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NONPARAMETRIC BAYESIAN INFERENCE FROM
RIGHT CENSORED SURVIVAL DATA, USING
THE GIBBS SAMPLER
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Abstract: Consider simple right censored survival data with a common unknown haz-
ard rate. The hazard rate is here modelled nonparametrically, as a jump process
having a martingale structure with respect to the prior distribution. For an evalu-
ation of posterior probabilities, given the data, sample paths of the hazard rate are
generated from the posterior distribution by using a dynamic version of the Gibbs
sampler. The algorithm is described in detail. It is also shown how, by slightly mod-
ifying the algorithm, the procedure can be altered to correspond to a constrained
estimation problem where the hazard rate is known to be increasing (or decreasing).
The methods are illustrated by simulation examples.
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1. Introduction

It is often felt that statistical models based on conventional parametric dis-
tributions are not flexible enough to provide a realistic description of survival
data. This has led to a widespread use of nonparametric estimators, notably
the Kaplan-Meier estimator for the survival function and the Nelson-Aalen esti-
mator for the cumulative hazard. The corresponding distributions are discrete,
with point masses at data points, and therefore some form of kernel smoothing
is often applied afterwards to arrive at a suitable density estimator. The idea
of nonparametric “baseline” hazard rate is also present in the well known Cox
regfession model, where a parametrically defined relative risk function is then
used for describing covariate effects.

One can make a compromise between conventional parametric and nonpara-
metric estimators, and assume that the hazard rate is some simple function,
such as piecewise constant, piecewise linear, or spline, involving, if necessary, a
fairly large number of points supporting the curve and acting as its parameters.
But such models can create other problems in conventional statistical inference.
While asymptotic theory often provides a justification of appropriate confidence
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statements concerning single coefficients, their combination, for example, for ob-
taining confidence bands for survival predictions is far from being a clear-cut
procedure.

Bayesian inference is in many ways a tempting approach to problems in
survival analysis. In particular, the direct probabilistic interpretation of the
posterior distribution is pleasant, and many concrete problems are formulated
naturally in terms of integrals with respect to the posterior. The predictive
survival distribution seems particularly important in this respect. A number of
authors, e.g. Ferguson (1973) and Susarla and van Ryzin (1976), have consid-
ered nonparametric Bayesian estimation of survival (or distribution) functions,
using the Dirichlet process as a prior. This has the advantage that the posterior
distribution has again the Dirichlet structure, making the problem analytically
tractable. An extension to so called “neutral to the right” family of distributions
was considered by Doksum (1974) and by Ferguson and Phadia (1979). For a
recent contribution, and for an extensive list of references, see Hjort (1990). In
these papers the cumulative hazard is a stochastic process with independent in-
crements, according to the prior distribution. A somewhat different approach
was chosen by Dykstra and Laud (1981), who modelled the hazard rate as a
gamma process, therefore postulating an IHR property of the model. This work
was later generalized, in different directions, by Lo (1984), Ammann (1985), Lo
and Weng (1989) and Thompson and Thavaneswaran (1992).

On the other hand, apart from statisticians’ general unwillingness to specify
priors, the Bayesian approach has suffered from the difficulty of choosing ‘between
two evils’: restricting the model distributions to conjugate families, because of
their analytic tractability, or facing the sizable computational difficulties in cases
where the dimension of the parameter space is large. Recently the application of
Monte Carlo integration methods, in particular the Gibbs sampler, has changed
this picture dramatically (Gelfand and Smith (1990); Smith (1991); Roberts and
Smith (1993) and, in survival modeling context, Clayton (1991)).

In this paper, the specification of the prior is done in terms of four hyper-
parameters, by adopting a hierarchical model structure. Of the above papers on
nonparametric Bayesian estimation we come closest to Dykstra and Laud (1981)
and its extensions, in that our model is based on the hazard rate. According
to the prior, the cumulative hazard, therefore, does not have the, perhaps, often
unrealistic independent increments property. As the prototype model, we assume
that the hazard rate has a simple martingale jump process structure. In case the
hazard is known to be monotone, we can change this assumption and consider
only processes with positive (negative) jumps.

The plan of this paper is as follows: In Section 2 we introduce the statistical
model. In Section 3 we describe the Gibbs sampler algorithm and illustrate the
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method by examples based on simulated and real data. Section 4 shows how
the method can be adapted in an instance of constrained estimation, where we
assume that the hazard rate is monotonically increasing. The paper concludes
with a discussion.

2. The Model

We consider simple right censored survival data {(X},6;); 1 < j < n} arising
in a study of n individuals; here X is the time the jth individual was last seen
and §; is the indicator of an observed failure at X; (i.e. 6; = 1 refers to an
observed failure and §; = 0 to censoring).

All the individuals are assumed to have a common hazard rate for failure,
{\¢; > 0}. This function becomes the parameter of the model. Since the hazard
rate cannot be observed, we shall treat it as a random function, or stochastic
process, also assigning probabilities to its sample paths.

Remark. Since the hazard rate is a functional of the distribution (or survival)
function, it may at first seem problematic to assign (subjective) probabilities
to functions which themselves have a probabilistic interpretation. This is not a
real difficulty, however. It seems most natural to think about the distribution
functions as limits of the corresponding empirical quantities from a hypothetical
sample of n “similar” (exchangeable) individuals, as n — oo. An alternative point
of view is that the survival times of the individuals are conditionally independent,
given their common hazard (or survival) function as a parameter.

In this paper we make the convention that {A\;t > 0} has a simple jump
process structure:

A(t) = Z (T <t<Tipr} i
i>0

where 173 is the indicator function, 0 = Tp < Ty < T < --- is an increasing
sequence of jump times, and A; > 0 are the corresponding levels of the piecewise
constant hazard rate. The specification of our “prototype” prior distribution of
the hazard rate sample paths is completed by assuming that

(i) the jump times Ty,T3,... form a time-homogeneous Poisson process with
parameter u;

(ii) the initial level Aq has gamma distribution v(+; @0, Bo) (with o as the shape
parameter and [, as the scale parameter);

(iii) given Ag, - .., Ai—1, and independently of the jump times T, A; has distribu-
tion v(+; @, B;), where o is the shape parameter and 8; = a/Xi_1.

Here p, ag, o and [, are given hyperparameters controlling the “constancy”
and initial level of the hazard rate. The prior mean number of jump points in
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an interval (0,¢] is ut. Therefore, if u is small the hazard rate is likely to remain
constant over long time intervals, and conversely. The initial level of hazard has

: : . . A/Varprior(Mo)
. — X prio |
prior mean E,,.,.(Ag) = 3 and coeficient of variation B ) = U6 Note

also that the conditional expected values and standard deviations are given by
Epm‘or()\il/\o, sy )‘i—l) = /\i—l

Aio1
\/Varp”'or(Aile,...,)\i_l) = \/a
Therefore, we are here assuming that the hazard rate has a martingale structure
with respect to the prior distribution and the internal filtration.

A brief description of this “prototype” prior could therefore be given as

follows:

(i) there is no built-in prior assumption of trend of the hazard rate;

(i) the level of hazard at time t = 0 is controlled by the mean 5> and the
“tightness” parameter \/a,. This prior is flat (tight) if aq is small (large);

(iii) The variability of the hazard rate over time is controlled by the intensity u
and tightness /o, the former controlling the number of jumps and the latter their
size. Thus, for example, a small value of u and a large value of o correspond to a
prior assumption of few but significant change points in the level of the hazard,
whereas the opposite choice allows for frequent small changes. Letting either
p — 0 or @ — oo we have, in the limit, a prior assumption of constant hazard
rate, corresponding to an exponential model.

As always, the choice of the prior should reflect the honest understanding
which the analyst has about the problem at hand. If the choice of the four
hyperparameters does not offer enough room for this, for example, because of an
assumed monotonicity property of the hazard, one should of course modify the
prior. An example of this is discussed in Section 4.

Remark. Apart from this Bayesian interpretation, the hyperparameters could
be interpreted in terms of costs in penalized ML-estimation, incurred by large
and/or frequent fluctuations in the hazard rate.

Given the hazard rate A(t), ¢ > 0, the individuals are assumed to live and
die independently. Assuming that the censoring mechanism is non-informative
with regard to the hazard rate, the likelihood will be proportional to the usual
product form

f[ A% exp { - /OXj As)ds}] = Ij](,\(xj))aj cexp{ - /OTW Y (s)A(s)ds },

where T, = maxic;j<, X; is the largest observation time, and Y (¢) = n —
Z?:l 1{x,<t} 1s the number of individuals at risk at time ¢t. The posterior density
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is then proportional to the product of the prior density and the likelihood. The
prior density of a “segment” {A(t);0 < ¢t < Tpax} of hazard rate can now be

)

where m = 3, 11, <T.,} is the number of jumps the hazard rate makes in the
interval (0, Trax)-

written as

*',_:13

(AZ, o,

m_ —ptTma
p™eHImexy(Xo; ag, Bo)

i=1 ’ 1

3. The Gibbs Sampler Algorithm
3.1 Description of the algorithm

We now describe the algorithm which is used in the numerical calculations
to generate samples of the hazard rate process from the posterior distribution.
We begin by generating a parameter process history (see Arjas (1989), Arjas et
al. (1992))

Hy . = {(T¢; M);0 < k < mo}

from the prior distribution, to be used as a starting value for the Gibbs sampler
algorithm. Here mo = Y_;5; 1{19<m,,,} is the number of points T} in the interval
(0, Tona-

In a general step of the Gibbs sampler, a history

H;"max = {(Tg’ )‘f))v R (T:nn Aini)}
is replaced by a history

HEL = (T 06, (Tl Ami)b
where m; = Y451 1{Ti<Tne) 20d Mit1 = 2ps1 Lriti <) As a result of the
chosen algorithm we have always m;;; > m; — 1.

The general step can be decomposed into 2m;1 substeps, each corresponding
to a new value of Ty or Ax. The new value is sampled from a conditional distri-
bution, where the conditioning is on the data (which stays always fixed during
the algorithm) and on the “current” values of the other sampled parameters.

Denoting densities generically by the letter p and using an obvious shorthand,
we sample from the distributions

i+1 11 1+1 141 i+1 1 1 7 1 1
T+ o p(Th | T N T A A T Mg+ T A, data),

AL o p(Ove | To N, L T A T T Mg+ Tongs A, » data).
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These conditional densities of the parameters T} and ), are proportional
respectively to the “full” probability densities p(Hy' "', data) and p(Hy'™, data),
where we use the following notation for the current histories:

HE ™ = {5708, - (T N, (T D, (Tian Mean)s -0 (T M),
H3 = {08, (T AR, (T M) (Tians M )s - (T, Al ) )

In other words, we can sample each parameter from the joint distribution of the
current history and the data when all the remaining parameters are fixed.

In a typical step we first generate a new value T;™! of T, to the interval
(Ti*1,Ti,,). Because of the Markovian structure of the model the density is
proportional in Tj to the joint density of the parameter, the data points within
the interval (T311,T;,,] and Y (T},,), i.e. the number of individuals at risk after
the interval. So we have

p(Tk | Tg“, )\f)'*'l, cey ,;ti, )\fctll, )‘2’ TI:+1’ /\i+17 ... ,T;i, A:,Li, data)
= p(T% | Tlﬁﬂ: )‘itll’ )‘ia TI:-H’ {(Xj"sj)3Xj € (leﬂa TZ+1]}1Y(T12+1))
X p(Tk, Tl§+1’ {(Xj7 5j); Xj € (leﬂa Tl:+1]}’ Y(TI:+1) |Tl:ti) )‘itlla )‘;c)

. T ) Tiv1
= exp{-Y(Ti.,)( /T XiPids + /T Xds)

X - T 1 X5
- ¥ ]/ﬁﬂ/\;j_lds— 3 (/Twi,\;c_ldsju/:rk Mds)

XJE(T}:t§7Tk XjE(Tk’TJ:+1] ke~

T T +1 \B{ X, €(T ) T),6;=1} i \#{ X €(Te, T, 1,6,=1 2
- [ = [ uds} (R pSTE B (e 2

ny Jn

where §A denotes the cardinality of set A. The position of T} is determined by
considering the partition of (7371, 7}, ,] induced by the ordered observations X p
in that interval. Suppose that there are n; such points, and denote the n; + 1
intervals of the partition by I1,..., I, +1. Then in each interval I ; the conditional
probability density of T} has a form proportional to exp(a;T})c; and it can be
normalized by dividing by the constant

nip+1

Cy = Z cj/ exp(a;s)ds.
=1 I;

T;*! can now be sampled from this piecewise continuous density.
In a second substep of the algorithm we have to generate the parameter At
conditionally on all the remaining parameter values, including the position it
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and the data. Again, because of the Markovian apriori structure of the model,

only the parameter values A", \i_,, Tx™*, Tt ,, the observations in the interval

(Ti*, Ti,,), and Y(T},,) are relevant (up to proportionality in Ar): Denoting

by
Ty = Z 5j

i4+1
Tit < X;<T,,

the number of observed failures in that interval, we have
pO | T NS L T A, T Tes Aesns - - - y Ty A, data)
o p(Hy*!, data)
o Py Mears (X560 X5 € (TP Tiia 1Y (Tign) [N T Ts)

= V(Ak;aaﬂ;ﬁ-l)’)/( k+1aa7 )\ )()‘k)rk

Tk 1
.exp{—-Y( h 1) /Ti+1 Ards — Z

X; (T, T}

X

Akds},

T:-w}-l
k]

where 8it! = B, and BT = a/A;t4, k > 1. This is proportional in Ay to

i
adj g

A Y eXP{“M . +/ Y(S)d5>} exp{ T} = fe(Ax) - 9¢ (M),

where for { > 0 we define

fe(A) = A¢Hm=D) exp{ P +/ Y (s) ds)}

and N
0 = () exp{- 222

We note that f(-) is proportional to the gamma density

( ¢+ Tk, z+1+/

Note also that, for ¢ > 1, g¢(+) is proportional to an inverse gamma density).
¢ Yy
Solving the equation

C+re—1 _ adin

i+ ;’zﬁ Y (s)ds ¢
k
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one can find a value ¢* such that f..(-) and gc.(-) have their modes at the same
point. Generating A" from the density proportional to fe()g¢(+) can then be
accomplished by the rejection sampling technique (Ripley (1987), Gilks (1992),
Gilks and Wild (1992)):

First compute

M, = max 9c+(A) = g¢» <a)\2i+1) _ < {i* )(* exp(—(*),

then do:

Stepl: generate \* from the density y(-;¢* + 7, B + f;’:ﬁl Y (s)ds);
k

Step2: generate U uniform in [0, 1J;

Step3: if

g+ (N) > U - M,

then accept A;*' = X*, otherwise reject this A\* and go back to Stepl to
generate a new \*.

Note that the choice ¢ = (* is optimal for the rejection sampling procedure,
minimizing the probability of rejection.

In this way we can update successively the old values {(T},)\i); 1 < k <
m; — 1} to a set of new ones {(T3*',A;*!); 1 < k < m; —1}. To complete
the algorithm, we only have to determine its behaviour after (771, X5t ) has
already been generated. When replacing the last jump time Tfm and generating
a new one, i.e., T, from the distribution

p(' l Tvi:l—b )‘:;:il—h )\fm’ {(Xj7 5]')3 XJ' € (T:n;tllv Tma.x]}),

it may happen that the algorithm produces a point which falls outside the ob-
servation interval, i.e., T;+*? > T,.,.. In that case Ti+! is discarded, so that the
(¢ + 1)st generated hazard function has one jump point less than the previous
one and we set m;;; = m; — 1. The probability of this event is proportional to

Tmax 1 Xj i1 ‘ Tmax
(3 E 1
exp{—Y(Tmax)/i+l Ami_lds - it+1 )\m"‘_lds - /i+l Mds}
T Xj €T Tma] ¥ i T

. - i+4+1
S e

The normalizing constant becomes (m =m,)

Ny +1

Crm = Z cj/ exp(a;$)ds + Piai
j=1 T
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so that the actual probability is piai/Crm. In the complementary case where
Ti! < Thmax we first generate a new parameter Abir = Y(5 @, Bm41), Where
Bm.+1 = /)., , representing the next level of the hazard after Tp.x. At this
stage AL, ., is a “fictitious” parameter, because it doesn’t enter the likelihood.
However, it is needed for the next steps of the Gibbs sampler. By updating the
jump level
>‘mi = )‘i:il = p(' l )‘i:il—la T:;tl, )‘ini—i-l’ {(XJ" 6j); Xj € (Trintl’ Tmax]})’

we get a new point (T, Ait?).

It is possible that the (i + 1)st generated hazard rate will have even more
than m; jump points. To see this, we generate a new jump time

T?:’L-t-lkl = p(’ l T’lil.tl’ A::,-l’ Aim+17 {(Xj> 6j); Xj € (T;:l, Tmax]});

again, if Tir1, > Tiax we discard it, and this iteration of the Gibbs sampler
ends giving the history Hpiv1 with miyy = m;+1 points. Otherwise we generate
a new parameter A\, ., (the next hazard level after Tmax) from the distribution

v(; &, Brmi+2), Where Bm 12 = o/, .1, and then update the last jump level
>‘mi+1 = )‘i:il-i—l = p(' I )‘irtlaT:;z-t}+17 )‘ini+2a {(Xj’éj); Xj € (Trz;ztil’TmaX]})'

The algorithm continues by generating and updating points until, for the
first time, some point goes beyond Tpax during the updating step.
We can resume an algorithm’s cycle as follows:

(1): update the initial level A at time To = 0;

(2): update successively all the marked points (Tk, Ax) from the first to the last
but one;

(3): generate the last jump time Tpn;

if this goes beyond Ty, then discard it and go back to (1) to start a new
updating cycle;

else generate Am41 =~ Y(*; @, a/Am), update the last jump level Am and go back
to the updating step (3) with m replaced by m + 1.

So in each cycle any number of marked points can be added, or one point
can be erased.

3.2. Two illustrations

As a result of the algorithm we obtain a Markov chain {H%.. }izo0, which
is ergodic under mild regularity conditions (Roberts and Smith (1993, 1994)).
It is a straightforward matter to verify, by direct calculation, that the posterior
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distribution specified at the end of Section 2 and viewed as a measure on the
space H of such histories, is invariant for that chain. As a consequence, for each
real function ¢ : H — R integrable with respect to the posterior distribution on
the space of parameter histories, we have almost surely that

1
lim —

n—oo N

S 6(H) = [ o(Hr)dP(Hr|data).
1=1

Therefore, by using the simulated histories, we can approximate the posterior ex-
pectation of any integrable function ¢. Perhaps the most important special case
here is the predictive survival function obtained by considering, for each time
point t, ¢(Hy) = exp{— [; A(s)ds} (the hazard rate A(-) is chosen to correspond
to the history Hr). We denote this survival function by Fp,q(t). Its density
fpred(t) is approximated most conveniently in the simulation by considering, for
each fixed t, ¢(Hr) = A(t) exp{— [y A(s)ds}. The natural notion of hazard, called
here the predictive hazard, is defined as Aprea(t) = fprea(t)/Fprea(t), and corre-
sponds to the hazard, according to the posterior distribution, of some individual
(not in the data but “similar”) still alive at t.

As a first illustration, we used data generated from the model, plugging in a
known “true hazard” function Ay (t), which in turn was sampled from the prior
parameter distribution. The data were then censored in a noninformative way,
at independent exponential random times and truncated at a fixed terminal time
T = 10.

We present the numerical results arising from two sets of simulated data,
with respectively 50 and 200 censored survival times (Figures 1(a,b,c) and 2).
The dashed lines correspond to the hazard A;,.(t) used in generating the data
and the “true” survival function exp{— f; Airuc(s)ds}. The curves referred to as
predictive survival probability, and predictive hazard, were obtained as explained
above.

In Figure 1(a) we used the hyperparameter values (u, o, Bo, @) = (2, 5,25, 5)
corresponding to p - 10 = 20 change points on the interval (0,10] as the prior
mean, initial level mean Ep;or(Ao) = %g = 0.2, and “tightness” parameter /o =
v = /5. With such loose control on the number of jump points and the jump
sizes, the predictive survival probabilities are seen to follow closely the Kaplan-
Meier curve. The corresponding predictive hazard rate oscillates considerably
over time. Some of those oscillations are caused by (compared to the true hazard)
random clusters and gaps in the observations. Such sensitivity of the estimation
can be conveniently tuned down by choosing a smaller value of . and/or a larger
value of . In Figure 1(b) we have chosen p = 0.5, and in Figure 1(c) o = 20,
leaving the other hyperparameters unchanged compared to Figure 1(a). The
changes stabilize the behaviour of the predictive hazard considerably. On the
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other hand, the predictive survival probabilities are almost identical in all three
figures. This was to be expected, as the survival probabilities depend on the
cumulative hazard rather than on the local behaviour of the hazard rate.

SURVIVAL PROBABILITY / HAZARD RATE

0 1 2 3 4 5 6 7 8 9 10

TIME
+ o+ o+ FAILURES
* k% CENSORINGS
............. "TRUE® SURVIVAL PROBABILITY
............. "TRUE' HAZARD

T PREDICTIVE SURVIVAL PROBABILHY
T PREDICTIVE HAZARD
—_— KAPLAN-MEIER ESTIMATOR

Figure 1(a). Results from an analysis of simulated data with 50 individuals under obser-
vation in the time interval [0, 10]; from those 2 were censored independently within the
time interval and 5 at the end of the study. The hyperparameters had the values u = 2,
a0 = @ = 5 and Bo = 25. The Gibbs sampler ran for 5000 iterations and the first 500
generated histories were discarded.

It’s always a delicate point assessing the convergence of the Gibbs sampler
algorithm; however, observing independent runs of the algorithm with different
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lenghts and different initial values, and comparing naively the approximations of
the predicitive hazard rate, we observed very soon (after a few hundred iterations)
essentially the same behaviour. Further evidence of good convergence properties
of the algorithm was obtained from experiments with large data sets where the
posterior survival probabilities seemed to follow, irrespective of the prior, closely
the Kaplan-Meier curves (Figure 2).

SURVIVAL PROBABILITY / HAZARD RATE

. TITYAllIIXll""'lllllll‘l'l‘[‘l?ll-rIll'lllllil'llvll

o 1 2 3 4 5 6 7 8 9 10
TIME

+ o FAILURES
- * CENSORINGS
------------- "TRUE" SURVIVAL PROBABILITY
------------- *“TRUE" HAZARD
- PREDICTIVE SURVIVAL PROBABILITY
—— PREDICTIVE HAZARD
S KAPLAN-MEIER ESTIMATOR

Figure 1(b). The data set is the same as in Figure 1(a); only the prior distribution was
slightly changed setting p = 0.5. The Gibbs sampler ran for 5000 iterations and the first

500 generated histories were discarded.
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SURVIVAL PROBABILITY / HAZARD RATE

0.0 Lt -+ Hi ek -+ * + +%

Aok

T T T T L SRAMSLAE SRR AR AN B AL MRS ASD B | T

0 1 2 3 4 5 8 7 8 8 10

TIME

+ + o+ FAILURES
*  oxk K CENSORINGS
""""""" *TRUE" SURVIVAL PROBABILITY
""""""" "TRUE" HAZARD
— PREDICTIVE SURVIVAL PROBABILITY
S PREDICTIVE HAZARD

KAPLAN-MEIER ESTIMATOR

Figure 1(c). The data set is the same as in Figure 1(a); only the prior distribution was
slightly changed setting o = 20. The Gibbs sampler ran for 5000 iterations and the first
500 generated histories were discarded.

As a second illustration, we considered the data set given in Nair (1984), con-
sisting of the failure times of 40 randomly selected mechanical switches. Three
of these observations were right censored because of the termination of the test.
The Kaplan-Meier curve and the 90% Greenwood confidence bands for the sur-
vival function (see e.g. Kalbfleisch and Prentice (1980)) are displayed in Figure 3,
where the time and hazard where rescaled so that the test was terminated at time
T = 10. We have drawn into this same figure the predictive survival probabilities



518 ELJA ARJAS AND DARIO GASBARRA

SURVIVAL PROBABILITY / HAZARD RATE

0 1 2 3 4 5 6 7 8 9 10
TIME

+ o+ 4+ FAILURES
* %k CENSORINGS
............. 'TRUE® SURVNe.L PREO'BABILHY

D
T PREDICTIVE SURVIVAL PROBABILITY
—— PREDICTIVE HAZARD
E— KAPLAN-MEIER ESTIMATOR

Figure 2. Continuing the analysis we increased the data set in Figures 1(a)-1(b) to 200
individuals; 11 of them were censored in the time interval and 11 at the end of the study.
The hyperparameters had the values y = 0.6;00 = a = 5 and By = 25. The Gibbs
sampler ran for 5000 iterations and the first 500 were discarded. ’

and the corresponding predictive hazards using two rather different hyperparam-
eters values (u,aq, 8o, @) = (0.2,3,200,15) and (0.7,1,270,4). The predictive
survival curves are again in good agreement with the Kaplan-Meier, and stay
between the approximate confidence bands for times after the first failure. Note,
however, that for times until that failure the entire band collapses into a single
curve corresponding to estimated survival probability one. We would therefore
interpret this discrepancy between the predictive curves and the “band” in this
area to be a consequence of the band being deficient, and not the curves.
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1.0

0.8

Survival

0.4

0.2

0.0

Time

Figure 3. Analysis of Nair (1984) data. From 40 individuals, two were censored in the
time interval and one at the end of the study. Predictive survival and hazard curves
from two different priors are shown, with respective hyperparameters were ap = 3,a=
15,80 = 200, p = 0.2 (dashed line) and ap = 1,a = 4,80 = 270, = 0.7 (solid line).
The step functions are the Kaplan-Meier estimator and the 90% Greenwood confidence
bands. The Gibbs sampler ran for 5000 iterations and the first 500 were discarded.

4. A Modification: Estimation of Increasing Hazard Rate

In the above algorithm we made the neutral assumption that, according to
the prior distribution, the hazard rate has no trend up or down. Sometimes,
however, we may have qualitative prior information and know, for example, with
certainty that the hazard rate has to be IHR, i.e., a non-decreasing function
of time. The background of such postulate can be aging resulting from phys-
ical wear, or some other similar argument. For cumulative hazard this means
convexity.

It is not immediately obvious how conventional nonparametric hazard es-
timators, such as Nelson-Aalen, should be adjusted to take into account such
monotonicity. A possible solution, studied recently in Huang and Wellner (1994),
is to consider the derivative of the greatest convex minorant (GCM) of the Nel-
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son Aalen estimator. The statistical properties of such an estimator are much
more involved than those of Nelson-Aalen, however, since they cannot be linked
directly with counting process martingales.

SURVIVAL PROBABILITY / HAZARD RATE
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............. “TRUE" HAZARD
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Figure 4. Results from fitting an IHR model to a simulated data set of 50 individuals,
of which 3 were censored in the time interval [0,5] and 12 at the end of the study. The
hyperparameters were given the values ag = 1.5, By = 4, p = 1.5, v = 4. The Gibbs
sampler ran for 5000 iterations and the first 500 were discarded.

On the other hand, it turns out that the corresponding constrained Bayes
estimation problem is solved very easily, by a slight adjustment on the model.
This variant, which resembles closely that in Dykstra and Laud (1981), can be
described as follows. We specify the prior probability by again assuming that the
sequence of jump times 0 = Ty < T} < T, < - - - forms a Poisson process with fixed
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intensity u and that the initial level of the hazard rate Ao has density v(-; a, Bo),
with u,ag, and By as fixed hyperparameters. Now, however, we assume that
the (then positive) increments A; — Xi_y, ¢ = 1,2,... of the hazard process are
independent v-exponential random variables, with v a given hyperparameter.
Within this prior model specification, the updating of the jump times T; of the
hazard process is accomplished just as in the previous trend-free model, whereas
the updating of hazard level ), is from the distribution proportional to the gamma
density v(-;7; + 1, f;}“ Y (s)ds) restricted to the subinterval (Ai_y, Ait1)-

SURVIVAL PROBABILITY / HAZARD RATE
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............. "TRUE® HAZARD

e POSTERIOR SURVIVAL PROBABILITY
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E— KAPLAN-MEIER ESTIMATOR
""""" - GCM HAZARD ESTIMATOR
""""" - GCM SURVIVAL ESTIMATOR

Figure 5. Results from fitting an IHR model to a simulated data set of 150 individuals; 5
were censored during the interval of study and 13 at the end. To check the robustness of
the estimation algorithm, the true hazard process had only a single but very large jump
(from 0.2 to 0.7). The hyperparameters were given the values g = 1, Bo = 2, p = 0.5,
v = 2. The Gibbs sampler ran for 5000 iterations and the first 500 were discarded.
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As an illustration of the method, in Figures 4 and 5 are shown the results from
the analysis of two simulated data sets. In addition to the plots used earlier in
Figures 1 and 2, we have added the Huang and Wellner (1994) GCM-estimator of
the hazard rate, which is piecewise constant, and the corresponding exponential
plug-in survival probability estimator.

Note, finally, that the assumed IHR property concerns the hazard rate pro-
cess {A(t);t > 0} which is here an unknown model parameter. The corresponding
predictive hazard can be viewed as arising from a mixture of distributions, where
the mixing is according to the posterior distribution. It is well known that IHR
property is not necessarily preserved in mixing, and therefore the resulting haz-
ard Apreq(t) may not be increasing even if the individual A(t)-functions are. This
is simply a consequence of the fact that a long survival is better explained by
a low hazard rate, and therefore Bayes’ rule gives it relatively more weight as
the observed survival time of an individual becomes longer. On the other hand,
in a setting where a large data set has been generated according to Atrue(t),
consistency of the estimation implies that A;..(t) can be “almost recovered”. In
practice this means that if A, (t) is IHR and n is large, then also Aprea(t) should
be IHR.

5. Final Remarks

Our implementation is different from other applications of the Gibbs sam-
pler in the context of multiple change point models (Carlin et al. (1992), Stephens
(1992)) in that here the number of change points is not specified in advance; in
each iteration the algorithm updates dynamically the dimension of the prob-
lem, handling in this way the posterior distribution on an infinite-dimensional
parameter space. From this point of view our method stands in a natural way be-
tween parametric (finite dimensional) and nonparametric (infinite dimensional)
approaches to Bayesian inference from survival data. The particular structure of
the considered model, i.e. piecewise constant hazard rate and prior distribution
based on Poisson and gamma distributions, should be primarily viewed as a con-
venient way of arriving at a simple model formulation. In Bayesian estimation,
where typically the main concern is in integrals with respect to the posterior
distribution, such as predictive survival probabilities, it seems that the precise
functional form of the hazard rate is less crucial than in the frequentist approach
where obtaining a “good looking” point estimate function is important. More-
over, four hyperparameters with fairly clear-cut interpretations in their relation
to the behaviour of the hazard rate seem to offer enough flexibility in actual
statistical estimation. The choice of their values has a similar role in hazard
estimation as the choice of the form and the bandwidth of the kernel in kernel



NONPARAMETRIC BAYESIAN INFERENCE FROM SURVIVAL DATA 523

smoothing. An important difference, however, is that here the hyperparameters
are chosen first, and that the smoothing becomes a part of the algorithm itself.
Should one prefer to think that also the hyperparameters are unknown, and
therefore viewed as a random variables, it is a simple matter to add an additional
level of hierarchy to the model and then extend the sampling algorithm to these
variables.
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