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Abstract: Given a data set X ~ P, , and estimates ¢ and # we are interested in
confidence bounds for the real parameter 9. Let Dy n(y) = Py.n(% < y) and assume
that Dy (%) is a pivot with pivot distribution H. Assume that Dy +(¥) is nonde-
creasing in o for fixed 1/3 and 7. Then it is possible to construct exact, transformation
equivariant confidence bounds for . It is shown that a modified double bootstrap
procedure yields exactly these bounds without knowledge of D or H, provided the
number of bootstrap samples becomes infinite. Although the existence of exact pivots
is special, it is plausible that the proposed method will yield approximate confidence
bounds, when there are approximate local pivots. This aspect is explored analytically
and by simulation in two examples.
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1. Introduction and Summary

This paper deals with the double or iterated bootstrap in a parametric set-
ting. Although much of the appeal of the (nonparametric) bootstrap arises from
the fact that no restrictive model assumptions need to be made and that the
bootstrap process will “approximate” the true model, there is the second aspect
that the bootstrap (parametric or nonparametric) avoids difficult and intractable
analysis by the sheer power of computer simulation. It is the latter point that
weighs strongly when considering the parametric bootstrap. This allows us to en-
tertain honest but complex models in place of incorrect but analytically tractable
ones.

Sometimes there are natural pivots for the parameter of interest and more
often there are local, approximate pivots. Recall that pivots are functions of
the data and unknown parameter values whose distribution does not depend on
unknown parameters. Typically the existence of a pivot allows the construction
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of exact confidence bounds. If we do promote a general method for constructing
confidence intervals, such as the bootstrap, then this method should do well, at
least when we are in a pivot situation, whether we know it or not. Ideally such
a bootstrap method should then produce those exact bounds, i.e., do right when
this is at all possible. One could view this requirement as a calibration on the
choice of bootstrap method.

To set the stage, suppose we have a data set X which was generated by
the probability model Py, where 6 varies over some general parameter space ©.
It is assumed that we have a method for estimating 6, resulting in an estimate
0 = 9(X) We are interested in confidence bounds for a real- valued functional
Y = 1(0) of 6. As the natural estimate of 1) we consider ¢ ¥(6). Efron’s
(1982) original percentile method consists of bootstrapping v and uses appropri-
ate percentiles of this bootstrap distribution as confidence bounds for 1. These
bounds have the very appealing property of being transformation equivariant.
However, their small sample properties are not satisfactory. With a view to-
ward preserving transformation equivariance Efron (1982, 1987) proposed much
improved bias corrected and accelerated bias corrected versions. Another modi-
fication to the percentile method is to bootstrap 1& — % instead. This bootstrap
distribution is again used to construct confidence bounds for ¥. These bounds
are no longer transformation equivariant and are also very inadequate in small
samples. Hall (1988) first refers to this method as the hybrid percentile method,
but later (Hall (1992)) calls it simply the percentile method and refers to Efron’s
original proposal as “the other percentile method.” The problem with this per-
centile method is that it is not clear why one should pivot by subtracting . Why
not take the ratio ¢ /1 or some other function of v and 1? Taking the difference
may make sense asymptotically but can be way off target in small samples.

In the percentlle t bootstrap method the “partial plvot” - 1 1s extended to
a “full pivot,” R(¢),,8) = (¢ — )/ o;(0 ), where oy (4) is a convenient estimate
of the standard deviation of . If R is a true pivot, then bootstrapping its
distribution would lead to exact confidence bounds regardless of sample size.
The problem with this method is that one has to know the form of the pivot
(Studentization above) and one has to know appropriate estimates oy (). Here
the whole purpose of bootstrapping is to get the pivot distribution.

Iterated bootstrapping has been proposed as an alternate path for improv-
ing the small sample properties of simple bootstrap methods. Various related
schemes were proposed and examined by Hall (1986), Beran (1987), Loh (1987),
Hall and Martin (1988), and Martin (1990). These authors have done much to
bring out the various small sample improvement increments resulting from each
iteration. However, these results deal with orders of magnitude, say, 1 /n, 1/y/n,
etc., and may still require moderately large n to take effect, see Hall et al. (1989).
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For a more in depth review and treatment of boostrap confidence bounds
we defer to DiCiccio and Romano (1988), Hall (1992), and Efron and Tibshirani
(1993).

Bootstrap iterations become increasingly prohibitive from a computational
point of view and beyond one iteration will be rather unattractive as a general
tool. There appears to be no general investigation of circumstances under which
a single bootstrap iteration closes the loop, i.e. leads to exact confidence bounds.
One exception to this is Martin’s (1990) treatment of the location-scale example
which may be viewed as a precursor of our results. In this paper we show that
a slight modification of the usual iterated or double bootstrap does indeed close
the loop provided that pivots of a very general type exist. It is not necessary
to know either the nature of the pivot function or its distribution. Both are
obtained through double bootstrap procedures leading to confidence bounds that
are exact, if we let the number of simulations, in the bootstrap and its iteration,
go to infinity. These confidence bounds are transformation equivariant. The
proposed method is very close to Beran’s (1987) prepivoting idea, except that
there is no need for a proper root function. The result also appears to throw
some light on a question raised by Hall (1992, p.142):

“If we had to recommend a utilitarian technique, which could be
applied to a wide range of problems with satisfactory results, it would be
hard to go past an iterated percentile method. Either of the two percentile
methods could be used, although the “other percentile method” seems to
give better results in simulations, for reasons that are not clear to us.”

The answer may lie in the fact that our double bootstrap proposal uses the “other
percentile method” or Efron’s original percentile method, however, with a slight
variant in the second level bootstrap. '

In Section 2 we deal with a general type of pivot and show that a modified
version of the double bootstrap will yield confidence bounds with exact cover-
age regardless of sample size. Section 3 examines the connections to Beran’s
(1987) prepivoting method and by equivalence to Loh’s (1987) calibrated boot-
strap confidence sets. Section 4 looks at the normal quantile example, examining
the method’s sensitivity to starting estimates. Section 5 addresses the situation
when the pivot assumption may hold only approximately. Further iteration of
the bootstrap is discussed. The Behrens-Fisher problem is examined as test case.
Section 6 examines the application of the new method to a nonparametric sit-
uation, namely, that of finding lower confidence bounds for a mean, when the
population distribution is unspecified. Only modest but encouraging simulation
results are given for sample size n = 6. This is followed by final comments in
Section 7.
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2. The General Pivot Case

Suppose that § = (¢, 7), and we want a lower bound for the real parameter
v with 7 acting as a nuisance parameter. The latter may be vector-valued. We
assume that we have estimates 1) and 7 and we denote the distribution function
of ¥ by Dy, (y) = Pg(v,/) < y). Motivated by the probability integral transform
result, namely D, ,(¢) ~ U (0,1) for continuous Dy ,, we make the following
general pivot assumption:

(V) Dy;() is a pivot, i.e., has a distribution function H which does not depend
on unknown parameters and D, ,,(1,/1) decreases in % for fixed ¢ and 7.

We believe this pivot assumption covers almost any pivot situation, but have
no idea how such a sweeping statement might be proved. The difficulty is in
giving the phrase “almost any pivot situation” sufficient structure.

A common special pivot case is the following. Assume that we have a function
R of ¢ and v only, where R(z/l ) has distribution function G independent of
0. Further, we assume this pivot function R to have the following monotonicity
properties:

(1) R(Q;', 1) decreases in v for fixed 1,
(ii) R(’(ZJ, 1) increases in 9 for fixed 1.

If G is continuous, then the general pivot assumption (V) is satisfied, namely,

Deo(y) = Po(¥ < y) = Ps(R(¥, %) < R(y,%)) = G(R(y, %))

and Dy, () = G(R(4), %)) ~ U(0, 1) is a pivot which is decreasing in . Here 7
does not affect D,,),ﬁ(z[)). As suggested to me by Antonio Possolo, one may want
to refer to such special pivots as “tame pivots.” :

For the purpose of later discussions we introduce, here, three examples of
pivot situations. The first two represent tame pivots and the third involves
active nuisance parameters.

Example 1. X = ((U;, V1),...,(U,, V4)) is a random sample of size n from a bi-
variate normal distribution Wlth unknown parameter 6 = (uy, pv, oy, oy, p). As
an estimate § consider that obtained by maximum likelihood. We are interested
in confidence bounds on ¥ = 4(#) = p. The distribution function of p depends
only on the parameter p and we denote it by H,(r). It is monotone decreasing in
p for fixed r (see Lehmann (1986), p.340) and R(p, p) = H,(p) ~ U(0,1) is a pivot
which satisfies (i) and (ii). This example has been examined extensively in the
literature, and Hall (1992) calls it the “smoking gun” of bootstrap methods, i.e.,
any good bootstrap method had better perform reasonably well on this example.
For instance, the percentile-t method fails spectacularly here, mainly because
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for small n straight Studentization does not pivot well here. This question was
raised by Reid (1981) in the discussion of Efron (1981). However, the percentile-
t method, after taking a Z-transform, fares much better, and even better is an
iterated bootstrap on Efron’s percentile method, see Hall et al. (1989).
Example 2. Let X = (X;,...,X,) be a random sample from N(u,0o?) with
unknown 6 = (u, c?). We are interested in confidence bounds on ¢ = ¥(f) = 0.
Using, again, maximum likelihood estimates we have R(¥,v) = o/ = 6%/0?
a pivot which satisfies (i) and (ii).

Example 3. Let X = (X;,...,X,) be a random sample from N(u,0?) with
unknown 8 = (u,0?). We are interested in confidence bounds for the p-quantile
¥ = ¥(0) = u+ 2,0, where z, is the standard normal p-quantile. One can think
of @ as reparametrized in terms of ¢ and o and again use maximum likelihood
estimates v and & for ¢ and o. Both (1; —1)/6 and (vj) — 1) /o are pivots with
respective c.d.f.’s F; and F; and Do(y) = Ps(¥ < y) = Fa((y — ¥)/0). Thus
Dy () = Fa(($ = )/5) ~ Fo(F7H(U)), where U ~ U(0,1).

Obviously, this example extends to the general location and scale estimation
situation, provided the above pivotal assumptions hold. As a consequence, our
result, presented below, will confirm Martin’s (1990) claim that a single bootstrap
iteration on Efron’s percentile method leads to exact coverage here.

This location-scale example generalizes easily. Assume that there is a func-
tion R(z/) ¥, n) which is a p1vot i.e., has distribution function F5, and is decreas-
ing in ¢ and increasing in ¥ Suppose further that R(z/J ¥, 1) is also a pivot
with distribution function F;. Then again the general pivot assumption (V) is
satisfied.

Given the general pivot assumption (V') it is possible to construct exact lower
confidence bounds for ¢ as follows:

v = Py(Dy 5 () < H (7)) = Po(v 2 9u),

where 1 = ¢, is a solution of

Dys($)=H(7) or H(Dya($)) =" (1)

We observe that 1/} 1, is transformation equivariant. This means the following:
If 7(+) is a strictly increasing transform of ¢ and we use 7 = T(z/AJ) to estimate
7, then the above procedure applied to 7 yields 7, = T(«,ZJL).

Solving Equation (1) requires knowledge of both H and D. By appropriate
double bootstrapping we can achieve the same objective, namely, finding ¥y,
without knowing H or D. It turns out that the double bootstrap we employ is a
slight variant of the commonly used one. There are two parts to the procedure.
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The first part obtains H~'(v) to any accuracy for large enough bootstrap sample
sizes A and B and the second consists of the iterative solution of Equation (1).

Start by generating the first level bootstrap sample Xi,..., X} from Py, .
for some choice of 1, and 7y. Typically, for reasons to be discussed in Section 5,
one would take (1, m0) = (z@,ﬁ). However, for now we stay with the arbitrary
starting choice (g, o).

From these bootstrap data sets we obtain the first level bootstrap sample of
estimates, i.e., (¥F,7}), i =1,..., B. From Py, 4: (not from Pj. ;» as one might
usually do it) obtain a second level bootstrap data sample X7, ..., X, and the
corresponding second level bootstrap sample of estimates ( A;;, )i =1,..., A
Then, as A — oo,

A 1 A 7%k T Tx
Dia=~ > Liger<in) = Puoss (W7 < 97) = Dyy g: (47) ~ H.
i=1

ij =

The latter distributional assertion derives from the pivot assumption (V') and
from the fact that (+},#}) arises from P,, ,, . Since

1 B
E ZI[Dwo,ﬁ; @<y H(y) as B — oo,
i=1

we can consider B~1X2 T [D:a<y) t0 b€ @ good approximation to H(y). From this
approximation we can obtain H~1(y).

Now comes the second part of the procedure. For some value 1, (sensibly
one would start here with ; = z&) generate X7,...,X% iid. ~ Py , and get
the bootstrap sample of resulting estimates 1/3?, . ,2/3;1,. Thus,

1 & .
% 2 Tge<i) = Duna(¥)-
i=1

Using the monotonicity of D, 5 (1;) in ¢ a few iterations over 1)1, ),,... should
quickly lead to a solution of the equation Dy ; (W) =H ~1(y). For large A,B,N
this solution is practically identical with the exact lower confidence bound . If
this latter process takes k iterations we will have performed AB + kN bootstrap
samples. This is by no means efficient and it is hoped that future work will make
this approach more practical. For example, smoothing interpolation schemes
should substantially reduce the impact of bootstrap sampling variation, i.e., make
up for the fact that simulated bootstrap samples are finite in number rather than
infinite. This should make it possible to work with smaller values of A, B, and N
in order to get appropriate accuracy in the confidence bound for any given data
set X.
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3. The Prepivoting Connection

We now examine the connection to Beran’s (1987) prepivoting approach and
thus also to Loh’s (1987) calibrated bootstrap confidence sets, since they were
shown to be equivalent by DiCiccio and Romano (1988). Suppose we have a
specified function R(¢, ) with distribution function F, (). Beran calls such a
function R a root. He allows more general forms, however, of the type R(X,v).
Suppose now that the following assumptions hold

(V*) F,;,,ﬁ(R(z/:), Y)) is a pivot, R(vﬁ, V) increases in ¢ for fixed v, and
Fy.7(R(¥,1)) decreases in % for fixed ¢ and 7.

Then (V*) implies (V'), since
' Dy(®) = Puglih < 2) = Pyy(R(D, %) < R(z, ¥)) = Fy(R(z,¥))

and Dy ;(4) = Fy 5(R(%,)) is a pivot by assumption.
When F does not depend on %, i.e., when the root function is successful in
eliminating ¢ from the distribution of R, then one can replace

F¢,,»,(R('g@, 1)) decreasing in ¢ for fixed ¥ and 7
in (V*) by the more natural assumption
R(1),v) decreasing in % for fixed P.

In contrast to the pivot assumption in (V*), Beran’s prepivoting idea treats
Fd;’ﬁ(R(q/},w)) as pivotal or nearly pivotal, its distribution being generated via
bootstrapping. The difference in the two approaches consists in how the subscript
2 on F is treated. Often it turns out that F' depends only on the subscript n and
the above distinction does not manifest itself. In those cases Beran’s prepivoting
will lead to exact confidence bounds as well, provided (V*) holds. For example,
in the situation of Example 3 with ¥ — 1 as root, Beran’s prepivoting will lead
to exact confidence bounds.

As a contrast consider Example 1 with 1 = p. If we take the root R(p, p) =
p—p, then F,(z) = P,(p—p < z) = H,(z+p) with H, denoting the c.d.f. of j as
in Example 1. Here the assumption (V*) is satisfied, since F,(p — p) = H,(p) is
a pivot; however, F;(p — p) = Hz(p — p+ p) appears not to be a pivot, although
we have not verified this. This difference is mostly due to the badly chosen root.
If we had taken as root R(p,p) = H,(p), then the distinction would not arise.
In fact, in that case R itself is already a pivot. This particular root function
is not trivial, however, and this points out the other difference between Beran’s
prepivoting and our method. In our approach, no knowledge of an “appropriate”
root function is required.
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As a complementary example consider Example 2 with the root R = Vn(s?—
o?) for the purpose of constructing confidence bounds for 0. Let x; denote the
c.d.f. of a chi-square distribution with f degrees of freedom. Then F,.2(R) =
Xn-1((n — 1)s?/0?) ~ U(0,1) is a pivot which will lead to the classical lower
bound for o?. On the other hand, the iterated root R,.,.(c ) = Fp2(R) =
Xn-1((n = 1)(2 — 0?/s%)) is a pivot as well, with distribution function

Fin(z) = Xon_s ((n —1) (2 - M) ) ) for 0 < < xn_y(2(n — 1))

and F1,(0) = Xn-1((n — 1)/2), Fyn(z) = 0 for z < 0 and Fy,(z) = 1 for
T 2 Xn-1(2(n = 1)). For v > x,_1((n — 1)/2) the set

= {O’ Fln Rln < 7} - [ n" 1)52/X;i1(7)’oo)

yields the classical lower confidence bound, but for v < x,_1((n — 1)/2) the set
Bi,n is empty. This quirk was overlooked in Beran’s (1987) treatment of this
example. For large n the latter case hardly occurs, unless we deal with small ~’s,
1.e., with upper confidence bounds.

A similar oversight occurs in connection with Martin’s (1990) claim that a
single bootstrap iteration leads to complete coverage correction when applied to
the hybrid percentile method. This can easily be traced in the example of one
obervation X from an exponential distribution with mean 6 and using § = X as
estimate of ¢ = 6. The problem is that coverage correction is then not possible
for certain confidence levels.

4. A Sensitivity Case Study

In this section we use Example 3 as a case study to illustrate the sensitivity
of the pivot method and thus of the proposed double bootstrap method to the
choice of starting estimates.

In Example 3 it is instructive to analyze to what extent the form of the
estimate (1,@,&) affects the form of the lower bound %, for v that results from
the pivot method.

It is obvious that the lower bound will indeed be different, if we start out
with location and scale estimates which are different in character from that of
the maximum likelihood estimates. For example, as location scale estimates, one
might use the sample median and range or various other robust alternatives.

Here we consider the more limited situation where, as estimates of ¥ and o

n

v=X+ks and &:rszr\)Z(Xi—X)Q/(”‘l)

=1
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are used for some known constants k and r > 0. In question, here, is the sensitiv-
ity of the resulting double bootstrap lower bound v with respect to the choices
of k and r.

It turns out that 1, does not depend on k or 7, i.e., the result is always the
same, namely the classical lower confidence bound for ¢, based on the noncentral
t-distribution. For example, it does not matter whether we estimate o by the
m.l.e. or by s. More remarkable is the fact that one could have started with
the very biased starting estimate ¥ = X, corresponding to k = 0, with the same
final lower confidence bound. It is possible that there is a general theorem hidden
behind this that would more cleanly dispose of the omitted convoluted argument
for this result. '

5. Approximate Pivots and Iteration

Previously it was shown that under the general pivot assumption (V') the
proposed double bootstrap closes the loop as far as exact confidence bounds
are concerned. It is noteworthy in this double bootstrap procedure that we
have complete freedom in choosing (1, 7). This freedom arises from the pivot
assumption. The pivot assumption is a strong one and usually not satisfied.
However, in many practical situations one may be willing to assume that there
is an approximate local pivot. By “local” we mean that the statement “Dw,ﬁ(qﬁ)
is approzimately distribution free” holds in a neighborhood of the true unknown
parameter 6. Since, presumably, 6 is our best guess at 6, we may as well start
our search for H~1(7) as close as possible to 8, namely, with 8y = (0, n0) = 6, in
order to take greatest advantage of the closeness of the used approximation. To
emphasize this we write Hy(Dy (1)) = 7 as the equation that needs to be solved
for v to obtain the 100v% lower bound 1/31, for . Of course, the left side of this
equation will typically no longer have a uniform distribution on (0, 1). Followmg
Beran (1987) one could iterate this procedure further. If Hz(Dy,5(¢ V) ~ Hap
with H, 5(H, (Dy.+(1))) hopefully more uniform than Hj 5(Dy.5(1)), one could
then try for an adjusted lower bound by solving H, ;(H; (Dy.5(¥))) = ~ for
v = @bz, .. This process can be further iterated in obvious fashion, but whether
this will be useful in small sample situations is questionable. For example, in
the Behrens-Fisher problem one might wonder what such iteration would lead to
in view of Linnik’s (1968) results, namely that only pathological solutions may
exist.

As illustration of the application of our method to an approximate pivot
situation we consider the Behrens-Fisher problem, which was examined by Beran
(1988) in a testing context from an asymptotic rate perspective.

Let X,,..., X and Y3,...,Y, be independent random samples from respec-
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tive N(u,07) and N(v,02) populations. Of interest are confidence bounds for
Y = pu—v. Since we do not assume o, = o, we are faced with the classical
Behrens-Fisher problem.

We examine how our double bootstrap or pivot method attacks this problem.
The above model can be parametrized in terms of (¥,m), where p = ¢ + v and
n = (v,01,02). As natural estimate of ¢ we take ¥ = X — Y and as estimate
for n we take = (Y, s, 32) where s? is the usual unbiased estimate of o?. The
distribution function of ¢ is

Dy ,(x) = Pw,n(X Y < z)=2 <\/o' 777”:-5)0'3/”)

The distribution function H, of D, () depends on the unknown parameters
through p = p(07,02) = no? / (no} + mo3). Thus assumption (V) is violated.

Traditional solutions to the problem involve approximating the distribution
function G,(z) = H,(®(z)) of T = (¢ — ¥)/+/s?/m + s2/n and in the process
replace the unknown p by p = p(s?,s2). This is done for example in Welch’s
solution (Welch (1947) and Aspin (1949)), where G, is approximated by a Student
t-distribution function Fy(t) with f = f(p) degrees of freedom where f(p) =
[0*/(m = 1) + (1 — p)?/(n — 1)]7%. As a second approximation step one then
replaces the unknown p by g, i.e., estimate f by f = f(p). This leads to the
following lower confidence bound for :

wr = — F7H(7)y/s2/m + s3/n.

Recall that in the first phase of our double bootstrap method we could start
the process of finding H, with any (¢,70). This would result in H,,. This is
reasonable as long as H does not depend on unknown parameters. By taking as
starting values (¢, 1) = (1/) 7) we wind up with a determination of H; instead.
Thus the character of H is maintained and is not approximated. The only ap-
proximation that takes place is that of replacing the unknown p by p. Whether
this actually improves the coverage properties over those of the Welch solution
remains to be seen, since the two approximation errors in Welch’s solution could
cancel each other out to some extent. The second phase of our bootstrap method
stipulates that

; -9
= H;(Dy ; =G;
Y ﬂ( d’m("r/))) 17 (\/m)
be solved for 1/) = 1, which yields the following 100v% lower bound for %,

Yy =1 — G;'(v)V/s?/m + si/n. Beran (1988) arrives at exactly the same bound
(although in a testing context) by simple bootstrapping. However, he started out
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with the Studentized test statistic T'. It is possible to analyze the true coverage
probabilities for Y and Yy although the evaluation of the analytical formulae
for these coverage probabilities requires substantial numerical effort.

These analytical formulae are derived by using a well known conditioning
device (see Fleiss (1971) for a recent account of details). The formula for the
exact coverage probability for ¥y is as follows

K,) = Pl < 9) = [ b@)F, (Gl () am(ehu + saa(p)(1 — w) ) du

with g = m+n — 2, a;(p) = p/(m — 1), and ax(p) = (1 — p)/(n —1). blw) =
[T()T(B)] T (a+ B)w (1 — w)P~*Ijp 1 (w) is the beta density with o =
(m—1)/2 and 8 = (n— 1)/2 and p(w) = wp(n — 1)/[wp(n — 1) + (1 - w)(1 - p)
(m —1)]. G;(p) is the inverse of

Go@) = BT < 2) = [ bw)F, (2/gm(pu+ gaalp)(1 ) ) du

097
I
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|

coverage probability
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o
S
———  Double Bootstrap
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p

Figure 1. Coverage probabilities of 95% lower bounds
in the Behrens-Fisher problem

The corresponding formula for the exact coverage of Ywr is
W,(v) = Po(dwr < ¥)
1
= [ 6B, (En Vo000 + ga(p) (1 = w))
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When p = 0 or 1 and for any (m, n) one finds that the coverage probabilities
are exactly equal to the nominal values v, i.e., K,(y) = W,(y) = 4. This is
seen most directly from the fact that in these cases T' ~ F,,_; and T ~ F,_;,
respectively.

Figure 1 displays the exact coverage probabilities G,(.95) and W,(.95) for
equal sample sizes m = n = 2,3,5 as a function of p € [0,.5]. The full graph is
symmetric around p = .5 for m = n. It is seen that both procedures are highly
accurate even for small samples. Mostly the double bootstrap based bounds are
slightly more accurate than Welch’s method. However, for p near zero or one
there is a reversal. Note how fast the curve reversal smoothes out as the sample
sizes increase.

— Double Bootstrap
------------- Welch Approximated d.f.
----- Approximate Asymptotes

| coverage error |

0.005 0.010 0.015 0.020 0.025 0.030

0.0

T T T

T T
0.0 0.01 0.02 0.03 0.04 0.0 0.06
1
(m+n)?

Figure 2. Maximum coverage error of 95% lower bounds
in the Behrens-Fisher problem

Figure 2 shows the rate at which the maximum coverage error for both
procedures tends to zero for m = n = 2,...,10,15, 20, 30,40,50. It confirms
the rate results given by Beran (1988). The approximate asymptotes are the
lines going through (0,0) and the last point, corresponding to m = n = 50.
It seems plausible that the true asymptotes actually coincide. Beran (personal
communication) confirms having found this during work on his 1988 paper.

It may be of interest to find out what effect a further bootstrap iteration
would have on the exact coverage rate. The formulas for these coverage rates
are analogous to the previous ones with G;(fu)('y) and F f—(}a(w))(’Y) replaced by
appropriate iterated inverses, adding considerably to the complexity of numerical
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calculations. We conjecture that such an iteration will increase the number of
oscillations in the coverage curve. This may then explain why further iterations
may lead to highly irregular coverage behavior.

6. Confidence Bounds for the Mean

In this section we apply the proposed double bootstrap method in the non-
parametric setting of finding lower confidence bounds for the mean. Only very
limited simulation results will be given. To be specific, assume that we observe
X1,..., Xn ~ F(z) = Fo(z — p) with Fy € Fo = {Fp : [z dFy(z) = 0}. As
estimates of F = 8 = (¢,n) = (u, Fo) consider g = X and F,, the empiri-
cal distribution function of X; — X,..., X, — X. Clearly condition (V) is not
satisfted. Although the distribution of D = D #,(X) does not depend on p it
definitely varies with Fy. However, it is hoped that this is only a slow variation.
For instance, this distribution of D is insensitive to scaling in Fp. The violation
of condition (V') should come as no surprise in view of the general nonexistence
results proved in this context by Bahadur and Savage (1956).

In our double bootstrap process we run through the following two bootstrap
sampling and estimation processes

Pg 5 — X5 ..., Xy — (X*,Fg)

. n

and
dox *% 7 K *
Py — X% X — X

and estimate the distribution of D, z (X) by simulating that of Dx z. (X*). For
small n the bootstrap distributions can be enumerated completely, using the
algorithm NEXCOM (Nijenhuis and Wilf (1975)) for generating all multinomial
samples of n items taken from n items and computing corresponding sample
means. To examine the performance of the resulting lower confidence bounds
we simulated 1,000 samples of size n = 6 from each of six distributions, namely
from a standard normal distribution, from a uniform (0, 1) distribution, from
an exponential distribution with mean 1, from a standard double exponential
distribution with mean —.57772, from a Student ¢ distribution with 2 degrees of
freedom, and from a (.2, .8) mixture of U(0, 1) and U(10,11) distributions. These
simulations were run at nominal confidence levels of 90%, 95%, and 99%. The
observed coverage rates are presented in Table 1. Given the small sample size of
n = 6, the actual coverage rates are remarkably close to nominal for five of the
six sampled distributions, the exception being the (.2, .8) mixture of uniforms.
This latter case basically degenerates to sampling from a Bernoulli population
and its discreteness may explain the flatness of the observed confidence levels.
For some of the other sampled populations the variation of the lower bounds
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can be substantial. For example, in the Student ¢ (2 d.f.) case we observed a
few lower bounds as low as —10 and in the uniform and exponential case we
did see negative lower bounds. This should not be surprising since the proposed
bootstrap method has no knowledge of a hard distribution lower bound of zero.

Table 1. Nonparametric bounds for the mean for n = 6
achieved confidence levels in 1,000 simulations

Nominal confidence level
Distribution .90 .95 .99
normal (0, 1) 919 .936 .966
uniform (0, 1) .922 961 .981
exponential 947 .986 997
- double exponential .868 925 .950
Student ¢t (2 df) .861 .942 .992
2U(0,1) + .8U(10,11) .740 .739 .748

7. Final Comments

A new method of iterated bootstrap is proposed for constructing confidence
bounds and is examined mostly in the parametric setting although it can be
used in nonparametric situations as well. This new method is very close to the
prepivoting method of Beran (1987) and the calibrated confidence sets of Loh
(1987) and, in the parametric setting, it provides exact confidence bounds when-
ever that seems possible. Their construction only requires that we be able to
compute estimates of the unknown parameters. No Studentization, pivoting or
root construction is necessary. However, at this point the method is very simula-
tion intensive and work on improving the simulation efficiency is needed to make
this a practical all purpose tool for approximate pivot situations. The nature of
approximate pivots needs to be examined and not just from an asymptotic point
of view. '

It appears doubtful that this method extends naturally to higher dimensional
parameters v, since it intrinsically uses inversions that are tied to the real line.
Much depends on what type of confidence sets one would want to consider, since
there is much greater choice of confidence sets in higher dimensions. If these can
be indexed through a real parameter, it might be possible to adapt our approach
correspondingly. See Beran (1990) for possible leads in this direction.

Finally, the behavior of this bootstrap method in a nonparametric setting
should be of interest, although typically one will not find exact pivots there.
The modest simulation results concerning nonparametric confidence bounds for
a mean are encouraging, but much more evidence is needed.
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