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Abstract: Fieller's problems occur in many areas such as Bioassy and Calibration.

The classical solutions based on normality assumptions were proposed in Bliss (1935)

and Fieller (1954) and are compared in this paper to the more modern solutions.

Based on resampling techniques, con�dence intervals have been constructed without

the normality assumption. These con�dence intervals, however, have low coverage

probabilities. An alternative bootstrapping technique is proposed here for Fieller's

problems. This produces parametric and nonparametric con�dence intervals that

closely mimic Fieller's intervals and have good coverage probabilities for the normal

model and many other parametric models. Also the nonparametric con�dence inter-

vals are demonstrated to be second order correct whereas the Fieller's intervals are

only �rst order correct for the nonnormal observations.

Key words and phrases: Bootstrap, nonparametric con�dence interval, coverage prob-

ability.

1. Introduction

Fieller's problems in this paper refer to the problems of constructing con�-

dence sets for a ratio of parameters. These problems occur frequently at least in

three areas: bioassay, bioequivalence and calibration.

In a bioassay problem (see Finney (1978)) and a bioequivalence problem

(see Chow and Liu (1992)), often the relative potency of a new drug to that of a

standard drug is expressed in terms of a ratio. Consider a simple example below.

Example 1.1. (bioassay) LetX = (X1; : : : ;Xm) and Y = (Y1; : : : ; Yn) be indepen-

dent observations of the potency of a new drug and a standard drug respectively.

Assume that Xi are independently identically distributed (i.i.d.) with N(�1; �
2)

and Yi are i.i.d: with N(�2; �
2), where �1 and �2 are the true potencies. The

problem is to construct a con�dence interval for the relative potency � = �1=�2
of the new drug to the standard one.

For this example, Bliss (1935) and Fieller (1954) constructed a con�dence
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interval based on the statistic

T0 = ( �X � � �Y )=[(1=n + �2=m)1=2�̂]; (1:1)

where �X = 1

m

P
Xi, �Y = 1

n

P
Yj , and

�̂2 =
hX

(Xi � �X)2 +
X

(Yi � �Y )2
i.

(m+ n): (1:2)

It is obvious [(m + n � 2)=(m + n)]1=2T0 has a t distribution with (m + n � 2)

degrees of freedom. Therefore if q� is the � upper quantile of the distribution,

the probability that

[(m+ n� 2)=(m+ n)]1=2jT0j < q� (1:3)

is 1�2�. Solving � in the inequality (1.3) will then give a con�dence interval with
coverage probability exactly 1� 2�. In doing so, however, quadratic inequalities

are involved. Consequently, the interval for � can be a bounded interval or the

complement of a bounded interval or even (�1;1).

Although it seems to be unfortunate for a con�dence interval to be un-

bounded, by Gleser and Hwang (1987) this is inevitable for a con�dence interval

with a positive con�dence level. To the author, when one ends up with an un-

bounded interval, it actually serves as a proper warning that perhaps �2 is too

close to zero for the statistician to draw any conclusion from the study.

The two sample model in Example 1.1, can be generalized to a linear re-

gression model. Fieller's interval can be similarly constructed for the ratio of

regression parameters based on a t distributed pivot (see Hwang (1989)). Cali-

bration or inverse regression problems are all special cases.

Fieller's interval is based on normality. By using resampling techniques,

alternative con�dence intervals were previously constructed without assuming

normality. However, the coverage probabilities of these intervals could be low,

no matter what the true distribution is.

In this paper, we propose a di�erent approach by bootstrapping the Fieller's

statistic such as T0 in (1.1). Some analytic and numerical evidence presented

here show that our proposed intervals have good coverage probabilities.

2. A Brief Explanation

In this section, we �rst explain why the resampling approaches in the liter-

ature produce con�dence intervals with low coverage probability when the true

parameter is in some parameter space. Taking the model in Example 1.1 as an

example, one can establish the following theorem.
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Theorem 2.1. Any con�dence interval which has �nite length for almost ev-

ery observation has minimum zero coverage probability while minimizing over

(�1; �2).

Since all the existing resampling intervals (the BC interval in Efron (1985),

and other intervals in Hinkley and Wei (1984), Wu (1986), Simono� and Tsai

(1986) and Chan and Srivastava (1988)) have �nite length for every observation,

application of this theorem leads one to conclude that their coverage probability

can be arbitrarily small.

The argument for Theorem 2.1 is basically as follows. Assume that C(X;Y )

denotes a con�dence set for � and the length of C(X;Y ) is �nite for almost every

(X;Y ). It then follows that

inf
�1;�2

P (� 2 C(X;Y )) � lim
�2!0
�1=1

P (� 2 C(X;Y )) = P�1=1
�2=0

(1 2 C(X;Y ));

which equals zero since C(X;Y ) has �nite length. Passing the limit inside the

integration can be rigorously justi�ed by using the Bounded Convergence Theo-

rem. Note that the normality assumption is not needed. The theorem holds as

long as the probability density function of the data is continuous with respect to

the parameters.

A general theorem of this type has been given in Gleser and Hwang (1987),

although the argument therein may not be as clear as what is depicted here for

our special case.

The theorem of Gleser and Hwang (1987) applies to the estimation of ratios

of regression parameters of a linear model (i.e., Fieller's problem), and to the

estimation of regression parameters of any linear (and most nonlinear) errors-in-

variables models. The contrapositive statement of the Gleser and Hwang (1987)

theorem asserts that con�dence intervals whose minimum coverage probability

is nonzero would inevitably give an unbounded interval with positive probability

similar to what Fieller's intervals do.

3. Bootstrapping Fieller's Problems

To construct con�dence intervals with good coverage probabilities for the

problem in Example 1.1, it appears that one should bootstrap the T0(X;Y; �) �
T0 statistic in (1.1).

Now let X = (X1; : : : ;Xm) and Y = (Y1; : : : ; Yn) be the observation

vectors. Speci�cally, one generates bootstrap samples X� = (X�

1 ; : : : ;X
�

m
) and

Y � = (Y �

1 ; : : : ; Y
�

n
) according to various ways to be described after the next

paragraph.

To construct a 1 � 2� con�dence intervals, we then �nd (by simulation)

the � and 1 � � quantiles q� and q1��, respectively of the distribution of T �0 =
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T0(X
�; Y �; �̂), where �̂ = �X= �Y . The (1� 2�) equal tailed con�dence set consists

of � such that

q� < T0(X;Y; �) < q1��:

Since the denominator of T0 involves �, the resultant interval may sometimes

have in�nite length. Therefore Gleser and Hwang's theorem can not be used to

conclude that these con�dence intervals have zero minimum coverage probabil-

ity. In fact, we show in Theorem 3.1 that these types of con�dence intervals have

minimum coverage probability above a positive nominal level. Hinkley and Wei

(1984) proposed bootstrapping a pivot similar to (1.1) except that the denomina-

tor is based on some jackknife estimate of the variance. Since their denominator

does not involve �, the resultant interval has �nite length. Therefore Theorem

3.1 applies.

There are several ways of generating bootstrap samples, including the four

approaches below: (1) parametric bootstrap, (2) independently, similarly dis-

tributed nonparametric bootstrap (ISD-bootstrap), (3) independently nonpara-

metric bootstrap (I-bootstrap), and (4) paired nonparametric bootstrap. The

corresponding interval will be called, respectively, a parametric bootstrap T0
interval, an ISD-bootstrap T0 interval, an I-bootstrap T0 interval, and an NP-

bootstrap T0 interval.

In parametric bootstrapping, one assumes a parametric model f�(x; y) and

generates

(X�; Y �) � f�̂(�; �);

where �̂ = �̂(X;Y ) is an estimator of � (typically the maximum likelihood esti-

mator).

In ISD-bootstrapping, one assumes independence of X and Y and also as-

sumes that X and Y have the same distribution except that they are shifted

by possibly di�erent locations. In this case, let �i = Xi � �X; 1 � i � m, and

�j+m = Yj � �Y ; 1 � j � n: Also let ��
i
; 1 � i � m + n, be the number randomly

drawn with replacement from f�1; : : : ; �m+ng. The bootstrap samples then are

X�

i
= �X + ��

i
and Y �

j
= �Y + ��

j+m.

In I-bootstrapping, one assumes only the independence of X and Y . Natu-

rally one de�nes X�

i
to be the quantity randomly drawn with replacement from

fX1; : : : ;Xmg. Similarly, Y �

i
is randomly chosen from fY1; : : : ; Yng.

For the paired nonparametric situation one does not even assume inde-

pendence of X and Y . One naturally assumes that we have matched data

(X1; Y1); : : : ; (Xm; Ym). (Therefore m = n.) In such a case one can draw the

pair (X�

i
; Y �

i
) randomly with replacement from the n pairs (Xi; Yi).

For the normal setting in Example 1.1, the normal (parametric) bootstrap-

ping T0 is appropriate. Namely X�

i
and Y �

i
are independently generated from
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N( �X; �̂2) and N( �Y ; �̂2) where �̂2 are as in (1.2). Since T0 is a pivot (i.e., T0 has

a distribution independent of all the parameters), the distribution of T �0 is the

same as T0. In fact T0 and T �0 after multiplication by a constant, will have a t

distribution. Hence the (1� 2�) normal bootstrapping T0 is exactly the (1� 2�)

Fieller's interval.

Could the zero con�dence level phenomenon still happen to the parametric

bootstrapping T0 interval or nonparametric bootstrapping T0? The answer is no,

at least for the case where the variances of X and Y are known to be �2
x
and

�2
y
, and when the sample sizes m and n are identical. For this case, we naturally

consider

T0 =
p
n( �X � � �Y )=(�2

x
+ �2�2

y
)1=2 (3:1)

and

T �0 =
p
n( �X� � �̂ �Y �)=(�̂2

x
+ �̂2�̂2

y
)1=2:

Note that �2
x
and �2

y
in T0, even though known, are also replaced by their normal

M.L.E. estimates �̂2
x
and �̂2

y
of �2

x
and �2

y
in T �0 . The replacement leads to a more

accurate interval, being second order correct instead of �rst order correct. This

is due to the fact that the variance of T �0 is 1, identical to that of T0. It su�ces

to consider one-sided intervals. We focus on I-bootstrapping below. A similar

theorem can be established for ISD-bootstrapping.

Theorem 3.1. (I-Bootstrapping) Let Xi, 1 � i � n, be i.i.d: random variables

with mean �1 and Yi; 1 � i � n, be i.i.d: random variables with mean �2. Let

U(X;Y ) be the (1� �) quantile of T �0 . Namely,

P (T �0 < U(X;Y )) = 1� �:

Then as n!1

sup
�1;�2;�x;�y

jP (T0 < U(X;Y ))� (1� �)j ! 0;

provided that for some �nite numbers c1 and c2,

sup
�1;�2;�x;�y

Ej
X1 � �1

�x
j3 +Ej

Y1 � �2

�y
j3 < c1; (3:2)

and as n!1
sup

�1;�2;�
2
x
�2
y

Em̂3 ! c2; (3:3)

where

m̂3 =
1

n

P
jXi � �X j3

�̂3
x

+
1

n

P
jYi � �Y j3

�̂3
y

:
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Proof. Two applications of Berry-Esseen's Theorem. For details, see Hwang

(1989).

We remark here that (3.2) is satis�ed for any location-scale family with �nite

third moment. In such a case, the expectation of m̂3 is �nite due to the inequality

X
jXi � �X j3=(n�̂3

x
) <

p
n:

Also for any location-scale family (3.3) is equivalent to

E�2
x
=�2

y
=1;�1=�2=0

h 1

n

P
jXi � �X j3

�̂3
x

+
1

n

P
jYi � �Y j3

�̂3
y

i
! c2 <1:

This is satis�ed for random variables X and Y such that the random variable

inside the expectation of the last expression is uniformly integrable.

The last theorem provides asymptotic justi�cation for Bootstrapping T0 in-

tervals. Now we turn to �nite-sample numerical results.

Our simulation studies show that the ISD-bootstrap interval is quite simi-

lar to the Fieller's solution for the normal case. I-bootstrap and NP-bootstrap

intervals are qualitatively similar to Fieller's intervals (or equivalently normal

bootstrap intervals). Namely, they are respectively (�1;1), complements of

bounded intervals, and bounded intervals with similar probabilities (see Table

4). Quantitatively, the di�erences (in terms of absolute di�erences) are generally

small. For more information see Hwang (1989).

We calculate the coverage probabilities in Tables 1{3 based on simulating

3000 replicates, each consisting of two independent 15 dimensional normal ran-

dom vectors X and Y as described in Example 1:1: Table 1 examines the known

variance case. The coverage probabilities of the 90% BC interval can be low

(69.4%) for (�1=S.D.; �2=S.D.) = (1; 1) and near zero for �2=S.D: = 10�4 which

agrees with Theorem 2.1. Here S.D. denotes the common standard deviation of
�X and �Y . We consider T0 which is the same as (1.1) except that �̂ is replaced

by the known standard deviation and

T �0 = ( �X� � �̂ �Y �)=(1=n + �̂2=n)1=2�̂

with �̂ being de�ned in (1.2). As shown in Table 1, the coverage probabilities

of the I-bootstrap T0 interval are very close to the target probability .9. Similar

conclusion extends to the unknown variance case in Table 2 with T0 and T
�

0 being

de�ned in and after (3.5) and the unknown unequal variance case in Table 3 with

T0 being de�ned as below:

( �X � � �Y )=[�̂2
x
=m+ �2�̂2

y
=n]1=2: (3:4)
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We did not calculate the coverage probabilities of the ISD-bootstrap T0 in-

terval but do expect the coverage probabilities to be even closer to the target

level, since the ISD-bootstrap T0 interval uses the correct information that X

and Y are similarly distributed.

Although Fieller-type procedures have good coverage probabilities, an issue

of concern is that they may be unbounded or even cover the whole space. How

often will this happen? In Table 4, we report the probabilities. For Fieller's

intervals, probabilities of being unbounded or (�1;1) are calculated based on

3000 simulations while those related to I-bootstrap T0 1000 simulations. The

only exception is that the entries in the �rst row are based on exact numerical

integration. These probabilities show that the bootstrap T0 intervals behave very

similarly to the Fieller's intervals.

Table 1. Coverage probabilities based on 3000 replicate and 1000 bootstrap samples

each. Data generated as in Example 1.1 with n = m = 15.

h
�1

S.D.
;
�2

S.D.

i
(4; 8) (8; 4) (1; 1) (1; 10�4)

Fieller's
interval and .9 .9 .9 .9
normal bootstrap T0

BC interval .9 .908 .694 .03

I-Bootstrap T0 .894 .900 .904 .909

Table 2. Coverage probabilities of the intervals constructed by bootstrapping (3.5) and

by assuming no knowledge of �2. Data were generated as in Table 1.

h
�1

S.D.
;
�2

S.D.

i
(4; 8) (8; 4) (1; 1) (1; 10�4)

Fieller's
interval and .9 .9 .9 .9
normal bootstrap T0

I-Bootstrap T0 .897 .905 .904 .903

Table 3. Coverage probabilities of the intervals constructed by bootstrapping (3.4). The

variances of X and Y are unknown and unequal. Data generated similar to Table 1.

h
�1

S.D.
;
�2

S.D.

i
(4; 8) (8; 4) (1; 1) (1; 10�4)

Fieller's .917 .905 .908 .889
interval

I-Boot T0 .915 .894 .902 .882
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Table 4. Probabilities of being the whole space are calculated based on simulation. For

each type of intervals, entries in the �rst row correspond to the scenario in Table 1,

whereas those in the second row correspond to Table 2. The entries in brackets are the

simulated probabilities of obtaining unbounded intervals.

h
�1

S.D.
;
�2

S.D.

i
(4; 8) (8; 4) (1; 1) (1; 10�4)

Fieller's .0[.0] .0[.0093] .449[.736] .581[.9]

interval and .0[.0] .0[.014] .467[.731] .586[.9]
normal bootstrap T0

I-Boot T0 .0[.0] .0[.011] .432[.748] .562[.904]

.0[.0] .0[.015] .459[.755] .629[.918]

The probabilities could be high if the model is close to the singularity point,

i.e., �2 is close to zero. As �2 ! 0, the theoretical value of the probability of

unboundedness of Fieller's intervals is 1 � � = :9. In fact, for any con�dence

interval with minimum coverage probability 1 � �, the probability of unbound-

edness is at least 1 � � when �2 ! 0. This can be proved similar to Theorem

2.1.

Even if �2=S.D: is only as large as 1, the probability of unboundedness is

surpringly high around .7. However, the probability of being (�1;1), the truly

uninformative case, drops to about .46. For the other two less extreme cases, the

probabilities are either zero or tiny and should cause no concern.

Due to the problem of unboundedness, one may argue that there is no ad-

vantage of the Fieller-type interval over the BC interval. However, the latter

provides misleading answers for the cases where probabilities are low, since it

would miss the true answer too often. A misleading answer seems to be worse

than an uninformative one. Moreover, when Fieller's interval is (�1;1) or un-

bounded, it is giving a proper warning that perhaps the model is too close to the

singularity point to draw a precise conclusion. Therefore, to the author, intervals

with good coverage probabilities are preferred.

From the above discussion, the Bootstrapping T0 interval seems to have

a reasonable con�dence level. However, a more basic question is what is the

advantage of the bootstrapping T0 interval over the usual Fieller's interval? The

following theorem gives a theoretical justi�cation. It shows that bootstrapping T0
produce intervals that are second order correct whereas Fieller's intervals are only

�rst order correct when the distributions are not normal (or more precisely when

the skewness is not zero). In the theorem below we assume that the numbers

of Xi's and Yi's are the same and Xi � � and Yi � � are i.i.d: with unknown

variance �2. The results could possibly be extended to the unequal sample size
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case, and also the case where Xi � �, Yi � � are not identically distributed by

using an appropriate pivot. However, we focus on the simpler case n = m for

ease of presentation. Here the pivot (1.1) reduces to

T0 =
p
n( �X � � �Y )=[�̂(1 + �2)1=2]; (3:5)

where

�̂2 = [
X

(Xi � �X)2 +
X

(Yi � �Y )2]=2n;

and

T �0 =
p
n( �X� � �̂ �Y �)=[�̂�(1 + �̂2)1=2]:

In the following theorem, the resampling scheme used is the ISD-bootstrapping.

Theorem 3.2. Let q�
�
be such that

P�(T
�

0 � q�
�
) = 1� �:

Then q�
�
is second order correct for estimating q�.

Proof. Straightforward calculations.

Theorem 3.2 is not surprising, given the general results of Hall (1986 and

1988), which also provide the de�nition of second order correctness. His theorems

do not apply directly to our problem since in his case the denominator of the

statistic does not depend on �.

Note for the Fieller interval, the cuto� point is z(�), the �-upper quantile of

a standard normal distribution, and hence is only correct up to the �rst order

when the skewness of the underlining distribution is nonzero. Therefore, in such

a situation, bootstrapping T0 is more accurate asymptotically.

Hwang (1989) has also performed a numerical study for the moderate sample

size n = 15 which is not reported here. In the studies, we assume that the

variances are unknown and not necessarily equal. Consequently, I-bootstrapping,

not ISD-bootstrapping, is considered. In the simulation, the data Xi and Yi are

independently generated from exponential distribution with means �1 and �2,

and common variances �2; however, there the statistic (3.4) was used and �̂2
x
and

�̂2
y
are still the (normal) m.l.e. estimate of �2

x
and �2

y
respectively. Even though

the normal theory cuto� point is completely o�, the bootstrapping T0 intervals

work well. See Hwang (1989).

4. Generalization

The bootstrap T0 technique presented in this paper can be easily generalized

to more complicated situations.
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For the situation of correlated matched data (X1; Y1); (X2; Y2); : : : ; (Xn; Yn),

one may consider

T0 =
�X � � �Y
p
D

;

where

D =
1

n� 1

nX
i=1

(Xi � �Yi � ( �X � � �Y ))2 = �̂2
X
� ��̂XY + �2�̂2

Y
;

and �̂2
X
and �̂2

Y
are respectively the sample variances of X and Y and �̂XY is the

sample covariance of X and Y . Under the normality assumption even when Xi

and Yi are correlated, T0 has an exact t-distribution. Therefore all the analytic

results and simulation results concerning bootstrapping T0 should remain valid.

In another scenario, Fieller (1954) discussed the problem of setting a con�-

dence interval for the root � of the equation

�1F1(�) + �2F2(�) + � � �+ �pFp(�) = 0:

Let � = (�1; : : : ; �p)
0 and assume that it is the regression parameter of a linear

model with homoscedastic errors. The least squares estimator is denoted by �̂.

Therefore cov�̂ = �2�, where � depends only on the design matrix and is known.

The present work seems to indicate that one should bootstrap

T0 = F (�)0�̂=[�̂(F (�)0�F (�))1=2];

where F (�)0 = (F1(�); : : : ; Fp(�)). The above expression is exactly a pivot under

normality and hence normal bootstrapping T0 leads to an interval of exactly the

right coverage probability. The recommended T �0 is F (�̂)0�̂�=[�̂�(F (�̂)0�F (�̂))1=2].

For nonparametric bootstrapping one can use the simulated residual approach as

in (5.17) of Efron (1982). This is a generalization of ISD nonparametric bootstrap

which has been shown working well numerically for this type of problem in Section

3 in the simpler case.
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