtures. The �t is then tested with a feeler gauge.

Fixtures are expensive to construct and transport and the degree of accuracy obtained

may be insu�cient, depending on the tolerance speci�ed by the procurer of the part.

In this paper, we discuss an alternative scienti�c approach to assessing geometric

quality assurance. Through the use of spherical regression techniques we are able to

statistically assess the spatial integrity of geometric objects described through CAD

and CMM data.
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1. Introduction

In many industrial settings, e.g., the automobile industry, it is necessary to

assess the geometric integrity of component parts. Traditionally, the procurer

of the part has issued geometric speci�cations and tolerances against which the

supplier's product is tested. A physical mould is made of wood, plastic, etc.,

and an attempt is made to clamp the part into place. Tolerance is checked

with a feeler gauge. Such methods are expensive, time consuming and of limited

accuracy.

More recently, Computer Aided Design (CAD) has allowed the designer to

create a prototype part in the form of a computer image. It is then possible to

generate a �le that takes the place of the traditional blueprint, or speci�cation.

The surface of the image of the part is covered with a �ne mesh and both the

spatial coordinates, and the coordinates of the unit normal vector are generated,

at each mesh point. The resulting �le is called the CAD �le, and the quality

assurance problem is now to test whether a sample part conforms to the CAD

�le, to within speci�ed tolerances.

The device used to check the geometric integrity of a part is a Coordinate

Measuring Machine (CMM). The part is held �rmly in position, and points on the

surface of the part are touched with the CMM probe. The spatial coordinates of
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the points that are touched are accurately measured and recorded. It is important

to note that the coordinates so obtained are with respect to an axis system

internal to the CMM. On the other hand, vectors in the CAD �le are expressed

relative to some coordinate system determined by the software that created the

CAD �le. The problem is therefore to construct a transformation between the

two coordinate systems. The CMM measurements could then be transformed

and checked against the CAD �le.

Constructing the transformation is more di�cult than might at �rst appear.

Since the CAD �le consists of only a �nite number of points, the mesh points

mentioned above, an arbitrarily chosen point on the part will in most instances

not correspond to any CAD point. Even if such a point did appear in the CAD

�le, there is no practical way of identifying it. Thus it is not possible to construct

a transformation by simply matching CMM points to CAD points.

A Euclidean transformation is required, i.e.,

x! Ax+ T;

where x, T are 3-vectors, and A is a 3� 3 rotation matrix. The purpose of this

paper is to display a method of estimating the rotation, followed by outlining

diagnostic procedures that assess the �t so that a statistical determination of

whether or not the part is defective can be made. An estimator of the translation

parameter T is also established.

The rotation is constructed as follows. First CMM readings are used to esti-

mate directional features of the part. By directional features, we mean e.g., unit

vectors normal to small planar regions on the part, or a unit vector indicating the

direction of some line, such as a trim-edge. Counterparts to these directions can

be found in, or calculated from, the CAD �le. Then, the methods of spherical

regression, see Chang (1986), are applied to construct the rotation (plus possi-

ble reection) that causes the least squares �t between these CMM directional

data and their CAD counterparts. Rivest (1989) gives diagnostics for spherical

regression, and these can be used to check the integrity of those aspects of the

part represented by the directional data. Indeed, using these diagnostics for just

the rotation parameter determines that a part is defective in the sense that a

collection of planar regions in the part do not align with one another in the way

demanded by the CAD and that it is possible to determine which plane is out of

alignment. Once the rotation parameter is estimated, the translation parameter

can then be estimated.

At this point an example would be of much bene�t. Unfortunately, real

data, with which to demonstrate the proposed methodology is unavailable to us.

Consequently, we simulate data for a situation such as might arise in practice.
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Our methods are most suitable for geometric �gures with many planar faces

and can be extended somewhat to smooth surfaces. An example of such a �gure

can be found in the traditional quality assurance laboratory and is called a dia-

mond pin (see Figure 1). A diamond pin is one kind of holding �xture used in

traditional quality assurance.

Plane Area

1 ADP

2 ABP

3 BCP

4 CDP

5 ADEH

6 ABEF

7 BCFG

8 CDGH

Figure 1. Diamond pin

A part whose geometric quality is to be assessed by traditional methods

has to be secured in position (by holding �xtures) so that feeler gauges can be

applied. Di�erent combinations of �xtures are used to do this, depending on the

physical characteristics of the part. When a diamond pin is used, a square (or

sometimes rectangular) hole has been drilled in the part (during manufacture)

at a precise, strategic location. The point of the diamond pin is inserted into the

hole, thus aiding in locating the position of the part. In this paper, we show how

our methods could be used to assess the geometric integrity of the diamond pin

itself. A distorted diamond pin could lead to incorrect positioning of the part,

and faulty quality assurance.

We now give a summary of what is to follow. In Section 2, we discuss mea-

surement errors induced by the CMM, along with a method of estimating direc-

tional features of the part, from CMM data. These estimated directional features

have two sources of potential error. The �rst is the inaccuracy inherent in the

CMM, measurement variation, which is unavoidable in the sense that it occurs

even in a perfect part. The second source of potential error is due to distortion
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in the part itself, part variation, possibly brought about by faulty manufacture.

It is the presence of large part variation that we are trying to detect. Although,

in practice, some margin of part variation would be allowable, this would re-

ally depend on the particular circumstances including, of course, meeting the

customer-speci�ed tolerance. Consequently, for the purposes of this paper, we

will take a canonical approach and interpret a part to be within geometric toler-

ance as the bound on error brought about by the measurement variation alone.

Section 3 is a review of spherical regression along with relevant diagnostics given

by the penetrating paper of Rivest (1989). It is then possible to establish statis-

tical tests to determine whether a given part meets the tolerance requirements.

Section 4 attempts to illustrate the methodology on the diamond pin example.

Indeed, the statistical tests appear to function quite well in not rejecting the

diamond pin when no distortions are placed, while at the same time rejecting

the part when we deliberately distort planar regions of the diamond pin. Some

comments on other simulations are also made. In Section 5, comments related to

estimating the translation parameter are made. Section 6 is a discussion section

followed by an Appendix which outlines how the data is simulated.

2. Measurement of Features, CMM Resolution and the Data

Given a part to be tested it is usually possible to �nd various directional

features that can be both identi�ed in the CAD �le, and estimated using CMM

measurements. There are two types of directional features: unit vectors indicat-

ing the direction of a line in the part; and, unit vectors normal to planar regions

in the part. While there are many ways the former can arise, in practice they

are much less used than the latter. For this reason, we restrict our discussion to

the planar situation, which is adequate for the purposes of this paper.

The procedure is therefore, to identify n planar regions on the surface of the

part, n � 3. Of course, in the diamond pin example, see Figure 1, our interest

would be in the eight planar regions. (We do not consider the plane EFGH.)

The unit normal vectors to these planes in the CAD coordinate system, can be

found by looking in the appropriate general region of the CAD �le, for a collection

of mesh points with a common normal. The corresponding normals in the CMM

coordinate system are then estimated as described below, and spherical regression

can be used to estimate the orthogonal transformation required to best �t the

CAD points to the CMM data in a least squares sense.

2.1. CMM and CMM resolution

The demand for greater accuracy in inspection has made CMMs an integral

part of modern quality assurance (Cook (1989)). While CMMs vary in size and
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sophistication (Overment (1991)), a component common to many CMMs is a

smooth topped granite table which has been accurately leveled. A column-like

piece rises vertically from the surface of the table, and slides along the table

parallel to the oor. A horizontal arm is attached to the column and can slide

vertically up and down. On the end of the arm is a probe, which can rotate in

any direction. The part under assessment is placed on the table. When the probe

touches the part, the spatial coordinates of the tip of the probe (relative to some

axis system determined by the CMM) are displayed, and routed to a computer.

This computer may be equiped with software to implement methods such as

those described in this paper. For a recent application see Cook (1993). For

comprehensive engineering and statistical reviews of CMMs as well as statistical

methodologies of CAD modelling with CMM data using nonlinear regression, see

Dowling et al. (1993).

Before using CMM measurements to estimate the normal vector to a plane,

it is necessary to consider the nature of CMM measurement error. Typically, a

CMM display consists of the three spatial coordinates it is measuring, expressed

in mm. The three readings change independently of one another; however, only

certain coordinate values are allowed for certain decimal places. Assuming that

the CMM always returns the allowed coordinate value that is nearest to the true

value, then the errors on the coordinates are independent of one another, and

are dependent on what is called the resolution of the CMM, which we denote by

�. The unit of measurement of the resolution is known as, micron, where one

micron is 10�3mm. Thus, in the situation where � = 5, the third decimal place

can only take values of 0 or 5 so that the spatial coordinates have errors of plus

or minus 2.5 microns. The resolution varies from one make and model type of

CMM to another.

2.2. Estimating directional features

Consider a plane P in R3. One way of characterizing P is through it's unit

normal vector, v 2 R3, say. Now, if we take statistical measurements x1; : : : ; xm
on P, then an estimator of v would serve as an estimator of P. Finding the

least squares estimator of v has been of interest to crystallographers, and a

number of solutions have been presented, (see Schomaker et al: (1959), Blow

(1960), Scheringer (1971)). A simple solution is to use the method of principal

component analysis. Put

x =
1

m

mX
i=1

xi; D =
mX
i=1

(xi � x)(xi � x)t;

where superscript t represents transposition. It is well known that the unit

eigenvector u say, corresponding to the smallest eigenvalue of D gives the least
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squares estimator of v. Since u is determinated only up to sign, to ensure that

u points in the right direction, i.e., is an outward normal, a point xm+1 can be

read by the CMM, above P. The sign of u is adjusted so that

u
t(xm+1 � x) > 0:

The accuracy of the estimate u depends not only on the resolution of the

CMM, but also on the number m of points on the plane, and how widely spread

these points are. The greater the area covered by these points the better, but in

practice one has to restrict this area to remain con�dent that the points are in

fact planar.

2.3. CMM resolution and the data

At this point, one can see that the error structure of the data, i.e., estimates

of the unit normal vectors, potentially comes from two sources: �rst, from mea-

surement variation induced by the CMM resolution; second, from part variation

arising from the production process. For the purposes of this paper a canon-

ical approach will be adopted whereby tolerance will mean that aspect of the

variation in the data that is due solely to CMM resolution, or in other words,

measurement variation. This somewhat restrictive de�nition will be used in or-

der to quantify tolerance for this paper; however, in practice some part variation

will be allowed for, determined of course by customer-speci�ed tolerance. Nev-

ertheless, each case would demand di�erent attention; therefore, we will restrict

the de�nition of tolerance as above. Indeed, once tolerance bounds have been

established in this regard, we would like to then be able to statistically conclude

that any errors observed over and above this tolerance bound, will be the contri-

bution of part variation. Aspects of this line of reasoning, will be quanti�ed in

the following section.

3. Spherical Regression and Diagnostics

Spherical regression is a procedure which statistically estimates an orien-

tation parameter based on spherical data. The problem was originally solved

by MacKenzie (1957), and the solution has been developed by Moran (1976),

Stephens (1979) and Chang (1986). Rivest (1989) developed diagnostic proce-

dures for the concentrated Fisher-von Mises distribution. Kim (1991) examined

spherical regression in a decision theoretic framework and obtained Bayes es-

timators for the unknown rotation under general conditions. Applications of

spherical regression have included: crystallography, see MacKenzie (1957); the

motion of tectonic plates, see Chang (1986) and Rivest (1989); and vector car-

diogram orientation, see Prentice (1986). To the best of our knowledge, this is
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the �rst application of spherical regression techniques, to an industrial setting,

in particular, to quality assurance.

3.1. Estimation of rotation and diagnostics

Let u be a random vector distributed on the two dimensional unit sphere

S
2 having density f(�utAv) with respect to the invariant measure on S

2. Here

v 2 S
2 is �xed and known, � > 0 is an unknown concentration parameter and the

unknown parameter of interest A, is a 3 � 3 rotation matrix. Let the collection

of all 3� 3 rotation matrices be denoted by SO(3).

Given a random sample u1; : : : ; un, and the corresponding set v1; : : : ; vn of

design points, the objective in spherical regression is to estimate the unknown

rotation A via,

min
A2SO(3)

n
�1

nX
i=1

kui �Avik
2
; (1)

where k � k denotes the usual Euclidean distance.

Following MacKenzie (1957) and through a modi�ed singular value decom-

position, Stephens (1979) obtained a closed form solution for (1). Denote by Als,

the least squares solution. Chang (1986) showed that if A 2 SO(3) is the true

parameter, then

Als ! A;

almost surely, as n!1, provided S = n
�1
P

n

i=1 viv
t

i
converges to some positive

de�nite matrix as n!1. This latter condition is, in fact, stronger than needed

in that the limit of S can allow for one 0 eigenvalue.

Extensions of this work to incorporate diagnostics similar to linear regression

was made by Rivest (1989). Suppose the distribution of the u's is that of a Fisher-

von Mises distribution,

f(�utAv) = c(�)�1 expf�utAvg; (2)

where c(�) = �
�1 sinh�. De�ne

Wi =

2
4 0 �vi3 vi2

vi3 0 �vi1

�vi2 vi1 0

3
5 ;

where vi = (vi1; vi2; vi3)
t, i = 1; : : : ; n. It was shown by Rivest (1989) that

2n�(1 � r)!d �
2
2n�3; (3)

as � ! 1 for each �xed n, provided
P

n

i=1W
t

i
Wi is nonsingular, where \!d"

means convergence in distribution and r = n
�1
Pn

i=1 u
t

i
Alsvi. We note that the
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approximation is op(�
�1=2), hence the approximation is very good for large �,

(see Rivest (1989, page 309)). We also note that in the case of small rotations,

which often is the case in practice, the least squares problem is essentially linear

regression with the model matrix equal to the skew symmetric matrix Wi, (see

Kane et al: (1983)).

For each �xed vi, let vi(1) and vi(2) be mutually orthogonal unit vectors per-

pendicular to vi for each i = 1; : : : ; n. Thus (vi; vi(1); vi(2)) form an orthonormal

basis for R3. De�ne

ei = (vi(1); vi(2))
t
A
t

ls
ui; (4)

for i = 1; : : : ; n as the residuals of spherical regression. We note that the moti-

vation for de�ning (4) comes from ordinary linear regression. Indeed, residuals

in the latter can be thought of as the orthogonal projection of the data onto the

complementary subspace spanned by the design matrix and does not depend on

the particular choice of basis. Note that the situation is similar in (4) in the

spherical regression context. This insight was �rst pointed out by Rivest (1989).

We can then form the statistic

t
2
i
=

(n� 5=2)et
i
��1
i ei

2n(1� r)� e
t

i�
�1
i ei

; (5)

where �i = (vi(2);�vi(1))
t[I � n

�1(I � S)�1](vi(2);�vi(1)), for i = 1; : : : ; n. Note

once again that (5) is motivated by ordinary linear regression, in that (5) is the

spherical adaptation of \externally studentized residuals" (see Cook and Weis-

berg (1982) and Rivest (1989)). We have that

t
2
i
!d F2;2n�5; (6)

for each i = 1; : : : ; n as �!1.

3.2. Testing geometric integrity

The parameter, � > 0, records the amount of concentration of the data u,

around A
t
v, with greater concentration being determined by large values of �.

Consequently, (3) can be used to form the test,

H0 : � � �0 against H1 : � < �0;

where the �0 would represent the amount of allowable tolerance. By (3), a

rejection region of approximate size � would be given by,

2n�0(1� r) > �
2
2n�3;�; (7)
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where �2
�;�

is the upper �th percentile of a chi-square distribution with � degrees

of freedom.

There are various ways of determining �0, depending on the situation at

hand, and engineering practices. As discussed in Section 2.3 however, our ap-

proach is to base it on the CMM resolution, so that the amount of allowable

tolerance is that which is induced by measurement error in the CMM. Further

discussion and quanti�cation of this point will be addressed in Section 3.3.

Another aspect involved in quality testing would be to �nd out whether the

ith data point is an outlier, thus indicating that point to be defective, particularly

if the above H0 is rejected but the data is still concentrated. Thus (5) could be

used along with (6). Indeed, let,

H0 : ith data point not defective.

Then an approximate size � rejection region would be,

t
2
i
> F2;2n�5;�; (8)

where F�;�;� denotes the upper �th percentile of an F distribution with � and

� degrees of freedom. Note once again that this procedure is similar to Cook's

procedure for testing for outliers in ordinary linear regression, (see Rivest (1989)).

3.3. Estimating � and the relationship to CMM resolution

An estimate for � for a given part is found by taking CMM readings of

planar readings and estimating the normals to the planes. We have found from

simulations that the number of normals estimated is not as signi�cant a factor

as the resolution of the CMM, and the con�guration of the CMM data points

on the planes in question. In order to apply our methods, a con�guration has to

be decided upon, and used throughout. The most convenient con�guration is a

circle. We space points evenly around the circumference of a circle in the plane.

The number of points measured is far less signi�cant than the radius of the circle.

It is customary to take six points around a circle, of radius 1cm (provided the

planar region is big enough).

Lower bound estimates on � for geometrically perfect parts are available.

Consider �rst the error in estimating one normal. Without loss of generality,

suppose that p1; : : : ; pm are the true coordinates of m � 3 points lying on a circle

of radius R. Due to the CMM measurement process, for each pk, there is a CMM

measurement error wk attached, where wk is bounded by �=2. Let v denote the

unit normal of the plane determined by the points fpkg
m

k=1; let u denote the

unit normal of the plane found by the least squares method based on the points

fpk + wkg
m

k=1; and let �u = u � v. Then a rough bound for the length of �u
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(denoted as j�uj) can be found by identifying the worst possible displacement

of the plane determined by the p's inside a cylinder with height �, inner radius

R� �=2 and outer radius R+ �=2. This bound is

j�uj
2
� 2

 
1�

R� �=2p
�2=4 + (R � �=2)2

!
:

With some considerable e�ort, the details of which can be found in Chen, Kim

and Chapman (1992), one can show that,

log � � log
�2n� 3

n

�
� log

(
2

 
1�

R� �=2p
�2=4 + (R � �=2)2

!)
:

The �rst row of Table 1 gives these values with R = 1cm. We suspect that the

lower bound estimates are far from being optimal and hence could be improved

upon.

Alternatively, one could estimate � through maximum likelihood. Indeed,

let s = 1� r, where r = n
�1
P
u
t

i
Alsvi. It follows from (3) that, s is distributed

approximately, as (2n�)�1�22n�3, when � > 0 is large. Thus, if we observe a

random sample s1; : : : ; sN , then by the usual derivations, the maximum likelihood

estimator is,

�̂ =
2n� 3

2ns
; (9)

where s denotes the sample mean. Further,

2n� 3

2Nn2s
2
;

would serve as an estimator of Var(�̂). Thus the amount of variability in �̂

is very small when � and N are large. Therefore, to get a good estimate of

the magnitude of the error induced by CMM resolution, samples (of s) of size

1000 are generated for a geometrically perfect part, for a variety of scenarios

obtained by varying n, and � (the resolution of the CMM) with R �xed at 1cm.

Values of n are considered between n = 3 (the minimum number required to

uniquely determine Als) and n = 10 (about the largest number commonly used

in practice). It was found that for �xed �, �̂ did not vary signi�cantly with n.

The second row of Table 1 gives a summary of the simulations run in double

precision fortran. We emphasize that the usual CMM resolution encountered in

practice is 5 microns; thus, a fair estimate for �0 when n = 8 is approximately

e
19. The interpretation of the latter is simply the error likely to be encountered

due exclusively to measurement variation of the CMM.

In comparing the two values, one should bear in mind that the values in

Table 1 are in the natural logarithm scale. Consequently, when exponentiated,
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the di�erence between the values will be quite large. As a conservative measure,

it may be suggested that the lower bound estimates be used for �0 in (7) instead

of the maximum likelihood estimate. In the examples to follow, we will use the

maximum likelihood estimates.

Finally, we end this section with the comment that if one �nds neither of

the above methods satisfatory, a third possibility exists in terms of estimating �

robustly. This technology is available through Ko (1992).

4. Application of Methodology to the Diamond Pin Example

This section discusses the practical aspects behind using the methodology

outlined in Section 3. We use the diamond pin example of Section 1 (see Figure

1) in a simulation environment, where the simulations attempt to capture the

type of situation normally encountered in practice. The way in which the data

is simulated, is outlined in the Appendix.

We present below two examples of situations that could arise in practice and

outline how the methodology is to be used. The discussion will begin with the

normal vectors of both the CAD and CMM data so that we are assuming that

the manufactured part has been measured by a CMM with the normal vectors

Table 1. Lower bound and simulated estimates of ln�

�

n 5 10 15 20 25 30 35 40

17.118 15.731 14.920 14.344 13.897 13.532 13.223 12.956

10 18.783 17.397 16.586 16.010 15.564 15.200 14.891 14.634

17.098 15.712 14.900 14.324 13.876 13.512 13.204 12.936

9 18.785 17.400 16.588 16.013 15.567 15.202 14.894 14.627

17.073 15.686 14.875 14.299 13.852 13.487 13.178 12.911

8 18.790 17.404 16.593 16.017 15.571 15.206 14.898 14.631

17.040 15.653 14.841 14.266 13.819 13.454 13.145 12.877

7 18.774 17.388 16.577 16.000 15.555 15.191 14.882 14.615

16.993 15.606 14.795 14.219 13.772 13.407 13.098 12.831

6 18.769 17.383 16.572 15.997 15.551 15.186 14.878 14.611

16.924 15.537 14.726 14.150 13.703 13.338 13.029 12.762

5 18.769 17.383 16.572 15.997 15.550 15.186 14.877 14.610

16.811 15.424 14.613 14.037 13.590 13.225 12.916 12.648

4 18.781 17.394 16.584 16.008 15.562 15.197 14.889 14.622

16.588 15.201 14.389 13.814 13.367 13.002 12.693 12.425

3 18.744 17.358 16.547 15.972 15.525 15.161 14.852 14.585
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computed as outlined in Section 2.2. In both situations, n = 8, � = 5 with the

rows representing the spatial unit normal vectors obtained by CAD and CMM.

In Figure 1, we identify the planar regions using the labels 1; 2; : : : ; 8.

4.1. Example 1: No distortions

In this example, the CMM data is just a rotation of the CAD points so that

no distortions other than measurement errors induced by CMM resolution are

made. The data is summarized in Table 2.

By (1), the least squares estimator is

Als =

2
4 0:4242 0:5656 �0:7070

�0:8000 0:5999 �4:43E-05

0:4242 0:5656 0:7071

3
5 :

In this example, we have,

2n�0(1� r) = 7:6476;

where by Table 1, ln�0 = 18:790. Thus, the p-value in comparison with a chi-

square random variable with 13 degrees of freedom, is 0.866. Thus, based on

(7), we cannot reject the null hypothesis and, indeed, the manufactured part is

within tolerance.

We also present the p-values associated with testing each planar region using

(8). The ith datum refers to the ith row of the data. Notice that all the p-values

are insigni�cant at any reasonable value, thus verifying the �rst conclusion based

on the chi-square approximation.

Table 2. Example 1

CAD CMM

�5.55E-17 �0.8656 �0.6000 0.7071 �1.25E-04 �0.7071

0.2656 0.4242 �0.7999 �1.15E-04 0.9999 �5.54E-05

�0.4242 0.7999 �1.11E-16 �0.9999 �5.18E-05 7.40E-05

2.42E-02 �0.8000 �0.8242 0.7070 �1.96E-05 �0.7070

0.5656 0.6000 �0.5656 3.10E-05 0.9999 3.68E-05

�0.6000 �1.0000 �0.5000 �0.9999 �0.7071 �0.7071

1.11E-16 �0.5000 �0.7071 �0.7070 �0.7071 4.05E-05

0.0000 0.7071 0.0000 5.24E-05 �2.73E-05 �1.10E-04
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Table 3. Test for outliers

ith datum 1 2 3 4 5 6 7 8

t
2
i

0.390 2.306 0.697 1.671 0.969 0.255 0.982 1.156

p-value 0.688 0.155 0.523 0.242 0.416 0.780 0.471 0.357

4.2. Example 2: Distortions

In this example, in addition to the CMM data being a rotation of the CAD

points a deliberate distortion in the CMM data is made. Indeed we move the

point P a magnitude of 0.001 along the y-axis thereby a�ecting the normal vectors

of the �rst and third planes. We note that the lines AD and CD, in Figure 1 are

parallel to the x and y axes, respectively. The data is summarized in Table 4.

Again by (1), the least squares estimator is

Als =

2
4 0:4242 0:5656 �0:7071

�0:8000 0:5999 �5:92E-05

0:4242 0:5657 0:7070

3
5 :

In this example, we have,

2n�0(1� r) = 173:771;

where again by Table 1, ln�0 = 18:790. Thus, the p-value is 0.000, so that

based on (7), we can reject the null hypothesis and conclude that signi�cant part

variation exits.

Again, we present the p-values associated with testing each planar region

using (8). We note that for this example, the latter is more meaningful since

the overall test is declaring signi�cant part variation. Notice that excluding the

�rst and third datum, the remaining p-values are insigni�cant at any reasonable

value. Thus given rejection of the part being within tolerance from the chi-square

approximation, the individual t2
i
indicates that the source of the part variation

comes from possibly the �rst and third planar regions of the diamond pin.

Table 4. Example 2

CAD CMM

�5.55E-17 �0.8656 �0.6000 0.7075 �2.29E-05 �0.7075

0.2656 0.4242 �0.7999 2.36E-05 0.9999 �4.39E-05

�0.4242 0.7999 �1.11E-16 �0.9999 6.46E-05 1.11E-04

2.42E-02 �0.8000 �0.8242 0.7073 2.50E-04 �0.7074

0.5656 0.6000 �0.5656 1.18E-04 0.9999 �8.33E-05

�0.6000 �1.0000 �0.5000 �0.9999 �0.7066 �0.7068

1.11E-16 �0.5000 �0.7071 �0.7066 �0.7067 �4.69E-05

0.0000 0.7071 0.0000 3.07E-05 �2.79E-05 �3.20E-05
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Table 5. Test for outliers

ith datum 1 2 3 4 5 6 7 8

t
2
i

4.492 0.591 4.110 1.863 0.056 0.001 0.011 0.004

p-value 0.044 0.574 0.054 0.210 0.946 0.999 0.989 0.997

4.3. Comments

In general, the test based on (8) did an excellent job of determining signi�cant

part variation, and the test based on (9) did a reasonable job of locating the source

of the variation (i.e. determining which plane or planes have been displaced from

the ideal). In Example 2 above, we had deliberately displaced the �rst and third

planar regions.

Extensive simulations have been performed and some of the results can be

found in Chapman and Kim (1992). Invariably we found that the overall chi-

squared approximation (8) did very well in declaring whether or not a part is

within tolerance as speci�ed in Section 2.3. In most instances, (9) was also

e�ective in detecting distorted planar regions. However, with regard to (9),

unanticipated results sometimes occured.

We feel there are two reasons for this. The �rst reason is due to the problem

of multiple comparisons. Even if (8) declares the part to be within tolerance,

the fact that we are individually comparing each planar region according to

some size � could lead to a declaration that one or more of the planar regions

is distorted, when this is not the case. This is the same kind of situation as

occurs in ordinary linear regression. Second, we must remember that (8) and (9)

are based on approximations that are asymptotic in �. If (8) rejects the part

(because the errors are not su�ciently concentrated), we still have to assume

concentrated errors to apply (9). If the part is rejected by (8) due to gross error

(because the concentration parameter is small), then the asymptotics on which

(9) is based may fail. As a recommendation, conclusions should be based on (8),

with a cautious examination of (9) to look for distorted regions.

5. Estimating the Translation

Our focus hitherto, has been solely on the rotation parameter; hence our

concern is only with regard to distortion in planar regions. Of course, to get an

overall assessment, in particular, with respect to things such as height, width,

length, distinguished markings, etc., we also need to estimate the translation

vector.

Since our discussion is with respect to planar regions, we will keep it that

way; however, one can also use other features such as directed lines to get at the
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translation vector. Indeed, if n planes are of interest, let f(vi; pi) : i = 1; : : : ; ng

describe the CAD planes and f(ui; xi) : i = 1; : : : ; ng describe the corresponding

CMM planes. Here v; u are normal vectors to the CAD, CMM planes respectively,

and, p; x are points on the corresponding planes for CAD, CMM respectively. We

note that, in the case of the latter, no identication between the p's and the x's

are assumed except that they are points on the corresponding CAD and CMM

planes respectively.

For the translation vector T 2 R3, we note that

u
t

i
(Api � T ) = u

t

i
xi; (10)

even though Api�T and xi do not have to correspond to the same point for i =

1; : : : ; n. Let U t = (u1; : : : ; un) and M
t = (ut1Alsp1 � u

t

1x1; : : : ; u
t

n
Alspn � u

t

n
xn),

where Als is the least square �t of the rotation parameter. Then (10) determines

the system UT = M , where this system consists of n equations in 3 unknowns.

Consequently, if we assume U is of rank 3, then a least squares estimator of T

can be obtained as,

T̂ = (U t
U)�1U t

M: (11)

The di�culty in analysing the distribution of this estimator is that the entries

U are derived from estimates of the \true" normal vector. Furthermore, the M

vector also has corresponding entries and, in addition, has the estimator Als of

the unknown rotation A. Although, the above bears a remarkable resemblance

to how the constant term in linear regression is determined, the distributional

theory of (11) needs to be further examined before any statistical use for it can

be determined. In that regard, one promising way of attacking the problem is to

envision the problem in a multivariate framework and assume that CMM points

are samples from a three dimensional multivariate normal distribution with mean

Av+T and covariance �2I. Such is the case of what is called Procrustes analysis,

(see Bingham, Chang and Richards (1992)). Some developments along the lines

of what is needed have been made and could potentially be used for the problem

at hand.

6. Discussion

We note that the methodology employed in this paper is most useful when

the part in question has distinct features such as; at regions, edges, points, etc.

This is because in the case of planar regions, estimation of the rotation parameter

can be achieved because the normal vector to the plane does not change with

location. In practice nonlinear CAD designs, such as B-splines, can arise. This

creates di�culties due to the fact that the normal vector to the surface will change

according to location. Consequently we would not be able to immediately apply
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the techniques of this paper without some modi�cations. One possibility is to

assume local atness in some radius of each point relative to some scale. This

would essentially reduce the problem to that of planar features. An alternative

strategy would be to take advantage of possible symmetries. In particular, one

could estimate normal vectors at local extrema between the CAD and CMM

points.

We have also assumed throughout this paper that the CAD points remain

�xed. From a practical point of view this assumption is valid since the CAD

points are computer generated whereas the CMM points are taken from actual

measurements. Nevertheless, some investigation into variable CAD points should

be addressed and is open for further investigation.

We would also like to make some comments on the Fisher-von Mises distri-

bution assumption. Indeed (3) and (6) depend on f(�utAv) being Fisher-von

Mises in as much as the distributional theory is only worked out for that case.

However, it is felt that much of Rivest's results should extend to a broader class

of densities based on appropriate smoothness conditions and the rotational sym-

metry of f(�), since the main technique is to employ second-order analysis along

the lines of Watson (1983). Consequently, even if the Fisher-von Mises assump-

tion is incorrect, we feel that the methodology will remain intact and much of

the needed results can be obtained intuitively. Certainly the simulations we have

performed seem to bear this out.

Nevertheless, as a defence for the Fisher-von Mises distribution, because

of the scale involved in the concentration parameter, we feel that it is not an

inappropriate assumption. Indeed, just from rudimentary plots of simulated

data, it appears as though the data clumps exponentially around the preferred

direction. This assumption can of course be tested using a goodness of �t test

for the Fisher-von Mises distribution proposed by Rivest (1986).
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Appendix

The data for the simulations and the examples are created in the following

way:

� n planar regions are identi�ed on a part (n � 3);

� the corresponding unit normal vectors v1; : : : ; vn are located in the CAD data

�le;

� six points are measured with a CMM on each of the n planes. Each set of

six points is spaced around a circle of radius 1cm.

The steps taken in the simulation are:

Step 1. Let

v0 = (0; 0; 1); �i = �i=3 + wi; yi = (cos �i; sin �i; 0) (1 � i � 6);

where wi is a uniform variate in the range (�0:05�;+0:05�). The purpose of the

wi's is to simulate the inaccuracy that arises when the CMM operator judges by

eye that the points are evenly spaced around the circle.

Step 2. Rotation matrices Rj (1 � j � n) are selected with the property that

R1v0, R2v0, R3v0 are mutually orthogonal. Put

vj = Rjv0 (1 � j � n):

The above orthogonality requirement is included to avoid the degenerate situation

where all the normals are nearly in the same straight line.

Step 3. An arbitrary rotation R is applied to all the data. Then

~uj = Rvj (1 � j � n)

are the `true' CMM normals, and if we put

xji = RRjyi (1 � j � n; 1 � i � 6);

the vectors xj1; xj2; : : : ; xj6 are the CMM points that would be used to estimate

~u via the method of Section 2.
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The above data simulates a part that is geometrically perfect, and has been

measured without any error, i.e., the CMM has � = 0. The algorithms of Sections

2 and 3 would lead to estimators

uj = ~uj (1 � j � n);

and a rotation matrix Als = R.

Di�erent scenarios are considered, by varying n and the resolution �, of the

CMM. The basic idea of the study is to simulate measurement errors on the CMM

readings xji consistent with the error structure discussed in Section 2.1, so that

the � induced by the resolution of the CMM would be the allowable tolerance �0.

By taking many iterations, � would be estimated for each scenario. Once � is

estimated for parts that are geometrically perfect, the estimate �̂, would serve as

the tolerance level, i.e., �0 = �̂. We then simulate \defective" parts by displacing

one or more CMM normals by some small angle �. This is achieved by setting

xji = RR
�

j yi (1 � i � 6)

for one or more values of j, where R
�

j is Rj composed with a rotation through an

angle � about an arbitrary axis. The diagnostics can now be tested, for various

angles �.
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COMMENT : AN INDUSTRY VIEW OF

COORDINATE MEASUREMENT DATA ANALYSIS

Frederick L. Hulting

AlcoaTechnicalCenter

Chapman, Chen and Kim (CCK) have o�ered an application of spherical regression tech-
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niques to the problem of locating a geometric object in space using coordinate measurements

of surface points on that object. This \localization" of geometric objects is a necessary tool

for many applications involving machine vision, robotics, and coordinate measurement. While

localization involves �tting a statistical model to obtain parameter estimates, it has tradition-

ally been treated in the engineering literature only as an optimization problem. Thus, the CCK

work is a welcome contribution to the new body of literature on the application of statistics to

coordinate measurement.

My intent here is provide an industry perspective on the analysis of coordinate measure-

ment data for manufactured parts, and to discuss the CCK methodology in that context. As a

statistician in industry, I am more concerned with the processes that manufacture parts than

with the individual parts. So, in analyzing coordinate measurement data I must go beyond

conformance-to-tolerance to provide information that is useful for assessing and improving the

performance of manufacturing processes. The CCK work, with its focus on how to localize a

very high-precision part described by a linear geometric model and detect very small levels of

part shape variation, is not directed toward that larger goal. Still, elements of their approach

are applicable to a number of problems that arise in the context of obtaining and analyzing

coordinate data from manufacturing processes.

1. Nominal Shape and Form Error

1.1. Nominal shape

Much of the design work in industry today is handled with Computer-Aided Design (CAD)

systems. A CAD model for a part is a detailed and complicated representation of the part

geometry, but for our purposes it is su�cient to denote the model by M(t;�;�), where the

parameter vectors t and � describe the orientation of the geometry relative to some application-

speci�c coordinate system, and the parameter vector � represents the shape of the part. The

six orientation parameters consist of the 3 � 1 translation vector t, and the 3 � 1 vector � of

Euler angles for the rotations. These angles are used to construct the rotation matrix A in

the usual manner (see, e.g., Kane et al: (1983)). The application-speci�c coordinate system is

typically determined by the way the part is to be used, for example, the \car position" system

used in automotive applications. I use the vector � as a shorthand for the shape parameters,

which are actually a large collection of lines, B-spline surfaces, and other elements.

For each part to be manufactured, there exists a CAD model describing the ideal shape

of the part, which I will refer to as the nominal shape. That CAD model will properly locate

the nominal shape within the application-speci�c coordinate system. Thus, the orientation

parameters are all zero, and we can denote the model by M(0;0;�
�

), where 0 is the null

vector, and �
�

represents the nominal shape parameters.

Figure 1 displays a simple part (Part F0) | a hollow, straight extrusion with square cross-

section | that I will use as an illustration. The shape description for this model would include

parameters for the shape of the cross-section (in the x-y plane), as well as parameters for the

pro�le of the extrusion (along the z-axis).
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Figure 1. Rendering of the Straight Extrusion with Square Cross-Section (Part F0),

including the locations of the 24 measurement points.

1.2. Form error

Once a part is manufactured, attention is focused on how the shape of the

actual manufactured part deviates from the design intent. This deviation is

characterized by the formerror. The form error for a surface point p, denoted fp,

is de�ned as the distance between the surface of the actual part and the surface

of the nominal part at that point. In practice, the assessment of conformance-to-

tolerance for a particular part is made by comparing the form errors to customer

speci�cations. Typically those speci�cations are expressed in terms of a pro�le,

or form, tolerance. A formtolerance de�nes a tolerance zone within which a region

or feature of the part must lie. Di�erent tolerance zones may be speci�ed for

di�erent regions or features on the part. Form tolerances are typically based on

the so-called Taylor's principle; that is, for a part to conform to tolerance, the

part surface must lie within an envelope bounded by a similar perfect geometry

that is o�set, in both positive and negative directions, from the nominal surface.

See Figure 2 for an illustration of a tolerance zone for the exterior surface of the

square cross-section of the F0 extrusion. For a particular region R, the tolerance

zone puts limits �L
R
on the form errors for points in that region (symmetry is

assumed for simplicity). The region is said to be within tolerance if all of the

form errors in that region are within the limits, that is, if maxp2R j fp j� L
R
.
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Figure 2. Illustration of form tolerance zone for the square cross-section of extrusion F0.

This approach to assessing conformance-to-tolerance is di�erent than the

CCK approach, where the allowable \tolerance" is determined by the inherent

CMM measurement variation, and represented by �0. In most manufacturing

applications we require that the measurement error be small relative to the man-

ufacturing process variation. Thus, it would not be particularly useful to test

the hypothesis proposed by CCK. However, if we were to select �0 to reect the

requirement imposed by the tolerance zone, perhaps by letting �0 be equal to

some multiple of L
R
, then their testing procedure would be more consistent with

current industry practice.

2. Determining the Form Errors

2.1. Dimensional measurement

In order to determine the form errors, we must characterize the actual shape

of a manufactured part. To do that, dimensional measurements are taken by a

Coordinate Measuring Machine (CMM) or similar device. A CMM is a computer-

controlled device that uses a contact probe mounted on the end of a robotic arm

to record data. The CMM tracks the (x; y; z) location of the probe tip as it moves

in three-dimensional space, and coordinate measurements are recorded when the

probe makes contact with the part. The measurement process begins with the

operator mounting the part onto a holding �xture within the CMM. Then, a

referenceframe is established that aligns the physical orientation of the part with
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the application-speci�c coordinate system of the nominal CAD model (e.g., car

position). This allows the CMM to \see" the part as it appears in the CAD

system. The probe then measures the locations of m designated surface points

ni along prescribed approach vectors vi (i = 1; : : : ;m). The ni are points on

the surface of M(0; 0;��), and the unit-vectors vi are typically normal to the

surface of M(0; 0;��) at those points. When the probe contacts the part while

trying to locate ni along the vector vi, the CMM records the point of contact

as the observed surface point coordinate ai. Figure 1 shows the m = 24 surface

points to be measured on the straight F0 extrusion. Note that the measurements

are taken in \slices" through the part, so that all of the points fall onto three

cross-sections (two at the ends, one in the middle). Each cross-section has eight

measurement points.

Because CMM operation is based on the CAD model, the crucial step in the

measurement process is the establishment of the reference frame. Generally, the

reference frame is established using the 3-2-1Method, in which the part is located in

space by (1) establishing a plane with three measured points to �x one translation

and two rotation parameters, (2) establishing a line perpendicular to that plane

with two measured points to �x another translation and rotation parameter, and

�nally (3) measuring one point to �x the �nal translation parameter. The surfaces

where these reference points lie are often selected because they are relatively at,

and tend to be robust to manufacturing errors. This 3-2-1 method for \soft"

�xturing of parts for CMM measurement is a carryover from the methods used to

position parts with hard �xtures. To the statistician, this method does not appear

to be very robust, because a minimum number of points are used and slight errors

in any of the six points can greatly a�ect the resulting reference frame. One

application of the CCK methodology would be to improve the methods by which

the reference frame is established. By taking additional measurements on a few

nearly planar datum surfaces of the part, the CCK method could be applied and

would provide not only an improved estimate of the necessary alignment, but

also diagnostics concerning the adequacy of that alignment.

The measurement error variation for the coordinate measurement process

will be inuenced by many factors, including environment control, referencing

techniques, �xture design and �xturing practices. The CCK view that measure-

ment error will be near the machine precision may be valid for high-precision

parts, but for many parts the actual variation in the measurement process will

be much larger than the inherent variation of the CMM. See Hulting (1992) for

further discussion of this point.

2.2. Estimation of form errors
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For the ith measured surface point, the form error is typically estimated by

the as-measureddistancefromnominal, �i = sign(di)�(d
0

i
di)

1=2, where di = p(ai; 0; 0;�
�)�

ai, p(ai; t; �;�) is the point on the surface of the model M(ai; t; �;�) that is

closest to the measured point ai, and sign(�) is a sign function that indicates the

direction of the deviation d relative to the surface normal vector. That is, �i is

simply the shortest distance between the observed point ai and the surface of

the nominal model M(0; 0;��). Note that if the approach vectors vi are normal

to the surface of M(0; 0;��), then p(ai; 0; 0;�
�) will be equal to ni.

In Figure 3 we display simulated measurements for 50 of the straight F0 ex-

trusions shown in Figure 1. I have used simulated data in order to illustrate the

behavior I have observed in a variety of situations; in particular, I have slightly

exaggerated certain features of the data to clarify the concepts presented here.

The as-measured distances from nominal from the 50 parts are summarized by

boxplots for each measurement point. The implied tolerance limits on the form

errors are drawn as solid lines, and are tighter for the two end cross-sections

(�0:5mm) than for the center cross-section (�1:5mm). This summary of the

process data could be used to draw conclusions about process performance. Ide-

ally, all of the boxplots would be centered near zero and exhibit low levels of

variation. Here, the systematic departures from zero suggest that the parts may

be bowed (center cross-section has larger deviations than ends), and that all

of the cross-sections may be misshapen. There is also a signi�cant amount of

variability at each of the data points.
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2.3. Improved estimation of form error

While these as-measured distances are commonly used in industry to esti-

mate form error, their use ignores a potentially signi�cant source of error in the

measurements. Alignmenterror, which is the discrepancy between the coordinate

system used by the CMM to measure the part and the coordinate system of the

nominal CAD model, is caused by imperfect part referencing and can be signi�-

cant. Ideally, alignment error can be corrected by applying the correct rigid body

transformation to make the two coordinate systems coincident. However, we do

not know that correct transformation.

This problem has long been recognized in the engineering literature, where

the method of localization, or \best-�tting," was developed. Essentially, the mea-

sured data is used to estimate the transformation, the transformation is ap-

plied, and new estimates of the form error are calculated. The transforma-

tion is estimated by �nding the translation vector t̂ and the rotation angles �̂

that minimize some function of the distances �i = sign(ei) � (e0
i
ei)

1=2, where

ei = p(ai; t; �;�
�)� ai. That is, we seek the new orientation of the CAD model

that provides the \best-�t" between the measured data and the nominal shape.

Typically, the function
Pm

i=1 �
2
i
is minimized to obtain least-squares estimates of

the parameters; the localization problem can then be viewed as �tting a nonlin-

ear regression model. The best-�t distances �̂i become the new estimates of the

form errors.

Note that in my description of localization I have transformed the part model

to match the data. This is consistent with the usual statistical formulation of

�tting models to data, and is also used by CCK. It is worth noting that some

engineers, and some localization software, prefer to transform the data to match

the model. The use of orthogonal distances insures that the results are identical.

To illustrate the e�ect of the localization, I have plotted the �̂i from a least-

squares localization analysis of the simulated extrusion data in Figure 4 (I used

software developed at Alcoa to perform the analysis). Note how our perception

of part quality has changed from the previous �gure. In particular, we now �nd

that the ends of the part are much closer to target, and although there is a slight

bend in the part, it is well within tolerance. However, the deviations for the end

cross-sections are, on average, slightly larger than zero, which suggests that the

cross-sections are enlarged.

2.4. Statistical issues

Again, the CCK methodology is directed at the the least-squares localization

problem for a speci�c class of parts and for certain data-collection schemes. While

many commercial packages are available for performing localization analyses,
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these packages typically view localization as only an optimization problem.

Clearly, localization is model-�tting and it should be considered from a sta-

tistical viewpoint. That is, con�dence intervals for parameters and/or inference

about the form error estimates �i should be obtained. This is the main contribu-

tion of the CCK methodology; it puts the localization problem into a statistical

framework and provides the necessary inferences. This recognition of the role

of statistics in this engineering context is more widespread, as evidenced by

the small, but growing, body of literature on this topic (see Kurfess and Banks

(1990), Chen and Chen (1992), Dowling et al: (1994)). Localization can also be

a very computationally-intensive task when implemented in a general fashion.

CCK have demonstrated how to take advantage of the planar geometric model

to reduce that computational burden.

From the viewpoint of �tting models to data, an often-overlooked considera-

tion is the selection of the measurement \design," that is, the selection of the ni

and vi (i = 1; : : : ;m). For industry, this is a very important issue because of the

relatively high cost of CMM measurements. More work of the impact of point

selection on the form error estimates is required (see Dowling et al: (1993) for

more details).

3. Interpreting Part Shape

Plots of the localized distances �̂i, such as those of Figures 3 and 4, provide a

characterization of part shape that is usually adequate for assessing conformance-

to-tolerance and process capability. However, such displays are generally inad-

equate for providing information for process improvement. The reason is that

plots of the individual �̂i tend to focus attention on individual point locations

and ignore shape deviations that a�ect several regions of the part (e.g., bending

of an extrusion).

For the simple part presented here it is easy to look at Figure 4 and draw

conclusions about the overall shape. The same would be true of the diamond pin

example in CCK. However, for more complex shapes, this is a very di�cult task.

Thus we need to identify tools for extracting relevant shape information from the

data. For planar geometric models, the t2
i
statistics presented by CCK provide

diagnostics for identifying planar regions of the part that may be in error, and

similar diagnostics need to be developed for more general geometries as well. The

main limitation is that these diagnostics cannot characterize the type of error.

Consider the CCK example of Section 4.2. In that case the diagnostics detect

an error and identify suspect planar regions, but they do not tell us whether

the error is due to a local deformation in one of the surfaces (thus a�ecting the

surface normal estimate), or due to a more global problem that has caused the
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planes to be misaligned with one another. Thus, we must also have visualization

tools that link the statistical information in the �̂i to the geometrical information

inM(t̂; �̂;��) (see Hulting (1993), Hu (1994)). Additionally, we need to develop

succinct summaries of the data that provide meaningful shape descriptions to

the process engineers.

Extreme care must be exercised when using a visualization tool to link pat-

terns in the �̂i to the geometry, because patterns in the �̂i can reect measurement

problems rather than true deviations from nominal shape. Recall that CMM

measurement programs are written to measure parts with the nominal shape.

For example, the CMM program for the points on the straight extrusion (Figure

1) will use probe approaches that are normal to the nominal shape. However, if

the extrusion is not actually straight, the probe path may not be normal to the

actual shape. This is depicted in Figure 5 (a top view of the extrusion in the

x-z plane), where bending in the extrusion will cause the measurement slices to

incorrectly characterize the cross-section.

Figure 5. An illustration of the e�ect of part shape errors on the measurement process.

Even though no manufactured part will have exactly the nominal shape, both

the CMM measurement programs and the localization analyses implicitly assume

that these parts do have the nominal shape. We can overcome this de�ciency by

explicitly recognizing the departures from nominal shape and �tting a realistic

geometric model to the data. To do this we allow some of the shape parameters

� to vary along with the orientation parameters during localization. We refer to
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this wider class of models as manufacturedpartmodels (MPM), a term coined by Yu

Wang.

To illustrate the idea of an MPM in two-dimensions, consider the four panels

of Figure 6. The top panel shows the nominal shape for our straight extrusion

(the x-z plane). The second panel shows a collection of measurements that

may have been taken from an actual part (these points do not follow the layout

depicted in Figure 1). A localization analysis would �t the nominal shape to the

data and produced the result shown in the third panel. We can see the lack of �t

pattern in the data, and how it suggests that the extrusion may be bent slightly.

An MPM analysis would recognize the possibility of a bend, and allow the shape

parameter that controls the bend to vary. The result is the �t obtained in the

bottom panel.

Figure 6. An illustration of the MPM concept.

To �t an MPM by least squares we �nd the translation vector t̂, the rotation

angles �̂, and the shape parameters �̂ that that minimize
P

m

i=1 
2
i
, where i =

sign(gi) � (g0
i
gi)

1=2, and gi = p(ai; t; �;�) � ai. While the model residuals ̂ do

not have a clear interpretation in terms of the form error, the estimated shape

parameters �̂ provide succinct, and meaningful, shape information for the process
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engineers.

Figure 7 displays the ̂i values after performing an MPM analysis of the

simulated extrusion data. The model only includes a single shape parameter,

which is the bend parameter described by Figure 6. The MPM describes the

data quite well, and in particular we now see that the apparently enlarged cross-

sections were an artifact of measurement.
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From the industry point of view, the extraction of meaningful shape descrip-

tions that can be related to process variables is extremely important. The MPM

methodology, and current work on the data visualization, appear to promising

areas for further research.

4. Conclusion

The ideas presented here were developed through my interaction with engi-

neers (in particular, I would like to acknowledge the contributions of Paul Fussell

and Yu Wang). Continued collaboration between the two disciplines is necessary

for statistical thinking to become part of the process of collecting and interpret-

ing coordinate measurement data. For certain situations, CCK have developed

the theoretical basis for statistical inference in localization analyses. The next

step is to work with the engineering community to �nd suitable applications for

their methodology.

Alcoa Technical Center, D-AMCT, 100 Technical Drive, Alcoa Center, PA 15069, U.S.A.

COMMENT: SOME LOCAL LINEAR MODELS FOR THE

ASSESSMENT OF GEOMETRIC INTEGRITY

Louis-Paul Rivest

Universit�eLaval

The authors are to be congratulated for a very stimulating paper. Applying

statistical methods for directional data to the assessment of geometric integrity

is a novel idea that is raising challenging statistical issues.

One can view the proposed procedure for assessing geometric integrity as an

investigation of the propagation of errors related to both CMM measurements

and a possible lack of conformity of the part. The impact of these errors are

investigated using two methods. A bound for the maximal impact of the CMM

errors on each ui is �rst derived, then approximation to the errors' contribution

to the estimated rotation are obtained with Rivest's (1989) �rst order expansion.

This result can be reexpressed as a perturbation analysis. Let "i1 and "i2 represent

the impact of the errors on A
t
ui, then

A
t
ui = vif1� ("2

i1 + "
2
i2)=2g + "i1vi(1) + "i2vi(2) + o(��1); (D1)

for i = 1; : : : ; n, where vi, vi(1) and vi(2) are CAD vectors de�ned in (4) and A
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is the rotation relating CAD directions to CMM directions. The contribution

of the "ij 's to the least squares rotation Als can be written using the following

notation:

� Let X be the 2n� 3 matrix whose rows 2i � 1 and 2i are equal to vt
i(1) and

�vt
i(2),

� Let " be the 2n� 1 vector of the "ij 's,

� Let a = (a1; a2; a3)
t = (X 0

X)�1X 0

" and

�A =

8>>>>>>:
o �a3 a2

a3 0 �a1

�a2 a1 0

9>>>>>>; ;

then Als = A(l+ �A) + o(��1=2): Thus, the impact of the perturbations f"ijg on

Als is, to a �rst degree of approximation, equal to the vector of the regression of

" on X. The statistic 2n(1� r) de�ned in Section 3.1 is the sum of the squared

residuals for the above regression.

This perturbation analysis sheds some light on the distributional assumptions

in the paper. All the tests proposed in Sections 3.1 and 3.2 pertain to the

regression of " on X. They are valid as long as the perturbations ("i1; "i2)
t

are independent normal deviates with the same variance. A special case when

this holds true is when the distribution of ui is Fisher-von Mises with a large

concentration parameter (Watson (1984)). Thus, as pointed out in Section 6, the

Fisher-von Mises assumption is not needed for the inference to be valid. Note also

that distributional features can be ascertained with the residuals feig de�ned by

(4). These residuals are not uniquely de�ned; any rotation of vi(1) and vi(2) around

vi yields a di�erent residual. Normality diagnostics should therefore be built

with the residuals squared lengths et
i
ei which are uniquely de�ned. If the "ij 's

are normally distributed, et
i
ei follows approximately an exponential distribution.

Exponential goodness of �t procedures (D'Agostino and Stephens (1986)) could

be used to test the normality assumption.

This discussion explores some of the avenues opened up by Chen, Chapman

and Kim. First it proposes a model for the various errors a�ecting CMMmeasure-

ments. Then it derives, using a local regression model, �rst order approximations

of the CMM measurement error impact on the estimated unit vectors ui's. This

leads to new statistical methods for the assessment of geometric integrity.

How are errors transmitted to unit vector ui?

Since the CMM measurements are the data to be analyzed, it is useful to

have a model describing the action of the various sources of variation on these

measurements. Such a model expresses the CMM coordinates xki of the kth



206 G. ROBERT CHAPMAN, GEMAI CHEN AND PETER T. KIM

point recorded in planar region i as

xki = Ti + yki(Avi(1) + �i1Avi) + zki(Avi(2) + �i2Avi) + eki; (D2)

where:

� Ti is the coordinate vector of a point in planar region i;

� Avi(1) + �i1Avi and Avi(2) + �i2Avi is a basis of the planar region under

study, (Avi(1); Avi(2)) is the basis according to CAD speci�cations while

(�i1Avi; �i2Avi) represents a possible departure from these speci�cations; in

a part without distortion, one would have �i1 = �i2 = 0 for each i;

� yki and zki are the coordinates of xki in the ith planar region;

� eki is the vector of CMM measurement errors for the kth reading.

Using Chapman, Chen and Kim terminology, the eki's represent measurement

variation while �i1 and �i2 stand for part variation. The eki's and the �ij 's are

assumed to be small or O(��1=2).

To investigate how the errors in Model (D2) are transmitted to unit vector

ui, one can derive a �rst order approximation to the perturbation "i1 and "i2

appearing in the expression for ui given in (D1) in terms of the components

of Model (D2). This problem was �rst investigated by Chapman (1994). The

following presentation relies on a local linear model underlying the calculation of

unit vector ui. Since ui is the eigenvector corresponding to the smallest eigenvalue

of Di, de�ned in Section 2.2, one can approximate "i1 and "i2 by minimizing
mX
k=1

[(xki � xi)
t
ui]

2

=
mX
k=1

f[(yki � y
i
)(Avi(1) + �i1Avi) + (zki � zi)(Avi(2) + �i1Avi) + eki � ei]

t

� [Avi + "i1Avi(1) + "i2Avi(2)]g
2 + o(��1)

=
mX
k=1

[vt
i
A
t(eki � ei) + ("i1 + �i1)(yki � y

i
) + ("i2 + �i2)(zki � zi)]

2 + o(��1):

The values of ("i1 + �i1; "i2 + �i2) minimizing this expression are equal, up

to a sign change, to the least squares coe�cient of y and x in the regression

of fvtAt
ekig on f1; yki; zkig. It also worth noting that f(xki � xi)

t
uig are the

approximate residuals for this regression and that the smallest eigenvalue, say �i,

of Di is approximately equal to the sum of the squared residuals. Furthermore,

following the argument in the theorem in Rivest (1989), one shows that the

di�erence between the true value of ("i1 + �i1; "i2 + �i2) and the approximation

obtained through the above regression is o(��1=2). Thus8>>: "i1

"i2

9>>; = �

8>>: �i1

�i2

9>>;� �Zt

i
Zi

�
�1

mX
k=1

8>>: yki � y
i

zki � zi

9>>; v
t

i
A
t(eki � ei) + o(��1=2); (D3)
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where Zi is the m � 2 matrix whose kth row is given by fyki � y
i
; zki � zig.

In Equation (D3) the part variation of planar region i shows up, as was to be

expected, in vector ui together with some function of the the CMMmeasurements

errors.

Analysis of variance procedures for assessing geometric integrity

In this section we assume that the CMM measurement errors are approxi-

mately normally distributed, i.e: that the vt
i
A
t
eki's are independent normal de-

viates with variance equal to 1=�. By using the classical theory of linear models

one can obtain the following �rst order approximation to the joint distribution

of "i1, "i2 and �i.

Theorem 1. If,fori = 1; : : : ; nandk = 1; : : : ;m,v
t

i
A
t
ekiareindependentnormaldeviateswith

variance1=�,thenforanyi,as�goestoinfinity,thefollowingresultshold:

(i) �
1=2("i1; "i2)

t
isasymptoticallydistributedasaN2(��

1=2(�i1; �i2)
t
; (Zt

i
Zi)

�1);

(ii) ��iisasymptoticallydistributedasa�
2
withm� 3degreesoffreedom;

(iii)("i1; "i2)
t
and�iareasymptoticallyindependent.

Ifthethreecomponentsofekiareindependentnormaldeviateswithvariance1=�,thentheassumptionofthethe-

oremistruesince

Var(vt
i
A
t
eki) = v

t

i
A
t
IAvi=� = �

�1
:

Theorem 1 permits one to adapt some standard analysis of variance tech-

niques to the assessment of geometric integrity.

In Section 3.3 the authors propose to place the m measurements for the

calculation of ui on a circle of radius R. This amounts to taking (yki; zki) =

R[cos(2�k=m); sin(2�k=m)]. For such coordinates, y
i
= zi = 0 and Z

t

i
Zi =

R
2
mI=2. To check, a posteriori, that the measurements have really been taken

on a circle of radius R, one could compare the theoretical value of Zt

i
Zi with an

estimator derived from Theorem 1. This estimator is (ui(1); ui(2))
t
Di(ui(1); ui(2))

where ui(1) and ui(2) are the eigenvectors corresponding to the largest and the

second largest eigenvalues of Di.

In Model (D2), the geometric integrity of a part is characterized by the

hypothesis H0 : �i1 = �i2 = 0 for i = 1; : : : ; n. A test for H0 is constructed

as in a one-way classi�cation where the planar regions are the treatments and

where the CMM measurements are the repetitions within treatments. Within

region variability is measured by
P
�i while 2n(1� r) characterizes between re-

gion variability. Recall that 2n(1 � r) is the sum of the squared residuals for

the regression of " on X introduced at the beginning of this discussion. Taking

m measurements on a circle of radius R yields perturbations "ij whose approx-

imate variance is 2=(�mR
2). Thus, under H0, �R

2
mn(1 � r) is approximately
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distributed as �2 with (2n � 3) degrees of freedom. The comparison of the be-

tween region and the within region variation is summarized in the ANOVA table

presented in Table 1.

Table 1. Analysis of variance table for assessing geometric integrity

Source of variation df SS EMS F-statistic

part variation 2n�3 R
2
mn(1�r) �

�1+R
2
m

2
�
2
�

R
2[mn(1�r)]=(2n�3)P

�i=[n(m�3)]

measurement variation n(m�3)
nP
i=1

�i �
�1

A large value of the F-statistic in Table 1 indicates that the between region

variation is larger than what would be expected if the part met the CAD speci-

�cations. This F test is an alternative to the chi-square test proposed in Section

3.2. If the F-test is signi�cant then it is possible to estimate the proportion of

variance accounted for by part variation. Assuming, that in Model (D2), the

�ij 's are independent normal deviates with zero mean and variance equal to �2
�
,

the expectation of the part variation mean square is easily found to be equal

to �
�1 + R

2
m�

2
�
=2. Thus �2

�
can be estimated as in a standard random e�ect

ANOVA model.

The F-test of Table 1 and the chi-square test of Section 3.2 are not unbiased.

They are insensitive to alternatives for which the 2n� 1 vector of the �ij 's is non

null and belongs to the column space of X. This makes the proposed tolerance

test unsuitable for parts with few, say 2 or 3, planar regions since the test is then

biased for most alternative hypotheses.

The normality of the vt
i
A
t
eki is crucial for the validity of the test presented

in Table 1. This assumption can be tested by applying standard regression

diagnostics to the residuals f(xki � xi)
t
uig for the linear models underlying the

calculation of ui.

Suppose that one were interested in testing the integrity of planar region i.

One would, for instance, like to detect whether region i contains some undesirable

curvature. When � is known, possibly from the CMM speci�cations, planar

region i can be declared distorted at level � if ��i is larger than the 100(1 �

�)th percentile of the chi-square distribution with m� 3 degrees of freedom. If

Var(vt
i
A
t
eki) is not known a test could still be constructed by comparing �i to

the �'s for the other planar regions with a variance test such as Hartley's or

Cochran's.

Estimating geometric characteristics through lines and edges
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An analysis similar to that presented in Table 1 can be carried out when the

directional characteristics of a part are estimated using lines and edges. A model

for the kth measurement taken in the ith linear component would then be given

by

xki = Ti + yki(Avi + �i1Avi(1) + �i2Avi(2)) + eki; k = 1; : : : ;m; (D4)

where Avi + �i1Avi(1) + �i2Avi(2) is the true direction of linear component i (vi is

the CAD speci�cation while �i1 and �i2 represent part variation) and yki is the

coordinate of the kth measurement taken on linear component i. To estimate Avi
one can take ui equal to the eigenvector corresponding to the largest eigenvalue

of the sums of squares and cross-products matrixDi for the ith linear component.

Vector ui can be written as in (D1) where the perturbations "i1 and "i2 can be

expressed in terms of the components of Model (D4). Approximations to "i1 and

"i2 are derived by minimizing tr(Di)�u
t

i
Diui. Straightforward calculations show

that this expression is equal to

mX
k=1

[(yki � y
i
)(�i1 � "i1) + (eki � ei)

t
Avi(1)]

2

+
mX
k=1

[(yki � y
i
)(�i2 � "i2) + (eki � ei)

t
Avi(2)]

2 + o(��1):

Thus, for j = 1; 2; �ij�"ij is approximately equal to the slope of the regression

of et
ki
Avi(j) on yki, i.e.,

"ij=�ij�

�
SSiy

�
�1

mX
k=1

(yki�yi)(eki�ei)
t
Avi(j)+o(�

�1=2);whereSSiy=
mX
k=1

(yki�yi)
2
:

The sum of the smallest two eigenvalues of Di, �i2 + �i3, represents the

combined sum of the squared residuals for the two regressions while the sum of

the two squared residuals for observations k is (xki�xi)
t(xki�xi)�[u

t

i
(xki�xi)]

2.

Theorem 1 is readily generalized to an experimental set-up where geometrical

characteristics are determined with linear components.

Theorem 2. If,fori = 1; : : : ; nandk = 1; : : : ;m,v
t

i(1)A
t
ekiandv

t

i(2)A
t
ekiareindependent

normaldeviateswithvariance1=k,thenforanyi,as�goestoinfinity,thefollowingresultshold:

(i) �1=2("i1; "i2)
t
isasymptoticallydistributedasaN2(�

1=2(�i1; �i2)
t
; I=SSiy);

(ii)�(�i2 + �i3)isasymptoticallydistributedasa�
2
with2m� 4degreesoffreedom:

(iii)("i1; "i2)
t
and(�i2 + �i3)areasymptoticallyindependent.

An analysis of variance table similar to that presented in Table 1 can therefore

be constructed for Model (D4). Techniques need to be developed for comparing
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the two methods for estimating directional characteristics, either planar regions

or linear components.

Estimating the translation

To estimate the translation vector in (10), would it make sense to interchange

CMM and CAD data? Equation (10) would then become vt
i
(At

xi + T ) = v
t

i
pi

while in Formula (11) for T̂ , U t would be replaced by V t = (v1; : : : ; vn), and the

component of vector M would be fvt
i
pi � v

t

i
A
t

ls
xig. With this approach, V is

�xed and the only random components of T̂ are xi and Als.

D�epartement de math�ematiques et de statistique, Universit�e Laval, Ste-Foy, Qu�ebec G1K 7P4,

Canada.

COMMENT

Kwok-Leung Tsui

GeorgiaInstituteofTechnology

Using coordinate measuring machines (CMM's) for dimensional measure-

ment has become very popular in industry due to their exibility, accuracy, and

ease of automation. Their applications involve various activities ranging from

tolerance veri�cation, problem diagnostics, and quality assurance. Dowling et

al: (1993a) review and discuss statistical issues involving CMMs. As pointed out

there, a great deal of research has been done in the �elds of mechanical and indus-

trial engineering and very work has been done in the statistical �eld. However,

there are many interesting statistical problems related to CMM measurements.

The work by the present authors is one of the earlier statistical papers in this

area. Hopefully, their paper and others in CMM will stimulate more statisticians

to work in this area. In the following discussion, I �rst comment on some speci�c

issues of the paper, then discuss some general issues related to CMM.

1. Speci�c Comments on the Paper

I feel uncomfortable with the approach of determining the tolerance spec-

i�cation (requirement) based on measurement error. In practice, the tolerance

speci�cation is usually speci�ed by the customer or the designer based on the

functionality or interchangebility of a part, which does not depend on measure-

ment error. Of course, the size of measurement error is a concern for tolerance
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veri�cation (verifying if a speci�c part conforms to the tolerance speci�cation).

A measuring device will be ine�ective if the measurement error size of the device

is as large as the size of the tolerance speci�cation. A general guideline given in

DeGarmo et al: (1988) is that the size of measurement error should be one tenth

that of tolerance speci�cation.

In this paper the authors focus on the problem of assessing the geometric

integrity of a part. It is equivalent to verifying the angularity (including per-

pendicularity and parallelism) of the planes and ignoring the surface roughness

issue. This is justi�able in certain manufacturing processes where the surface

roughness is negligible compared to the atness tolerance speci�cation. When

the surface roughness is large, the tolerance veri�cation problem becomes more

complicated since the requirements on the angularity and the surface roughness

have to be satis�ed simultaneously. Puncochar (1990) classi�es this tolerance

requirement as orientation tolerance and provides detailed examples on the spec-

i�cation. The problem of verifying the orientation tolerance for complex geometry

is very challenging. The same problem has received much attention in geometric

dimensioning problems involving other measuring devices.

2. General Comments on CMM Problems

2.1. Design issues of CMM measurements

Relatively little work has been done on issues related to choosing appropri-

ate design methods for CMM measurements. Below we review and discuss this

problem and relate it to some statistical literature. We focus our discussion on

the problem of sampling CMM measurements from a surface.

To sample data from a surface, the probe of a CMM machine is programmed

to measure the vertical height on a part at a set of pre-determined (x; y) locations

in the horizontal plane. The design problem here will be to determine how many

of these measurements should be taken and where these points should be located.

Suppose the true relationship between the vertical height and the (x; y) locations

of a particular surface is:

Z = f(�; x; y; �) + �; (2:1)

where Z is the actual measurement of the vertical height, � is a vector of �xed

unknown parameters, and � and � represent the manufacturing error and mea-

surement error respectively. Note that f describes the true relationship between

the vertical height and the (x; y) locations for a particular part. Z di�ers from

f(�; x; y; �) due to the measurement error �. The f function can be di�erent for

di�erent parts due to the manufacturing error structure. We assume here that

(x; y) locations are not subject to error. In general, they may also be subject to

measurement error, which may further complicate the problem. (See Dowling et



212 G. ROBERT CHAPMAN, GEMAI CHEN AND PETER T. KIM

al. (1993b) for further detail of the measurement error structure.)

Three design strategies have been commonly used in the CMM literature:

uniform (equidistant), simple random sampling, and strati�ed random sampling.

Dowling et al: (1993a) discuss these three design strategies and review the lit-

erature that compares them. In general, the uniform and strati�ed sampling

methods are better than the simple random sampling because they ensure a

better coverage of the entire design region. Other than these strategies, Liang

and Woo (1994a & b) propose an optimal design strategy based on the optimal

discrepancy sequence (ODS) (see Niederreiter (1978)). They showed by sim-

ulations and theoretical arguments that the ODS designs give a much smaller

mean square error than the uniform and simple random sampling methods on

estimating average surface roughness.

Although most of these works were done in the �elds of industrial and me-

chanical engineering, their methods are closely related to statistical methods.

In statistical design literature, the design strategies are always driven by design

objectives.

A common statistical design objective is to minimize the mean squared error

of the estimate of a parameter of interest, such as the mean or variance of the

response. In the context of CMM problems, the parameters of interest are the

measures of surface roughness. As described in Liang and Woo (1994a & b), there

are three basic categories of surface roughness measures: statistical descriptors,

extreme-value descriptors, and texture descriptors. An example of statistical

descriptors is the average roughness which is de�ned to be the expected absolute

deviation of the response from the mean surface. An example of extreme-value

descriptors is the maximum peak-to-valley height of the surface. This measure

is equivalent to the true deviation range de�ned in Dowling et al: (1993a) and is

de�ned to be the minimum distance between any two ideal features that bound

the entire surface of interest. Examples of texture descriptors can be found in

Thomas (1981).

Note that these measures are summary measures over the entire surface and

thus are independent of the (x; y) locations. They are de�ned for each part

and their values are �xed for particular parts. According to di�erent purposes,

we can formulate di�erent estimation problems. For the purpose of inspection,

we are interested in estimating the surface roughness of a particular part based

on �nite sampling measurements of the part. One may use this estimate to

decide if the part should be accepted or rejected. In this case the parameter

of interest is the true roughness measure of a particular part. Much research

has been done on estimating a particular roughness measure, namely, the true

deviation range. Dowling et al: (1993a) provide a detail review of this work.

For the purpose of characterizing manufacturing processes, we are interested in
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knowing the average surface roughness of all the parts produced from a particular

manufacturing process. Liang and Woo (1994a & b) discussed the justi�cation of

using the average surface roughness for characterizing manufacturing processes.

In this case the parameter of interest is the average value of the true roughness

measures of all the parts produced from a manufacturing process.

A common design objective for these estimation problems is to minimize the

root mean squared error (RMSE) of the estimate of the parameter of interest.

Liang and Woo (1994a & b) showed that the RMSE of the estimate of the average

roughness (de�ned earlier) under the ODS designs is much smaller than that

under the uniform and simple random sampling designs. This result is consistent

with the results in the statistical literature.

McKay et al: (1979) introduced the latin hypercube sampling (LHS) design

for sampling from high dimensional vectors. A characteristic of the LHS design

is that it ensures a dense and even coverage of the entire range when the design

is projected onto a single dimension. As shown in Stein (1987) and Owen (1992),

the LHS design e�ectively eliminates the �rst order e�ects of the surface and thus

reduces the variance of the estimate. Tang (1993) and Owen (1992) extend the

LHS design to the orthogonal array (OA)-based LHS designs (called U-designs)

to further �lter out higher order terms. These designs are very similar to the

ODS designs suggested in Liang and Woo (1994a &b).

In conclusion, the LHS designs, the ODS designs, and the related designs

seem to be quite promising for sampling CMM measurements from a surface.

However, although some theoretical justi�cation and simulation studies of these

designs have been done, they are somewhat limited and not directly related to the

speci�c problems. More research is needed to establish the theoretical foundation

of these designs in the context of CMM problems. An interesting speci�c problem

is to investigate the relationship between the LHS and the ODS designs. Owen

(1994) has applied some discrepancy sequences to extend the OA-based LHS

designs to gain further properties.

To characterize a manufacturing process, sometimes it is not enough to rely

on a single summary measure, such as the surface roughness measures. An al-

ternative is to study the entire surfaces of multiple parts to characterize and

understand the systematic and random error structure of the process. To study

the entire surface, the prediction error of the entire surface becomes an important

measure for experimental design.

Box and Draper (1987) discuss some strategies for various design objectives,

such as minimization of variance, bias, or mean square error of the predicted

response. They assume that the underlying true model is linear and recommend

some design strategies for the cases when the �tted model is not true (e.g., �tting

a �rst order linear model when the second order linear model is true). Their



214 G. ROBERT CHAPMAN, GEMAI CHEN AND PETER T. KIM

design objective is to minimize the average mean squared error of the predicted

response over the entire design region, which is called the integrated mean squared

error (IMSE). They decompose the IMSE into two components: average squared

bias (ASB) and average variance (AV). The bias and variance components can

be interpreted as being caused by the systematic error and random error of the

�tted model respectively. They point out that in some cases the ASB component

can be reduced by spreading the design points evenly over the design region and

the AV component can be reduced by placing the points at the extreme points

of the region. Thus these two criteria may conict with each other. In practice,

an experimenter needs to make trade-o�s between the two criteria based on his

knowledge of the size of the systematic and random error.

These design strategies can be useful in the context of CMM problems. As

described in Model (2.1), there are two stages of error in the CMM height mea-

surements Z. First, Z deviates from the true surface height due to measurement

error which may include both systematic and random error depending on the

measuring equipment and environment. Second, the true surface deviates from

the ideal feature (e.g., a plane) due to manufacturing error which may also in-

clude both the systematic and random error from manufacturing (see Dowling

et al. (1993b) for a detailed discussion of error structure). As pointed out in

Dowling et al: (1993a), most model �tting methods in the CMM literature at-

tempt to �t a model to the ideal feature of the surface. This is similar to the

situation discussed in Box and Draper (1987) where the ideal feature (a lower

order model) is �tted to the data while the true surface can be described by a

higher order model. Note, however, that the lower and higher order models here

are not limited to linear models.

For �tting non-linear models to the surface, the IMSE design objective can

still be applied except that the computation will be much more complex. Sacks

et al: (1989) developed optimal design strategies to minimize IMSE for modeling

computer experiments using kriging models. These optimal design strategies are

appropriate when the true surface can be well approximated by the assumed

model.

2.2. Other issues

As described in Dowling et al: (1993a), a great deal of research has been

done in estimating the true deviation range of a particular part. Most of this

research is of theoretical interest and the practical impact is limited. In order

to use these estimates for inspection, decision rules have to be developed (e.g.

how to compare the estimates with the tolerance speci�cation to decide when to

reject a part). In addition, the risk of these decision rules have to be assessed



ASSESSING GEOMETRIC INTEGRITY 215

to estimate the chance of misclassi�cation of good parts and bad parts. Kurfess

and Banks (1990) have developed a sequential hypothesis testing approach for

this purpose.

For tolerance veri�cation (inspection) of a particular part, the true deviation

range is only one of many surface roughness measures (as mentioned earlier).

This measure has been getting so much attention because it was speci�ed in the

standards (see ANSI Y14.5M-1982). As pointed out in Dowling et al. (1993a),

these standards were developed based on gauging technology. Currently, studying

groups have been formed to establish standards for evaluating the performance

of CMMs.

As emphasized in modern quality control methods, inspection is only a pas-

sive tool to improve product quality. A more e�ective way to improve quality is

to characterize the process and to understand the process error structure by com-

bining the statistical modeling of the CMM data and the engineering knowledge

of the process. Hulting (1993) gave a good example of this for characterizing an

extrusion process. More research is needed for developing general methods and

strategies along this direction.
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REJOINDER

G. Robert Chapman, Gemai Chen and Peter T. Kim

The discussants raise both technical issues (i.e. pertaining to practical qual-

ity assurance questions) and matters of statistical theory. We will deal with

the technical issues �rst, because the theoretical advances made by Rivest in his

discussion allow some of these technical issues to be addressed, at least partially.

1. Soft-Gauging Procedures

Hulting's comments are particularly perceptive in view of what motivated our
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paper: the construction of a quality assurance software package. The advent of

CAD data brought new demands to geometric quality assurance, and accentuated

the need to replace traditional hard �xtures with soft-gauging techniques. The

�rst requirement is a transformation

x! Ax+ T (A 2 SO(3); T 2 R3); (1)

that relates CAD and CMM data, i.e. that establishes a referenceframe, in Hult-

ing's terminology. Rather than using only the time-honoured 3-2-1 method, the

transformation can be more broadly based. Any combination of planes, lines and

identi�able points that completely �x the position of the body can be used to

construct the transformation. By an identi�able point we mean a point associ-

ated with the body, such as the centre of a circular hold drilled in the surface of

the body, the coordinates of which can be identi�ed in the CAD data �le. The

rotation matrix is estimated from the directional data (lines, normals to planes)

as in the paper, and the translation is estimated as follows.

Let f(vi; pi); 1 � i � ng; f(ui; xi); 1 � i � ng describe CAD and correspond-

ing CMM planes, f(v0
i
; p

0

i
); 1 � i � n

0g; f(u0
i
; x

0

i
); 1 � i � n

0g describe CAD and

corresponding CMM lines (i.e: v0
i
; u

0

i
are unit vectors in the direction of the lines,

and p
0

i
; x

0

i
are points on the lines, fp

00

i
; 1� i � n

00

g; fx
00

i
; 1� i�n

00

g be identi�able

CAD points and their CMM counterparts. Then, following Rivest's suggesion to

transform from CMM to CAD, we have

v
t

i
(At

xi + T ) = v
t

i
pi; 1 � i � n; (2)

vi � (At
xi + T ) = vi � pi; 1 � i � n

0

; (3)

(At
xi + T ) = pi; 1 � i � n

00

; (4)

where � denotes cross product. This yields n+ 2n0 + 3n00 equations from which

the coordinates of T can be estimated (by least squares) provided an appropriate

combination of planes, lines and identi�able points has been chosen.

The second requirement is to re�ne this transformation, in order to minimize

alignmenterror, by the method of localization. A new transformation is constructed as

described by Hulting, Section 2.3. A Nelder-Mead algorithm is used (favouring

robustness over speed), so that, as Hulting states, the problem is treated as one

of optimization.

Our goal is to put this procedure in its proper statistical setting. As a start

we consider only the transformation x! Ax+T , and restrict our attention to the

rotation matrix A. This means considering directional data alone. We use dis-

tributional theory obtained by Chang (1986), Rivest (1989) to develop a quality

assurance capability that we hope may be useful in certain circumstances. Hult-

ing's suggestion that our methods may provide diagnostics concerning adequacy

of alignment of reference frames is thus highly germane.
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2. Measurement Error Variation

Our assumption that measurement error can be equated with CMM resolu-

tion is, as Hulting suggests, naive. Furthermore, the values of CMM resolution

used in our simulation are outmoded: modern machines have �ner resolutions,

in the range of 0:1 microns (Sakai (1990)).

Given the importance of CMMs in quality control, initial veri�cation and

periodic reveri�cation of the precision and accuracy of these machines is essen-

tial. In view of this, national standards for performance evaluation (e.g. ANSI

(1985)) have been developed. There are three main sources of CMM error (Paggs

(1990)). The �rst, and according to Pahk and Burdekin (1990) the most signi�-

cant, is systematic inaccuracy due to physical defects in the construction of the

CMM (e.g. misalignment of axes, axes not straight). The other sources of error

are faults in the probe system, and environmental factors such as temperature,

vibration and dust (Matsumiya (1990)). One method of CMM veri�cation is the

parametric calibration technique. The CMM is represented by a geometric model

and rigid body kinematics is applied. Distinct error components are identi�ed

and measured with, e.g. a laser interferometer. A volumetric error map is con-

structed, and the CMM software can be compensated appropriately. (Pahk and

Burdekin (1990)).

Manufacturers specifying the precision of a given CMM via its individualaxis

measuringaccuracy, or U1-value. There is a U1-value for each of the three coordinates,

and all three values are often (but not always) the same. A U1-value is obtained

by placing a one-dimensional artifact of known length (i.e. whose length L can be

traced to some standard) along the appropriate axis, and repeatedly measuring

the length. The U1-value is the half-width of a 99 percent con�dence interval for

the length, derived from the sample variance. It is usually of the form a + bL,

where a; b are constants. Hulting (1992) notes the inherent multivariate nature

of CMM data, and observes that such one-dimensional summaries of this data

result in lost information. He suggests multivariate modeling of coordinate data,

via a random e�ects linear model that focuses on between-operator and within-

operator errors.

Our methodology rests on the assumption that (in Rivest's notation) the

(�i1; �i2)
t have the same variance 1 � i � n. Given that CMM precision varies

with location, and that it is subject to operator and environmental error, it is

unlikely that this assumption is valid.

3. Rivest's Linear Model

Rivest introduces a model (D2) that allows for part variation. He investigates

the transmission of CMM errors through the estimation process for the ith planar
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normal, by minimizing the quadratic form u
t

i
Diui. Asymptotically (as the CMM

measurement error ! 0), this can be viewed as a regression problem, and the

asymptotic distribution of the estimator of ui is obtained (D3). An analysis of

variance procedure is described that allows the apportionment of part variation

and measurement variation. This represents a substantial advance in the theory,

and allows the possibility of introducing tolerancing into our diagnostics.

Both Hulting and Tsui note that our diagnostics test a component part

against perfection (i.e. allow for zero tolerance), and this is unlikely to be of use

in practice. Consider �rst a situation in which the planar regions are assumed to

be at, so the only issue is whether the planes are aligned correctly with respect

to one another. Then, tolerance regarding the alignment of the planes could

be speci�ed via the choice of vectors vt
i(1);�v

t

i(2) (which must be chosen so that

fvi; vi(1); vi(2)g is an orthonormal basis) and the magnitude of the values �i1; �i2
of Rivest's discussion. Let � denote the 2n-vector with 2i � 1, 2i coordinates

�i1, �i2. The test of Section 3.2 becomes to test 2n�(1� r) against a non-central

�
2
2n�3 distribution, with non-centrality factor

1

2
� �

t(I �X(Xt
X)�1Xt)�:

How to choose the vi(1); vi(2); �i1; �i2 is not clear. It will depend, of course, on the

purposes for which the part is intended and the degree of precision required. Dis-

cussion with engineers and practitioners is necessary, but even then the problem

remains a challenging one.

When the atness of the planar regions is also an issue, then Rivest's analysis

of variance procedure could be useful in apportioning variation within planes and

between planes. Note that Rivest's Theorem 1 applies for any con�guration of

CMM points in the plane (not only for points evenly spaced around a circle, as

in the paper, and Chapman (1995)). Thus any test for planarity based on ��i

could accomodate the di�erent sampling schemes reviewed in Tsui's discussion.

4. Outstanding Problems

In conclusion we would like to highlight two problems raised in the comments.

The �rst is the question of distributional assumptions. A fundamental assump-

tion that underlies our methodology is that (�i1; �i2)
t are normally distributed,

with equal variance. While normality may not be too strong an assumption, a

close study of CMM performance shows that equality of variance may not hold.

Furthermore, there is a need to deal with directional data of all sorts: planar

normals as in the paper, directions of lines (as in Rivest's comment), joins of

identi�able points, etc. There is a need to extend the results of Rivest (1989) to
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the context where the (�i1; �i2)
t are not necessarily of equal variance, and thus

develop a more realistic version of the diagnostic of Section 3.2.

The second problem is to introduce geometric tolerancing into our method-

ology. ANSI tolerancing procedures (ANSI (1982)) are formulated with refer-

ence to traditional hard gauging techniques (at least implicitly), and o�er little

assistance. Cooperation is required between engineers and practitioners, and

statisticians, to develop tolerancing criteria that are appropriate for soft gaug-

ing, and statistically sound. This remark applies to geometric quality assurance

in general, and our methods in particular.

We feel that both these problems are su�ciently challenging to be worthy of

study, and have the potential for signi�cant practical application.
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