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APPROXIMATE PIVOTS FROM M-ESTIMATORS
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Abstract: We consider the problem of inference on an M-estimator of the location of
a continuous but unknown density function from a single sample. Four approximate
pivots are studied including one derived from the empirical likelihood of Owen (1988).
It is argued that first order M-estimator inference is often correct, close to second
order, and that two of the four pivots are distinctly better than the others in this
regard.
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1. Introduction

Let X;i,..., X, be an identical independent sample on a continuous random
variable X with absolutely continuous distribution function F' and density dF'.
We suppose that F' is unknown, the so-called distribution free assumption. In
much of the robustness literature F is further assumed symmetric. Let 6(F) be
a functional which in this paper will be a location parameter. Inference on 6 can
be based on a pivot which is a function P(Xy,...,Xn,t) with the property that
the distribution of

P(Xi,..., X, 0(F))

does not depend on F and therefore on §(F). When F is completely unknown
then approximate pivots are more often used, exact pivots being rare or inefficient
(e.g. sign test for a location parameter).

Commonly the pivot P has a distribution H(F') which converges to standard
normal as n diverges. Departures from the standard normal density function
¢(x) can often be represented via an Edgeworth expansion which is a sequence
of approximations to the density function h of P of the form

g(z) } -1
h(z) = 1+ —= 0] , 1
@ = o(a) {1+ L2} +0(n™) 1)
where g(z) is a polynomial of degree 3 which typically adjusts for skewness and
is called the second order term. The expansion requires that P has been stan-
dardized to have mean zero and variance 1 with error O(n~'). If this is not
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the case then lower order terms are needed. For fixed z and large n the right
hand side converges to, and provides a better approximation to, the left hand
side than the standard normal density. When 6 is a smooth function of means,
sufficient conditions for this expansion are that F has an absolutely continuous
component (i.e. is not discrete) and that the third absolute moment of P exists.
A pivot whose scale must be estimated is called studentized. The fourth abso-
lute moment of P must exist for a valid expansion of a studentized pivot. The
distribution of a continuous transform of P may be expanded by tranforming a
valid expansion of P. For an account of these results see Hall (1992, Chapter 2).
Using his expression (2.55) and differentiating, an explicit form for the second
order correction term in the studentized case is

a(z) = %2 (32 - 22°), (2)

where p3 is the standardized skewness of P. Multiplying the expansion (1) by
or z° and integrating implies that E(P) = —p;/(2+/n) and skew(P) = —2p3/\/n
with error O(n™!). These results are less easily obtainable in other ways (see
Section 5).

This paper concerns second order accurate inference on a location param-
eter 6. By second order accurate I mean equivalent in accuracy to estimating
the second order term ¢(z) in an Edgeworth expansion. A concrete statistical
consequence of second order accuracy is that the coverage error of one-sided con-
fidence intervals for ¢ will have error O(n~!) rather than O(n~/2). By a location
parameter I mean a functional satisfying the implicit equation

Ep{y(X —0)} =0, | (3)

where it is assumed that §(F) is uniquely defined by (3) for each F. For this it
is sufficient that 1 is non-decreasing. This formulation includes the mean, the
median and various robust measures of location such as trimmed means and was
introduced by Huber (1964). The distribution free or ‘bootstrap’ estimator of
§(F) is given by the solution of

> (X~ ) =0 @

and is called an M-estimator. This class of estimators includes the sample mean,
median and trimmed mean as well as several robust estimators of location. For a
given sample there may not be a unique solution of (4) even though we suppose a
unique solution of (3). In this case the multiple solutions are often substituted in
some convex objective function and the minimizing value used. Asymptotically
there is only one solution of (4).
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The aim of this paper is to look at various pivots that might be constructed
for 8 and to examine the size of the second order correction terms. Two of the
pivots are based directly on (4), one is based directly on § and its standard er-
ror and a fourth on an entirely different concept called empirical likelihood. Of
course standard normality of a pivot is only one aspect of its statistical perfor-
mance. A good pivot P(X,...,X,,t) should also be monotonic in ¢t and have
an extreme distribution when t does not equal 6(F'). Different pivots are hardly
ever comparable in terms of their non-null distributions and this issue will not
be addressed. The monotonicity properties of the different pivots will be briefly
noted in passing.

2. Some Approximate Inference Methods

One method of correcting a pivot for non-normality of its distribution is to
estimate terms in a valid Edgeworth expansion and to use the estimated Edge-
worth approximation instead of the standard normal distribution. Essentially
the same result may be achieved by using the bootstrap technique. In essence
the idea of the bootstrap is to replace F' by the empirical distribution function

F(z) = #(X; < z)/n, z € R,

in estimating any functional of F. This generates distribution free estimators
§(F) such as (4) as well as estimators of the entire distribution function H(F)
of a pivot P. In many cases it is mathematically difficult to derive the bootstrap
distribution H = H(F) and simulation is employed. Hall (1992) has demon-
strated that using the bootstrap distribution H to generate confidence intervals
from a pivot P gives the same theoretical coverage accuracy as estimating the
second order term in the Edgeworth expansion of P, at least when P is a stu-
dentized pivot for a smooth functions of means. His smooth function of means
model does not include most M-estimators however.

An entirely different approach to distribution free inference on a functional
6(F) is via empirical likelihood as introduced by Owen (1988, 1990). For the
smooth function of means model, DiCiccio and Romano (1989) and DiCiccio,
Hall and Romano (1989) developed various expansions for empirical likelihood
and found that it leads to second order correct inference only after a location
adjustment. While this is still true in multidimensions Hall (1990) found that
empirical likelihood approximates inference based on a pivot which is not the

usual student-t.
For an arbitrary functional 8(F), the empirical likelihood function based on

data X;,..., X, is
L(t) = sup {Hpi, 6(F,) = t} , (5)

=1
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where the supremum is taken over all probability vectors p = (py,...,p,) that
put mass p; at the observed point z; and F, is the corresponding discrete distri-
bution function. When each p; = 1/n then F, becomes the empirical distribution
function £. The maximum value 1 /n™ of L(t) occurs at the bootstrap estimator
G(F) The best way to think of L is as the ordinary non-parametric likelihood
for F' but with (F) held fixed and profiled over all other aspects of F. The
empirical log-likelihood ratio is defined as

Q(t) = ~2log(n"L(1)) = ~sup{2 Y log(npy), 6(F) =1} (9

and the minimum value of this function is zero when ¢ = 6. For the case of the
location functional (3), Owen (1988) used calculus of variations to show that

2(t) = 23 log(1+ Mp(X; — 1)), (7)
i=1
where the multiplier \(¢) satisfies
Y(Xi—t)
Z 14+ 2(X; - t) =0 (8)

This must almost always be solved iteratively starting at )\(6) = 0 which follows
from (4). Owen further showed that comparing Q to the x2 distribution leads to
first order correct inference.

3. Second Order Expansion of Empirical Likelihood

In this section an expansion of Q(t) is derived in an O »(n~1/2) neighbourhood
of 6. Inferential accuracy will turn out to depend on the joint moments of the
random variables

flj(X’t):¢j(X_t)a £2k(X’t)=w(k)(X—t)’

where the bracketted superscript denotes repeated derivative and we take ¥ to
be identically 1. Define

Mjk(t) = E{fu’ (X7 t)£2k(-X> t)}

assuming they exist. Provided E(|¢;;€2¢|) < oo these moments may be consis-
tently estimated by

M;i(t) = = ZW X — )X, ~1). (9)
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For ease of notation denote M;q by K; and My, by D,. The argument ¢ will
often be suppressed both in moments and estimators. Estimators ]\;Ijk evaluated
at t = § will be denoted M, and estimate M;(6) under further regularity
conditions to be specified.

We need to assume a central limit theorem for the random variables K;(t)
which are averages of identical independent variables ¢7(X; — t). For this it is
certainly sufficient that the variance function V;(t) = K,;(t) — K,(t)? exists. In
this case write
REACLAKC

vn
where Z; (t) is standard normal. We will also need to expand the estimators

M;(t) in a neighbourhood of the estimator §. Assuming Condition (C) of Sec-
tion 4 we easily derive the relations

K;(t) = K;(t) + O0p(n71), (10)

Ki(t)= (8 —t)Dy + (6 — t)2D, /2 + O, (n~%/?),
Ky(t) = Ky + 2(6 — t) M1y + O,(n™Y), (11)

fort =6+ O,(n~?), in particular at t = 6 if § is consistent. Finally, suppose
that K,(6) = D,(8) which, provided neither equals zero, may be arranged simply
by multiplying the function ¥ by an appropriate function of #. This is called
Condition (A) in Section 4 and is analogous to assuming o = 1 in case of the
mean.

In order to expand Q(f+8) about Q(f) = 0 for small § we expand the solution
A(t) of (8) about . The denominator of the summand may be expanded in a
power series for small A giving

0= K, (t) — AK,(t) + O(A(t)?).

At t = 6 + 6 and assuming Condition (C), we may substitute K,(t) = —6D, +
O(6%) to obtain
K\ = —6D, + 0(6?)

using A = O(8). Under Condition (D) and the further assumption that 6 is
consistent, D;/K,; = 1+ O,(n"'/?) and so, taking § = O,(n"'/?), we obtain
A(t) =6 —t + O,(n~1). To obtain a more refined expansion put A(t) = —t+6
where 6 is now O,(n~!). The other statistic which enters the expansion of the
empirical likelihood beside 6 is

R=K,-D, = in(Xi —6)/n — }T_ljw’(xi —6)/n
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which will be O,(n~'/?). We now expand (7) up to the cubic term and use the
two relations in (11) to obtain

. . s )3
O(t) ~ 2mAK, — n Ky + 20

K

= n(f — )2(D; — R) + n(f — t)° (1")2 — 2N + 271(3> (12)

with error O,(n™*). The regularity conditions required are consistency of § and
conditions (A,C,D) of Section 4. Notice that the terms involving § disappear to
this order. Also note that, in the second O,(n~1/2) term, either the actual values
D,, K3, M;; or sample estimates may be used to the same order of accuracy. In
the spec1a1 case that 1 is the identity function, D, = Dl =1, D, = Dz =0,
M, = My, = 0, Kj is the skewness and R may be written as ZXZ/n — 1 with
error O,(n~"'). Then the empirical likelihood is approximately

R(X = W) (1~ B) + 2n(X — u)? + Oyl(n™")

in agreement with DiCiccio and Romano ((1989), Equation (3.6)).

4. Student-Like Pivots

For the remainder of the paper assume that the estimator defined by (4) is
asymptotically normal with mean 6 and variance K,/(D3n). Sufficient conditions
for this are given by Huber (1964) both for continuous and discontinuous func-
tions . This implies that § is consistent for 8 from which it differs by O,(n=1/2).
For estimating means the classical pivot is the student-t or Wald statistic. In the
context of M-estimators, there are at least three natural analogues, namely

VaB—1)  abid-1)
P1(t) = = = 173
a(6) K,
T ¥(Xi—t)  _ VnK,
" ~ 1/2
VELwxi-6) K
S X -t) _ Ak,
Vo vA(Xi—t) Ky?
Under mild conditions each of these pivots has asymptotic standard normal dis-
tribution. Note that while P1 is the simplest function and P3 the most complex,

it turns out that P3 is the simplest to work with theoretically and P1 the most
complex. Boos (1980) suggested P2 when the % function is monotonic, which

)

P2(t) =

P3(t) =

(13)
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excludes many robust estimators and compared P2 to P1 in power. To first
order the two pivots are equivalent but simulation evidence suggests that P2
gives intervals with slightly narrower average width. While P1 is always a linear
function of ¢, when v is a redescending function P2 and P3 may both be non-
monotonic and may indeed have multiple zeros. I do not pursue monotonicity
issues here but note that non-monotonicity complicates but does not invalidate
the use of a pivot.

If K, were known then instead of P2 or P3 one could use the unstudentized
pivot P = v/nK;/K,'? which differs from Z;(t) in (10) by O,(n~'/2). Apparently,
P3 is more similar to P than are either P2 or P1 and this is why it is theoretically
easier to work with. The properties of the three pivots are studied by expanding
P1 about P2, P2 about P3 and P3 about P the last of whose null cumulants
are simply given by

E(P) =0, Var(P) = 1, Skew(P) = K3/(v/nK3"?). (14)

Since P is a standardized sum of identical independent variables ¢ (X; — t) its
distribution is asymptotically standard normal provided K, exists and a valid
Edgeworth expansion exists if K3 exists. These conditions are stronger than
necessary (see for instance Shiryayev (1984, p.326)).

I next list some further regularity conditions to be referred to where needed.
These fall into two categories: (i) statistical regularity conditions for consistency
and normality of estimators of the moments M, (t), (ii) mathematical regularity
conditions on estimators M;,(t) as functions of ¢.

(A) 0<D1'—K2<OO,

(B) K, exists,

(C) the second derivatives of K, and K, exist and are bounded in a neighbour-
hood of t = 0

(D) D,, K, are continuous at ¢t = 6 and Dl, K2 are continuous at t = 6,

(E) D,, M, are continuous at ¢t = 6 and D,, M, are continuous at t = 0.

Theorem 1. If conditions (A) and (B) hold, then, for t = 6 + O,(n"'/?)

P3(t) = P(t) - \/ﬁK;(?/z K2) +0,(n7?). (15)

Proof. If K, exists, then, since K, is an identical independent average we have
the stochastic expansion (10) which becomes

/2
2% 1 0,

R'?:KQ \/—ﬁ
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If K, > 0 then K, = O,(1) and this may be formally rearranged to give

K, - K,

O T

Multiplying by /nK, gives (15).
Theorem 2. If conditions (A, C,D) hold, then, for t = § + O,(n=1/2)

P1(t)P2(t)M,

P2(t) = P3(t) + —
(0= P30) + =5 2

+ O, (n71). (16)

Proof. By (C) we may expand K, (t) about t = 6 in a Taylor’s series which gives
the second relation in (11). Since K, > 0 by (A), K, is O,(1) and under (D) K,

is consistent for K,(6) > 0. Thus K, = O,(1) and so the expansion for K, can
be rearranged as

. . 6 — t) M
RyYVP = Ry2 ( f{a)/éwn

2

+ O,(n™1h).

Multiplying both sides by /nK; and using the definitions of P1 and P2 gives
(16).

Theorem 3. If conditions (A, C,D) hold, then, fort = + O,(n~1/2)

P1(t)?K;"* D,
2D, /n

P1(t) = P2(t) - + O,(n71). (17)

Proof. Assuming (C), K, may be expanded about ¢t = 6 in a Taylor’s series
which is the first relation of (11) and rearranges as

A

Dy(8 1) = By(t) — (6 = £)2D2/2 + Op(n~*?).

Under (A) K, is consistent for K, > 0 and under (D) this implies that K, is
consistent for K,(6). Multiplying by the O,(y/n) quantity v/nK; */* and using
the definitions of P1 and P2 gives (17) with the stated error.

Theorems 2 and 3 show that to order O(n™!) the three pivots are functionally
related. Thus inferences based on the three pivots will be second order equivalent
provided second order accurate approximations to their distribution are used.
Such an approximation would be the second order Edgeworth expansion in (1)
with the polynomial ¢(z) estimated. A valid Edgeworth expansion for P exists if
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M3 < oo and ¥ (X —8) is not discrete. This expansion transforms to an expansion
for P1 — P3 under the conditions of the above theorems. In the next section we
investigate the size of the second order adjustment by deriving expressions for
the bias, variance and skewness of the three pivots.

5. Cumulants of the Pivots

Under Condition (D) we may replace estimators K, and D; by K, with
error O,(n™*/?), and so the O,(n~!/?) terms in Theorems 1 — 3 simplify slightly.
Further, since all the pivots differ by O,(n~'/2) the term P1(t)P2(t) in (16) can
be replaced by P3(t)? and the term P1(¢)? in (17) by P2(t)2. Under (E) the
estimators of M;; and D, can be replaced by their asymptotic values. Each of
the expansions in Theorems 1 — 3 are of the same basic form, namely

X _

% + Op(n b, (18)
where X = O,(1). In the sequel we compute approximations to cumulants of the
pivots at t = 6, i.e. their ‘null’ cumulants. It will turn out that all the pivots
have null mean, variance and skewness of orders O(n=1/2),14+ O(n™1),0(n"1/2).
Then, collecting terms of the same order in (18) it follows that

P, =P; +

E(F)=E(P;)+ E\(/)T-i) + O(n7h),
Var(P;) = Var(F;) + 2Cov(F;, X) + O(n™1), (19)

NG
3Cov(P?, X)

N

We first use these relations to derive cumulants of P3(#) from the known
cumulants of P(6) in (14). In (15) we have

" Skew(P;) = Skew(FP;) + +O0(n™).

_TERl(RQ - Kg)

X =
2K3/?

and since E(K;(t)) = 0 at ¢t = 0 it is easy to show that E(X) = —K5/(2K2/?).
Next the variance of P(6) is exactly 1 and -

Z,2,V,

~1/2

Cov(P, X) = Cov (Zl + Op(n_1/2),
1/2

V. -
= — 22]{2 COV(Zl, 21Z2) + O(n 1/2).
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Because of the oddness of Z?Z, we conclude that Cov(P,X) = O(n=/?), and
so Var(P3) = 14 O(n™!). For the skewness of P3 we require Cov(P?,X). The
difficult term is
n*K3(K, — K,)

2K

P’X = -

and the expectation of the product of four sums is dominated by the term
3 i Wi;i(h? — K») each term of which has expectation K, K. Substituting
this and E(X) into the skewness expression in (19) gives

2K,
K /n
which agrees with the skewness calculation given after (2). Next we obtain cu-

mulants of P2 from those of P3. In (16) we have X = (P3)>M;,/K3? and we
quickly obtain

Skew(P3) = —

2 —
E(P2) = _%;/_QE
2K;'“\/n

It again turn outs that Cov(P3,X) = O(n~'/?) because of the oddness of a
polynomial and so again Var(P2) =1+ O(n™!). The skewness of P2 is

M 6My; — 2K
Skew(P3) + —71—Cov((P3)?, (P3)?) = =10~ °2
K2 \/ﬁ K2 \/ﬁ

with error O(n~?), and using Cov((P3)?,(P3)?) = 2 4+ O(n~Y/?). Lastly the
cumulants of P1 are obtained from those of P2. The mean is

Dy,E(P2?) 2My — K3 — D,

2D, K2/ oK m

E(P2)

We again find that Var(P1) =1+ O(n™!) and the skewness is

6My, — 2K3 — 3D
Skew(P2) — —??%—Cov((PZ){ (P2)2) = 11 = 3 2
2D, K /n Ky \/n

with error O(n™"), and using Cov((P2)?, (P2)?) = 2+ O(n~Y/?).

6. The Empirical Likelihood Pivot
Using the definitions of P1(t) and R one can show that

P1(t)* = n(6 — t)*(Dy — R) + O,(n"?)
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which is the leading term in expansion (12), which hence becomes

P(t) (Dz — 2My, + 2K, /3) }
vn K22 '

The accuracy of the x? approximation to the distribution of the empirical likeli-
hood can be investigated by looking at the cumulants of the signed square root

Q(t) = P1(t)* {1 +

statistic P4(t) = sign(t)y/Q(t) which will be approximately standard normal at
t = 0. Using the relations of the three pivots in Theorems 1 — 3 we obtain

_ P(t)*K;
P4(t) = P3(t) + W (20)
Using the same techniques as were used in the last section we find that
K
E(P4) = “6—1?3% +0(n™1), Var(P4) =1+ 0(n™?)
2

and the skewness turns out to vanish to order n~'/2. Thus the empirical likelihood
pivot has standard variance and skewness to second order but there is an O(n~=1/2)
bias which we note is three times smaller than the bias of P3. This indicates
that using P4 as if it were standard normal, or equivalently comparing Q(t) to
the x? distribution, would gives results very close to second order accurate.

These results are summarized in Table 1, which displays the theoretical sim-
plicity of P4 over P3 over P2 over P1. As a numerical check on these results
I generated 30,000 random samples of size n = 100 from the exponential distri-
bution with mean 1. With the downweighting function ¥ (z) = z exp{—|z|}, the
location parameter (3) is # = 1/4/2 and

D, = 0.3486, D, = 0.2052, K, = 0.0715, K; = 0.0013, M;, = —.0255.

Table 1. Second order coefficients for three pivots

20/mKY?E(P) | a(Var(P)—1) | nK3 *Skew(P)
Pl | —K3+ 2My; — D, 0 —2Ks3 + 6M;; — 3D,
P2 — K3+ 2M;y; 0 —2K3 + 6Mq,
P3 ~ K 0 —2Ks5
P4 ~K3/3 0 0

All coefficients in Table 1 require D; = K, which can be arranged by multi-
plying ¥ by ¢ = D;/K, = 4.925. Let us denote the coefficients on this standard-
ized scale by * superscript. Then it simply follows that D} = c¢D;, K] = K,
and for the present case

D: =1.694, D; = 1.002, K} = 1.694, K; = 0.151, M}, = —.608.
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Notice that since K3/K3>/* = .068 is small the mean and skewness of the pivots
'P3, P4 are almost zero and so CLT approximations to their distributions would
be close to second order accurate. This is despite the extreme skewness of the
exponential distribution. Table 2 compares the theoretical values given in Table 1

based on the simulated values for P1, P2, P3 with simulation standard errors in
parentheses.

Table 2. Simulated versus theoretical moments

Simulated (B=30,000) ~ Theoretical
v/nmean var v/nskew v/nmean | var | +/nskew
P1 | —.584(.06) | 1.06(.01) | —2.93(.2) | —0.537 | 1.00 | -3.15
P2 | —.365(.06) | 1.03(.01) | —1.69(.2) | —0.310 | 1.00 | —1.79
P3 | —.090(.06) | 1.00(.01) | ~0.08(.2) | —0.034 | 1.00 | —0.14

7. Almost Second Order Correct Inference

The constants listed in Table 1 represent second order departure of the four
pivots from standard normality and therefore the size of the errors incurred
in applying the central limit theorem. In the case of the mean (¢(z) = z)
we have D, = M;; = 0 and so the first three pivots have identical bias and
skewness coefficients. The empirical pivot has smaller bias and zero skewness to
this order. On the other hand, it is a simple mathematical exercise to show that
the coefficients K3, Mj; and D, all become smaller as F becomes more symmetric
provided % is an odd function. In this case, central limit theorem inference based
on any of the four pivots would be almost second order correct.

Table 3 lists the bias and skewness coefficients for the three pivotals P1, P2,
P3. The left figure of each pair is the bias and the ¢th pair is for pivot Pi. When
divided by /n these figures are theoretical approximations to the actual bias
and skewness. Four distributions F' are considered ranging from slightly to very
asymmetric. The location functional is defined by the downweighting function

Y(x) = ze =/

where k is chosen to equal 1,2, 10, 0o, the latter corresponding to the mean. The
conclusions from the table are as follows: (i) the constants decrease from right
to left i.e. as we move to more heavily downweighted location estimators, (ii)
the effect in (i) seems to decrease with more asymmetric contamination, (iii) the
absolute values of the coefficients seem to be smallest for P3 and largest for P1
and this pattern is clearest for heavy downweighting (k = 1). In the robustness
literature 5% contamination and downweighting at around two standard devia-
tions 1s a common benchmark. The corresponding cell of Table 3 shows that the
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coefficients for P3(.004,.017) are around 20 times smaller than for P1(.072, .425).
Recall that the skewness coefficient for P4 is zero and the bias coefficient three
times smaller than for P3.

To second order, the non-normality of P3 and P4 is governed by K3/ Kg’/ 2
which is the standardized skewness of ¥(X — 6). Table 4 lists this coefficient
for the same four distributions. The upper figure is the Huber estimator with
truncation parameter k and the lower the redescending estimator defined above.
Both estimators approach the mean for large k. As in Table 3 the main fea-
ture that stands out is that for even moderately downweighted estimators the
constants involved are much smaller than for the mean.

Table 3. Non-normality coefficients for three pivots

k=1 k=2 k=10 k= oo
99N(0,1) + .0lexp(3)| .009  .056|—.013 —.074|~—.085 0.361| —.468 — 1.872
004 .025|—.008 —.042| .084 —.354| —.468 — 1.872
000 .000|-.002 —.007|—.076 —.302| —.468 — 1.872
95N (0,1) + .0563 037 - .252]|—.072 — .425|—.200 —.869| —.226 — .915
—.005 —.054|—.048 —.280|—.192 —.823| —.226 - .915
012 .054|-.004 —.017|-.166 —.665| —.226 — .915
9N(0,1) + .1x3 044  .248|—.007 — .055|—.262 —1.120| —.856 — 3.427
021 .115|-.005 — .044|—.257 —1.093| —.856 — 3.427
008  .033|-.007 .028|—.227 —.909| —.856 — 3.427
exp(1) — 537 — 3.126 | —.526 — 2.779 | —.752 — 3.213 | —1.000 — 4.000
—.310 — 1.773 | —.410 — 2.088 | —.727 — 3.065 | —1.000 — 4.000
— 034 —.138|—.187 —.750|—.649 — 2.599 | —1.000 — 4.000

Both M-estimators examined here have continuous and differentiable -
functions. If ¢ is discontinuous at zero then (C) will fail as K, and K, will
be discontinuous when ¢ equals any of the sample values X;. This invalidates the
expansions in (11) and therefore the relations of Theorems 2 and 3, as well as
Equation (20).

Why is K5 small for robust estimators? Robust estimation is usually indi-
cated where F' is contaminated and likely highly asymmetric. In downweighting
extreme observations we not only reduce the influence of outliers but virtually
ensure that 1(X — 6) is much more symmetric than X —6. The only pivots which
utilize this in their own distributions are P3 and P4. The distribution of § on
the other hand is not symmetrized to the same extent.

Finally, notice that in Table 4, there appears to be a value of k for which the
coefficient K/ Kg'/ ? vanishes. This suggests specifically choosing the t-function
so that 9(X — ) has skewness as small as possible by empirically choosing a
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value of k. More generally, we might choose a function such that the sample
skewness of 1(z, — ) is zero. Provided that the skewness of ¥ (X — ) is O(n~1/?%),
ordinary central limit theorem inference using P3 will be second order correct
achieved without any bootstrap resampling, without any analytic computation
of moments or without non-linear optimization such as is necessary to compute
the empirical likelihood. This choice also has a neat statistical interpretation,
namely that the estimator identifies and downweights outliers differently on the
two tails depending on how the data point stands out from that particular tail.
This would seem a statistically sensible thing to do from the point of view of
robustness.

Table 4. Standardized skewness for two robust estimators

k=.251k=5|k=.75k=10|k=20k=00
99N(0,1) + .01 exp(3)| —.000| —.000 .000 .001 .016 .936
.001| .000; -.001 .000 .003| .936

95N (0,1) + .0563 .001] .003] .007] 015 .148] .457
.000| .003| —.014| —.027| .008| .457
9N(0,1) + .1x2 —.001] —.003] —.002] .001| .081| 1.714
.020| —.004| —.007| —.016| —.014| 1.714
exp(1) 011] .059] .191] .412] 1.022] 2.000

-.178| 0.113| -.021 .069 375 2.000
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