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PRACTICAL HIGHER-ORDER SMOOTHING OF
THE BOOTSTRAP
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Abstract: In the context of functional estimation, the bootstrap approach amounts
to substitution of the empirical distribution function for the unknown underlying
distribution in the definition of the functional. A smoothed bootstrap alternative
substitutes instead a smoothed version of the empirical distribution function, obtained
by kernel smoothing of the given data sample. It may be theoretically advantageous to
base such a smoothed bootstrap estimator on a higher-order kernel density estimator.
Such density estimators necessarily take negative values, which creates a practical
problem when simulation is to be used in construction of the bootstrap estimator.
We illustrate how a negativity correction may be combined with rejection sampling
to make higher-order smoothing feasible in the bootstrap context. Estimation of the
variance of a sample quantile is examined both theoretically and in a simulation study.

Key words and phrases: Kernel function, negativity correction, rejection sampling,
sample quantile.

1. Introduction

In the context of functional estimation, the bootstrap estimation procedure
amounts to the familiar method of substituting the empirical distribution func-
tion of the observed data sample for the unknown underlying distribution func-
tion in the definition of the functional. The question of smoothing the bootstrap,
by using instead a smoothed version of the empirical distribution function, has
been given much consideration: see, for example, Efron (1982), Silverman and
Young (1987), Hall, DiCiccio and Romano (1989) and De Angelis and Young
(1992). Since they lead to practically simple modification of the standard boot-
strap procedure, focus has been entirely on kernel density estimation procedures
for smoothing. It is observed that typically, when the quantity being estimated
depends on global properties of the underlying distribution, smoothing will not
affect the rate of convergence of the estimator. However, in circumstances where
the quantity being estimated depends on local properties of the underlying dis-
tribution, smoothing may affect the rate of convergence. It is also observed
that, in circumstances where smoothing is worthwhile, higher-order smoothing
may be theoretically advantageous, in the sense of improving further the rate of
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convergence: see Hall, DiCiccio and Romano (1989) and De Angelis, Hall and
Young (1993a,b). The only obstacle to use of higher-order smoothing is a com-
putational one. Higher-order kernel density estimators necessarily take negative
values, which creates a practical problem in the bootstrap context, as, generally,
simulation must be used in construction of the bootstrap estimator. Hall and
Murison (1993) investigate ways of correcting for negativity in use of higher-order
kernel density estimators.

In this paper we illustrate how a negativity correction may be combined with
rejection sampling to make higher-order smoothing practical in the bootstrap
context. We re-examine bootstrap estimation of the variance of a sample quantile.
This problem characterizes a class of problems for which bootstrap procedures
are especially important, since other resampling approaches such as jackknife
are either unavailable or perform poorly, and where higher-order smoothing has
strong theoretical justification. Conditions are given under which our procedure
gives the same theoretical improvements over the usual (second-order) smoothed
bootstrap as noted by Hall, DiCiccio and Romano (1989). We give empirical
evidence of the benefits of the approach over the standard bootstrap and usual
smoothed bootstrap approaches.

While the focus in this paper is exclusively upon bootstrap variance estima-
tion, it is worth remarking that De Angelis, Hall and Young (1993a) establish
that higher-order smoothing is advantageous in the problem of constructing boot-
strap confidence intervals for population quantiles. Simulation methods such as
those described here are likely to be of value for that context also.

In Section 2 we describe the higher-order kernel density estimation tech-
nique and the negativity corrections of Hall and Murison (1993). In Section 3 we
discuss the problem of estimation of the variance of a sample quantile and the
asymptotics of the bootstrap estimator based on the negativity-corrected higher-
order kernel density estimators of Section 2. In Section 4 the rejection sampling
method is described and in Section 5 a simulation study reported. This study
indicates that our method does succeed in capturing the benefits to be derived
from higher-order smoothing, but that, as might be expected, choice of smooth-
ing bandwidth is a delicate matter. A simple empirical procedure for choice of
smoothing bandwidth is described and illustrated.

2. Kernel Density Estimation

Let X,,...,X, be an independent, identically distributed sample from the
distribution function F', with density function f. A kernel function K which
satisfies
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1, =0,
/xiK(x)dxz 0, 1<i<r-1,
Ki, 1=T,

with k; # 0, for positive integer 7 > 2. is called an ‘rth-order kernel function’.
An rth-order kernel estimator f of f based on K is defined by

=EZK($'}1 ) (2.1)

with h a smoothing bandwidth to be specified.

If » > 3 then K necessarily takes negative values and f (z) will also be
negative for some values of z, typically those in the tails of the distribution,
where data is sparse. That f is not then a proper density function creates a
serious practical problem especially in the smoothed bootstrap context where
resampling from f may be required in construction of the bootstrap estimator.
Nevertheless, there may be, as in the example in Section 3, theoretical advantages
in use of » > 3. Our principal aim in this paper is to illustrate procedures for
making higher-order smoothing practical in this context.

Hall and Murison (1993) discuss negativity-corrected density estimators
based on f. In this paper we consider two of these estimators, which we demon-
strate are practically convenient for use with the smoothed bootstrap. These

are

f=nfi(f>0) (2.2)
and

fz = ’Yzlfl (2.3)
where I(-) denotes the indicator function and v; is defined (# = 1,2) by the

property that [ fi(z)dz = 1. Both f, and f, are proper densmes and may
therefore be used directly in the usual resampling approach to construct the
smoothed bootstrap estimator. We shall see that a key feature of the simulation
procedure developed in this paper is that it does not require knowledge of the
normalizing constants v; and 7s.

We complete this Section with a description of conditions on the kernel func-
tion K, smoothing bandwidth h and the underlying density f assumed through-
out Section 3.

Assume that K is an rth-order kernel function satisfying the following con-
ditions:

K is bounded, /lx’K(m)Idm < oo,

K' exists and is an absolutely integrable continuous function

of bounded variation, (2.4)
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and that

K is symmetric and vanishes outside (—Cy, Cy),

for some positive constant Cy. (2.5)

The conditions assumed on the underlying density f are that

(i) f™) exists and is uniformly continuous,

fU) is bounded for 0 < j <r, FEp(|X|?) < oo for some ¢ > 0, (2.6)
(ii) f(z) > 0on (—o00,00), and (2.7)
d\’ o AN\ errae2
() 10(e) ~ (4 ene™, FO=2) ~ (-1) () cne

as ¢ — oo, for some ¢;;, @; > 0,¢,5 =1,2. (2.8)

Note that the above conditions are satisfied by most densities with exponential
tails.
The bandwidth h = h(n) is assumed to satisfy

h log n — 0 and nh®/log n — oo as n — oco. (2.9)

In particular, the condition (2.9) holds for any bandwidth h « n~¢ with 0 <
€ < 1/3, including the bandwidth h & n~*/*+1) which is optimal, in a mean
integrated squared error sense, for estimation of f by f.

The theorem established in Section 3 also holds for densities f of bounded
support under some boundary conditions, namely

f(z) >0o0n (0,1), f(z)=0 outside (0,1),
1) ~ () ez, FO1—2) ~ (1) (2

for some ¢;,co > 0 and oy, a, > 7. (2.10)

T
) cz** asz |0,

For densities satisfying conditions (2.6), (2.7) and

d\r
(r) ~ [ — —a
f (.’E) <d(L'> G )
d\T
(r)r_ ~ (1Y [ 2 —ao
f(=z)~ (-1) <dz) Co as  — 00,
for some ¢;,¢; > 0 and a;,a, > 1, (2.11)

there exists a similar version of the theorem given in Section 3, in which the
asymptotic expansion of the negativity-corrected smoothed bootstrap estimator
is derived by simply adding an extra term O,{(nh)"'*=} to (3.1). A version
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of the theorem also holds in situations where the density f has support (0, c0).
Thus the main result described in the theorem actually holds for a rich class of

underlying densities.

3. Smoothed Bootstrap

Let 3 be a functional defined on some suitable function space, which in-
cludes all distribution functions. Consider estimation of the value G(F), where
F is the (unknown) underlying distribution, and let F, denote the empirical
distribution function of the observed sample X,,...,X,. The standard boot-
strap estimator of B(F) is B(F,) and will usually be constructed by resampling
from F,. The smoothed bootstrap estimator of G(F) based on the rth-order
kernel K is G(F) where F(z) = [°_ f(t)dt. Since F is not a genuine dis-
tribution function the resampling approach is not available for the construc-
tion of 6(?‘), therefore limiting applicability of the higher-order smoothing idea.
Negativity-corrected smoothed bootstrap estimators of 3(F) are given by 8(E}),
where Fi(z) = [°_ fi(t)dt (i = 1,2), with f1, f> given by (2.2), (2.3).

Hall, DiCiccio and Romano (1989) consider the specific example B(F) =
varpgp = o2, where E,, = F-1(p), 0 < p < 1, is the pth sample quantile. They
assume conditions (2.4), (2.6), (2.9) on f and the further conditions that

f is bounded away from 0 in a neighbourhood of &,
where £, = F~!(p),0 < p < 1, is the pth quantile of F,

and
f' is absolutely integrable,

which are weaker versions of (2.7) and (2.8) respectively. They establish that
the relative error of the smoothed bootstrap estimator 62 = B(F) is of order
n~"/Cr+1) compared to a relative error of order n~% for the unsmoothed boot-
strap estimator 72 = B(Fh).

The following theorem establishes the asymptotics of the corresponding nega-
tivity-corrected smoothed bootstrap estimators 62, = B(Fy) and 62, = B(Fy). Tt
shows that the negativity correction yields an estimator with the same desirable
theoretical properties as the uncorrected higher-order smoothed bootstrap esti-
mator. Full details of the proof are given by the first author, Lee (1993), in his

Ph.D. thesis.
Theorem. Under the assumptions (2.4)-(2.9) on f, K and h,

n(6% —02) = —2p(1 - p)f(&)*{(nh)"3 2

+ (1) Rl FO(E) — U6 (&) ()
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| + 0p(h" + (nh)™7) (3.1)
for large n a.s. where F(&,) = p and Z = (nh)}[f(£,) — E{f(&,)}].

Proof. The result follows by adapting the proof of Hall, DiCiccio and Romano
(1989), using results given by Hall and Murison (1993).

In particular, we may show using arguments given by Hall and Murison
(1993) that

logn

) b+ 0(h")] + 0, {h” + (nh)~}}

EFi(z) - F(z) = 'y,[( h)" —n F)( x)+0{(
log ) b o {h+ (nh)H) (3.2)

= (=h)" ﬁanW )+ 0 {(

since v =1+ 0,{h" + (nh)~%}.
Also, the methods used by Hall, DiCiccio and Romano (1989) may be used
to show that

62, =n7p(1 = p) fi(6p) 2 + Op(n ),

where F;(€,;) = p.
Since it is known that o2 = n~'p(1 - p) f(&) % + O(n~%), we have

&ﬁi - 02 = n_lp(l - p){fi(épi)~2 - f(fp)—z} + Op(n—%)' (3-3)
We may readily show that
fi(épi)_z - f(gp)_z = 2f(§p)_3{f(§p) - fi(épi)} + Op(lf(&p) - fi(épi)l)' (3-4)

Since

fi(épi)’“f(fp) = {F<§p)_Fi(gp)}f’(fp)f(gp)-l'{'ﬁ(fp)_f(ép)+op(|pi(£p)_F(€p)!)a
we have, in view of (3.2) and (3.4),

fillo) 7= F(&)™2 = —2f(&)*{ fil&) - £ (&)
) ) (6 (6
+0,{(E) ) 4 o, (W + (nh)H) + 0,(1fi6) — F(ED. (35)

But
F6) = (&) = %) HZ + 31 (6) + (1) S &) + o)) ~ (&)

= (k)2 4 (1) 2y fO() + 0, + (nh)H)
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for large n a.s.
Thus (3.1) follows from (3.3) and (3.5).

Using (3.1) to obtain an asymptotic formula for the mean squared error
of the negativity-corrected smoothed bootstrap estimator, we see, exactly as in
Hall, DiCiccio and Romano (1989), that the optimal bandwidth &, in terms of
minimizing mean squared error, is

Ci \zs
h= (2an'2) ’ (36)
where |
- Cl = H2f(£?),
Cy = [P ra {f (&) — FU (&) (&) (&) T,
and

Ky = / K?(2)da.

With the optimal bandwidth (3.6) we have, by (3.1),

~2 2 _% _ -3 Cl —2—(2—%+_1) (_1)r Cl T
6o — 0, = —2n77F p(1—p)f(&) {(——2T02) Z + m (2r02) K1

X [FO(&) = STV (E) F(En) ]} + 0p(n™F5),

so that, since Z ~ N(0, k2f(£,)) asymptotically,

n¥H (62, — o2) — N(u,0%)

in distribution, where

= 20(1-9) 16 CE (20 T 10(6) - £ 6 £ (6 16

o? = 4p?(1 - p)2f () (2rC¥ Cy) 7.

Thus, with the optimal bandwidth (3.6),

2(3r+1

MSE(6%) ~ n™ 551 (o2 + ). (3.7)

Although the results derived in this section apply to the particular problem
of estimation of sample quantile variance, the method used in the proof of the
theorem can in fact be applied to many other parameters of interest which depend
on local properties of the underlying distribution. Note that the key part of the
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proof is to derive an asymptotic expansion for the negativity-corrected smoothed
bootstrap estimator in terms of the difference fi(ﬁp) — f(&), which admits an
explicit asymptotic leading term of order O,{h" + (nh)~2}. It is this leading
term which enables smoothing to be beneficial and the optimal bandwidth A to
be calculated. Therefore, as long as the parameter of interest can be shown to
depend mainly on the underlying density at a single point as the sample size n
tends to infinity, the arguments used in the proof of the theorem continue to work
and can easily be adapted to derive similar versions of the asymptotic result (3.1).
Examples of such parameters of interest include variances of estimates defined in
L' regression. See De Angelis, Hall and Young (1993b).

4. Implementation

For brevity we restrict attention in the study of Section 5 to the negativity-
corrected smoothed bootstrap estimator 62, based on f;.
For a second-order (r = 2) kernel function we may take

K(z) = 21— 2){je| < 1},

With such a kernel function simulations from F are easily performed by a com-
position method: see Silverman (1986, p.143).

Higher-order (r > 3) kernel functions are conveniently taken to be piecewise
polynomials. As a fourth-order (r = 4) kernel function we use

15

(7Tz* — 10z* + 3)I{|z| < 1}. (4.1)

As a sixth-order (r = 6) kernel function we use

105

K(=) = 256

(5 — 35z° + 632" — 332°%)I{|z| < 1}. (4.2)

Note that the higher-order kernel functions (4.1) and (4.2) are optimal, in
an asymptotic integrated mean squared error sense, for estimation of f: see,
for example, Gasser, Miiller and Mammitzsch (1985). Note also that all these
kernel functions used in the simulation study satisfy conditions (2.4) and (2.5)
except that their derivatives have discontinuities of finite jumps at +1 and —1.
By defining

K'(1)= lxlﬁlK'(x) and K'(-1)= xlir_nl K'(z),

and modifying the proof in Section 3 slightly, we can show that our theory also
works with these kernels. See Lee (1993) for more details about the modifications.
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Simulations from fi may be performed using rejection sampling. We illustrate
for the fourth-order kernel (4.1).
Consider the function

L(z) =

Observe that L is a proper density and that fi o< fo = fI(f > 0).

If we define
. 1 -~ Tr—;

then, since IIZ((;)” < 1.615 V|z| < 1, we may readily check that felz)/g(z) < 1.615
for all z such that g(z) > 0.

The simple piecewise linear kernel function L is used in the construction of
the proper density g for essentially pragmatic reasons, as it enables a stream of
uniform [0, 1] random variables to be transformed to a sample from g in a very
straightforward manner.

The standard rejection sampling argument (Ripley (1987, ;2.60)) shows that

the following algorithm yields a random variable with density f;.

1.07 — |z|

1z el =1k

1. Generate an integer I uniformly distributed over {1,2,...,n}.
2. Generate U; ~ U|[0,1].
3. If Uy < 3, set

0.00214912 + Uy 3
Y =X+ h{( 0_43859; 1) - 1.07}.
If Uy > 3, set
1.00214912 — Uy \
Yi=Xr- h{< 0.438596 1> - 1'07}'
Then Y ~ g.

4. Generate U, ~ U[0,1].
5. If 1.615U, < f.(Y)/§(Y), then return X = Y; otherwise repeat steps 1-5.

The reader may easily check from the definition of L that the constants in
Step 3 of the algorithm are those required to transform from a uniform [0, 1]
random variable to a random variable with density g.

The constant 1.07 in the definition of L(z) above is chosen so as to minimize
over a,

sup |K (z)/L(z)],

lz|<1
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Table 1. Simulation results obtained from unsmoothed and high-order smoothed bootstrap
estimation of variance of sample median for n
proportion of accepted data out of all generated data in the rejection sampling procedure.

10 and 100. The acceptance rate is the

Sample | Kernel | Asymptotic MSE MSE with
Distribution size order optimal with empirical | Acceptance
type n r | bandwidth h | bandwidth A | bandwidth rate

N(0,1) 10 tunsm. — 2.32 x 1072 — —
r=2 1.303 9.67 x 1073 — —
r=4 2.179 9.91 x 1073 — 0.637
r==6 2.807 1.05 x 1072 — 0.467
100 | funsm. — 6.25 x 10~° — —
r=2 0.822 2.20 x 107% | 5.71 x 10™° —
r=4 - 1.687 1.27 x 10™° | 4.52 x 10~° 0.622
r==6 2.351 1.26 x 1075 | 5.35 x 10~° 0.452
B(5.5,5.5) 10 tunsm. — 1.02 x 107° — —
r=2 0.214 4.43 x 107€ — —_
r=4 0.381 2.78 x 10~ — 0.640
r==6 0.529 2.97 x 10~ — 0.472
100 | tunsm. — 3.75 x 1078 — —
r=2 0.135 1.05x 1078 | 5.81 x 10~© —
r=4 0.295 7.10 x 107° | 2.63 x 10~ 0.625
r==6 0.443 5.45 x 107° | 2.73 x 10~8 0.456
r'(5.5,1) 10 | tunsm. — 4.42 x 107! — —
r=2 3.129 3.18 x 10°! —_ —
r=4 7.939 4.42 x 107 — 0.648
r==6 6.497 2.43 x 1071 — 0.469
100 | tunsm. — 1.53 x 1073 — —
r=2 1.975 5.60 x 1074 | 1.77 x 10~3 —
r=4 6.147 9.05x 107% | 1.37x 1073 0.632
r==6 5.442 2.99 x 107* | 1.66 x 10~3 0.455
ta 10 tunsm. — 3.53x 107! — —
r=2 1.135 3.99 x 107 — —_—
r=4 1.646 2.83 x 107! —_ 0.635
r=6 1.906 2.28 x 107 — 0.469
100 | funsm. — 1.26 x 1074 - —_
r=2 0.716 5.39 x 1075 | 5.07 x 10™¢ —
r=4 1.275 524 x107% | 1.69 x 10~* 0.622
r=6 1.597 4.15x 107°% | 7.85 x 10~° 0.453
exp(1) 10 tunsm. — 1.42 x 1072 — —
r=2 1.200* 7.79 x 1073 — —
r=4 1.800* 6.64 x 1073 — 0.644
r==6 3.000* 7.70 x 1073 — 0.480
100 tunsm. — 2.93 x 1075 — —
r=2 0.800* 7.34x 1075 | 3.86 x 107° —
r=4 1.800* 3.86 x 107% | 2,12 x 10°° 0.636
r==6 2.600* 3.52%x107% | 279 x 107° 0.468

1 Results obtained by standard unsmoothed bootstrap estimation.
* Values determined by minimizing MSE over h using results from a preliminary round of
simulations. Asymptotic formula of optimal h involves division by zero and is not valid for
computation.
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for density functions L(z) o« (a — |z|)I{|z] < 1}, and hence to speed up the
rejection sampling procedure. In the simulation study reported in Section 5, the
acceptance rates of the random variable Y are listed in Table 1 to give some
idea about the efficiency of the above procedure. The figures shown give the
proportion of random variables Y generated at Step 3 of the algorithm that are
accepted at Step 5. The closer this rate is to 1 the more efficient the rejection
sampling method is.

It is not difficult to show that the probability of acceptance of the Y generated
at Step 3 is (cv1)~!, where ¢ is the constant such that [%—((—3} < c¢Vz| £ 1,
so that ¢ = 1.615 in the case 7 = 4 considered above, and 7, is defined by
7 [ f+(z)dz = 1. Note that v, < 1 almost surely. Also, generally, v, depends on
h and n, the form of dependence depending on the underlying density. So the
probability of acceptance depends on the underlying density, bandwidth h as well
as sample size n. For appropriately chosen h, such as the optimal h, we have,
however, 7; — 1 as n — 00, so that the probability of acceptance converges, from
above, to ¢! as n — oo. This observation explains the lower acceptance rates
for n = 100 in Table 1 compared to the case n = 10.

Note again that in order to apply this procedure, and therefore the negativity-
corrected smoothed bootstrap, it is not necessary to know the normalizing con-
stant ;.

Simulations from f, when this is based on the sixth-order kernel (4.2) are
easily performed by a similar method.

5. Simulation Study

We look at the cases p = : and n = 10 and 100, with the underlying
distributions being N(0,1), 8(5.5,5.5), I'(5.5,1), t, and exp(1).

For any kernel order 7, the standard normal density satisfies conditions (2.6),
(2.7) and (2.8) with a; = o = 2 and the t, density satisfies conditions (2.6), (2.7)
and (2.11) with a; = @, = 3. The 3(5.5,5.5) density satisfies conditions (2.6)
and (2.10) with a; = @ = 4.5 for  up to 4. We can easily modify conditions
(2.6) and (2.8) to deal with positive domain so that our theory still works for
gamma and exponential distributions. Note that the modified conditions are
satisfied by exp(1) for any order r and by I'(5.5,1) for 7 up to 4. '

For each of the chosen densities we compare, by simulation, the MSEs of
negativity-corrected smoothed bootstrap estimates of varp(gp) using kernels of
order 2, 4 and 6. The MSE of the standard unsmoothed bootstrap estimate is
also simulated for comparison.

The smoothing bandwidth h is determined according to formula (3.6), as-

suming knowledge of f, except for the case of exp(1) where the formula is invalid.
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For exp(1) we pick the minimizing value based on preliminary results generated
from varying h.

In the simulation study we drew 500 random samples of size n from f. Based
on each random sample we constructed the negativity-corrected kernel density
estimate f1 Another 200 bootstrap samples of size n were drawn from fl, p0531—
bly by rejection sampling (for 7 > 2). The smoothed bootstrap estimate %1 was
approximated from these 200 bootstrap samples. We then averaged the squared
errors of the approximate bootstrap estimates over the 500 random samples to
approximate MSE(O’ ). The true value 0‘ was obtained by numerical integra-
tion. The same simulation procedure was apphed to unsmoothed bootstrapping
except that bootstrap samples were now drawn from F),. Simulation results are
presented in Table 1 for the cases n = 10 and 100. The acceptance rate of data
generated using the rejection sampling procedure is also given for reference in
the cases of fourth and sixth-order kernel estimators.

Example: N(0,1), n =10

o
1
S Order 2
w
w 27 .
o ° A%
\
\
\ Qrder 4
o \
S - % N Order 6
.o \ / \\ /
N \4/
N\
v
1 2 3 4

Predetermined Bandwidth h

YA Order 2
Resuits from using asymptotic optimal h indicated by: -+ Order 4
X Order 6

Figure 1. Comparison of MSE using different kernel orders and varying bandwidth for
the case n = 10 under N(0,1).
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Example: N(0,1), n = 100
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V9]
(]
(=]
o .
S ;
o » Order 2
B S
- Order 4
© s
A . ' -
N / Order 6
N~
> e ~
S 4
<
e 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Predetermined Bandwidth h
Example: I'(5.5,1), n = 100
) { Order 2
2 | ;
(=]
=)
53]
wn
= K QOrder 4
— M\ S~ +
\ / Order 6
0 . A /
(=3 ‘*-._A — /
=] — ~
o N
0 2 4 6 8
Predetermined Bandwidth h
A Order 2
Results from using asymptotic optimal h indicated by: + Order 4
X Order 6

Figure 2. Comparison of MSE using different kernel orders and varying bandwidth for

the case n = 100.

Results obtained by repeating the whole study varying h away from its
asymptotically optimal value are illustrated in Figure 1 for the case of n = 10
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under N(0, 1), and in Figure 2 for the case of n = 100 under N(0,1) and I'(5.5, 1).
The MSE of &zl using different kernel orders was approximated by averaging over
500 random samples. The quantity &21 was itself approximated from 200 boot-
strap resamples. Each MSE curve is drawn by interpolating results from using
11 different values of bandwidth, including its asymptotically optimal value.

It is found from Figures 1 and 2 that using higher-order kernels is certainly
beneficial if a suitable bandwidth is chosen but that the asymptotic formula for
the optimal h might not be accurate enough to bring out the improvement for
moderate sample size n. Another notable feature in Figures 1 and 2 is the relative
insensitivity of MSE as a function of h for r = 6 compared to r = 4,2. One
might expect empirical bandwidth selection to be easier for larger r. However
the formula (3.6) would then involve higher derivatives which might be more
difficult to estimate.

A simple empirical bandwidth selection procedure is derived to study this
issue. The empirical bandwidth h is obtained by estimating density derivatives in
(3.6) by their kernel estimates using the procedure described in detail by Hardle,
Marron and Wand (1990). Here we minimize their score function CVi(h) by a
Newton method. See Silverman (1986) and Monro (1975, 1976) for computation-
ally efficient procedures for calculation of CV;(h).

Simulation results for n = 100 are given in Table 1 along with those ob-
tained from fixed h. We observe that smoothing with 7 = 4 is better than
r = 2 and no smoothing, as predicted by theory. The case r = 6 is not as
good as expected for reasons hinted at above. The overall performance is less
satisfactory than when using the true asymptotically optimal h. We probably
need a more sophisticated bandwidth selection rule to improve performance as
well as capture fully the benefits of higher-order kernels for smaller sample sizes.
De Angelis and Young (1992) describe a double bootstrap approach to band-
width selection for the smoothed bootstrap. The empirical bandwidth used is
that which minimizes a bootstrap estimator of the mean squared error of the
smoothed bootstrap estimator. Though computationally more expensive than
the simpler empirical bandwidth selection rules considered here, De Angelis and
Young (1992) demonstrate that such procedures are more reliable in capturing
the benefits of smoothing.

The simulation results nevertheless show that for either case of fixed or empir-
ical bandwidth the main improvement comes from using r = 4 rather than r = 2.
This might lead us to rule out methods with r > 4. Moreover the rejection sam-
pling procedure is computationally more intensive than the procedures available
for the second-order case, rendering the higher-order kernel methods computa-
tionally less efficient than the unsmoothed and second-order kernel methods. A
sensible compromise seems to be the fourth-order kernel method with negativity
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correction.
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