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THE BOOTSTRAP METHOD WITH SADDLEPOINT
APPROXIMATIONS AND IMPORTANCE RESAMPLING
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Abstract: An approach combining saddlepoint approximation and importance resam-
pling is developed for approximating the bootstrap distribution of a statistic which
is a smooth function of sample means. The idea is to approximate the distribution
of the linear part of the statistic, say Yo, by the saddlepoint technique and then to
worrect the approximation by the conditional expectation of the quadratic part of the
statistic, say Y1, given Yo, where the conditional expectation is to be approximated
by importance resampling. Techniques for simulating the conditional expectation are
developed. The approach is compared with the smoothed importance resampling
method through examples. It turns out that, with negligible extra work, significant
efficiency gains can be achieved over importance resampling by use of our approach.

Key words and phrases: Bootstrap, conditional expectation, distribution function es-
timation, importance resampling, saddlepoint approximation.

1. Introduction

Various methods have been developed in the literature for approximating
bootstrap distribution functions or quantiles of bootstrap distributions. A naive
method is provided by Monte Carlo simulation. Since the Monte Carlo method
needs a huge number of resamplings, efforts have been made either to improve
the efficiency of the naive Monte Carlo method or to develop theoretical ap-
proximations. Johns (1988) proposed the method of importance resampling for
improving the efficiency of Monte Carlo simulation. Davison and Hinkley (1988)
used saddlepoint approximations for the bootstrap distribution of the unstuden-
tized mean of a sample. Daniels and Young (1991) developed a saddlepoint
technique for the Studentized mean of a sample. The methods of Daniels and
Young has been recently extended to more general statistics by DiCiccio, Mar-
tin and Young (1994). DiCiccio, Field and Fraser (1990) proposed a method
which can be viewed as a version of the Lugannani-Rice (1980) approximation
using an approximate saddlepoint. In this article we combine theoretical approx-
imation and efficient simulation together and provide a hybrid method. These
different methods represent different ways of approximating the bootstrap dis-
tribution function. DiCiccio et al.’s (1990) method does not need simulation at
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all but requires some sophisticated theory. The Monte Carlo method (including
importance resampling) does not need any sophisticated theory but needs a huge
amount of simulation. However, the hybrid method, by combining theoretical ap-
proximation and simulation together, requires less sophisticated theory and less
amount of simulation. The idea of the hybrid method might also be applied to
the problems for which a decomposition of the quantity to be estimated is possi-
ble and accurate theoretical approximations can be made to certain components
while the others can be simulated.

Throughout this paper, we assume that the statistic of interest is a smooth
function of sample means, for example: Studentized mean, Studentized variance,
correlation coefficient, etc. A statistic of this kind usually admits an asymptotic
expansion in powers of n~%, n being the sample size, with the first and second
terms linear and quadratic in the sample means respectively. Through a device
given in Barndorff-Nielson and Cox (1989), an asymptotic expansion of the dis-
tribution function of the statistics can be obtained in terms of the cumulative
distribution function (CDF) and the probability density function (PDF) of the
linear term and the conditional expectation of the quadratic term given the lin-
ear term. Our idea is to approximate the CDF and the PDF of the linear term
by the saddlepoint technique and to approximate the conditional expectation by
importance resampling. The estimate of the distribution function of the statistic
1s then obtained by plugging in these approximations in the asymptotic expan-
sion. The quantiles can be obtained through a Cornish-Fisher type device. This
approach is compared with smoothed importance resampling through numerical
examples. Our simulation results show that, with negligible extra work, signif-
icant efficiency gains can be achieved over smoothed importance resampling by
the use of our approach.

The paper is organized as follows. Section 2 describes the general methodol-
ogy. Section 3 illustrates the application of the approach to the Studentized mean.
Section 4 contains a simulation study comparing the approach with smoothed im-
portance resampling. Some technical details are given in an appendix.

2. Methodology

Let S, = n'/2A(X) be the statistic of interest, where X = n! S X,

X, are i.i.d. d-dimensional random vectors such that EX; = u, and A(X) is
a d-variate function with A(u) = 0. Suppose that A has continuous third
derivatives in a neighbourhood of u and that the random vector X has a fi-
nite variance-covariance matrix. Denote a; = §A(X)/0X (j)|x=“ and aj;, =
PA(X)/0XUaX®)|, _ where superscripts denote the components of a vector.
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Then, the statistic S, can be expanded as
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Let Ey and fo denote the CDF and PDF of Y, respectively. Then from Barndorft-

Nielson and Cox (1989, p.77), an asymptotic expansion of Fs, can be obtained
as follows:

1k=1

Fs,(s) = Fo(s) — ”_1/2f0(3)l£1.0(3) + O(n_l)a

where p1.0(s) is the conditional expectation of Y; given Yy = s. Let Y, = n=1/2Y,,
i.e
n

1
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say, where V; = Y5_ La; (X — p@)) areiid. Let F, and f; denote the CDF and

PDF of Y, respectively. Then, in terms of FO and fo, the asymptotic expansion
of Fs, can be expressed as

Fs,(s) = Fo(n™s) = fo(n™s)pro(s)/n+ O(n™). (1)

Note that the second term in the above expansion is actually of order O(n~?%)
since n~1/2 fo(n~1/2s) is of order O(1).

The CDF F, and PDF fo can be readily approximated by simple saddlepoint
approximations while the conditional expectation pu;. o(s) can be approximated
through importance resampling. Thus, we propose to plug in the saddlepoint
approximations of Fy and fo and the importance resampling approximation of
f11.0(s) into the asymptotic expansion (1) to obtain an estimate of Fs_(s).

The reader might wonder whether we can get more efficiency by using the
hybrid method than by just simulating the distribution function of the statis-
tics itself. In our application, the distribution function Fs, will be replaced by
its bootstrap estimate which is, at best, O(n~!) distance away from F,,. So,
when it comes to approximate the bootstrap estimate, as long as the error rate
is of concern, it is enough to achieve an accuracy of order O(n™'). If the distri-
bution function itself were to be simulated, a simulation size needed to achieve
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an accuracy of order O(n™?) is required. The simulation size to achieve this is
proportional to n% (c.f. Chen and Do (1992), Section 2). But, by using the
hybrid method, a smaller simulation size is required to achieve an accuracy of
order O(n=1/ %) in the simulation of M1.0. Such a simulation size is proportional to
n®*, (c.f. (9) and (10) below). Thus, in general, the hybrid method will be more
efficient than the direct simulation of the distribution function, and the efficiency
gain will increase as n increases. This is vindicated in our simulation studies.

Saddlepoint Approximation. The saddlepoint technique was introduced by
Daniels (1954) to approximate the PDF of the mean of i.i.d. random variables.
A formula for approximating tail probabilities of a distribution using saddlepoint
technique was developed by Lugannani and Rice (1980). We use Daniels’ formula
to approximate the PDF fo and Lugannani and Rice’s formula to approximate
the CDF F,. The following formulae are adopted from Daniels (1987):

l*jo(s) =9(¢) - ¢(é){1/2 —-1/6+ OQn'%)}, (2)
fo(s) ={n/(2rK"(T))}* exp{n(K (T) — Ts)}{1 + O(n~1)}, (3)

where ) A )
Z =T(nK"(T)¥, €=sgnT {2n(Ts - K(T))}}, (4)

T is the root of K '(t) = s, K is the cumulant generating function of Vi, and &
and ¢ are the CDF and PDF respectively of the standard normal distribution.

Estimation of 4, ¢(s). The conditional expectation K1.0(s) can be approximated
through resampling. Since p;0(s) can not be directly simulated, we need first
to define a theoretical estimate of pu;0(s). Let R(t) be a probability density
function satisfying [tR(t)dt = 0, [t*R(t)dt = 1 and where [t R2(t)dt is finite
for : = 0,1, 2. Define

,U01(3) =E{Y1Rh(5 - YO)}a

po(s) =E{Rn(s — Yo)},

and
H1.0(8) = poi(s)/po(s),

1 t
=—R|-]}.
Let fo1(yo,%1) be the joint PDF of Y, and Y;. It follows from the properties
of R(t) that

where

Ho1(s) = /ylfOJ(S,yl)dyl + %h2/f6'1(s,y1)dyl + o(h?)
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and )
uo(s) = fols) + 5 fo (s)h* + o(h?),

where the double prime indicate the second derivatives with respect to s. Thus

2

Fuos) = sos) + o= { [ fis(ov)dn = i (Ghusole)} + o(47). (6

Now let Xy = {X},,..., X}, }, b=1,...,B, be B samples from the distri-
bution of X and let (Y};,Y;;) be the corresponding values of (Y;,Y;) calculated
from the bth sample. Let

i RN .
foi(s) :_é Z Yy Ru(s — Yie),

b=1
) 1 & \
fio(s) =B ERh(S - Ypo)-
b=1

Then an approximation to [i; 0(s) can be provided by

fir.0(8) = foi(s)/fo(s), (7)

which is the naive Monte Carlo approximation. A similar estimation of condi-
tional distribution of form (7) was proposed by Booth, Hall and Wood (1992).
In the context of bootstrap, the efficiency of the naive Monte Carlo sim-
ulation can be improved by various resampling schemes with each aiming at
a certain particular purpose. The importance resampling scheme proposed by
Johns (1988) stands out in simulating bootstrap distribution functions. The basic
idea of importance resampling is to place different rather than equal resampling
probabilities at each data point such that it is more likely for a bootstrap statistic
to assume a value in the vicinity of a given point of interest, then that point may
be approximated with greater accuracy. The importance resampling method
has been successfully extended to simulating smoothed bootstrap distribution
functions as well, (see Chen and Do (1992)). In the context of the ordinary un-
smoothed bootstrap, a refinement of importance resampling, namely, balanced
importance resampling, has also been developed, (see Booth, Hall and Wood
(1993)). Balanced importance resampling can perform better than ordinary im-
portance resampling, but can not be readily extended to handle the smoothed
bootstrap. To improve the efficiency of the naive Monte Carlo approximation

(7), we now suggest an exponential tilted version of importance resampling anal-
ogous to that proposed by Chen and Do (1992). Let f(X) denote the PDF of X.
Define

9(X) = exp {Om—l/z 3y (X9 — ) + ﬁ}f(X),

=1
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where o is a constant to be chosen and 8 is the constant such that 9(X) is a
density function. Let XbT = {XI1 - in ,b=1,...,B, be B samples from the

distribution with density g(X) and let (Y,,I,Y;g) be the corresponding values of
(Yo, Y)) calculated from the bth sample. Then define

1 B
phi(s) = 3 Vil Ruls - Y exp{=a¥}} - g},

b=1
B

u(9) =5 3 Rals 1)) exp{-a¥;] - ns,
b=1

and '
ud o(s) = dy(s)/ud (s). (8)

This is the importance resampling approximation to f1.0($).

To actually carry out the importance resampling approximation, we need to
choose the constant « in the resampling probability density function g9(X) and
the bandwidth h in the definition of B1.0(s). To this end, let (£, Q) be the weak
limit of (Y5, ¥1). Denote the conditional expectation and the conditional variance
of Q given £ = s by e(s) and v(s) respectively. In the appendix, we prove that

t001 _ 2 Varkou(s)exp{—as+ < + <} 1, v 32
ET (1] o(s) = 0(s)) =7 +h2[5e"(s) = se(s)]
(9)

where kg = [ R%*(s)ds and ET indicates that the expectation is taken with respect

to the density g. It follows from (9) that the constants o and h should be chosen,
respectively, as

ax = s

and
h =

\/Q;T_ko’l)(S) %
) o

<B[e”(s) — 2s€/(s
Substituting (2), (3) and (8) into (1), we obtain an approximation to Fs, (s)
as
Fs,(s) = Fo(s) = n™2fo(s)lo(s) + O™0%) + O(n™),  (11)
where . . . -
Fo =2(¢) - 6(§)[1/Z - 1/4),
fo(s) =exp{n(K(T) - Ts/v/n}/[2r K" (T)]?,

and Z and € are as defined in (4) where T is the root of K'(t) = n~1/2s.
If, alternatively, we want to estimate the quantiles of Fs_, an approximation
formula for the quantiles can be deduced from (11) by a Cornish-Fisher argument.
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Let U,,U,o be the a-quantile of Fs and ﬁ’o respectively. Since, in practice, B
will be large enough such that O(h?) ~ O(n~*/?), we have

o = Ey(Us) = 02 fo(Ua)id o(Us) + O(n)
= Fy(Uso). (12)

Expanding the right-hand side of (12) at U, up to order O(n™"') and then in-
verting it, we obtain an asymptotic expansion for U, as

U, = Use + 720l 4(Uoa) + O(n™).

We conclude this section with a remark. The methodology developed in this
section is mainly to be applied to approximating the bootstrap distribution of
S,.. In this case, the distribution function to be approximated is to be replaced
by a bootstrap distribution function.

3. Application to the Bootstrap

In this section, we apply the methodology developed in the previous section
to the approximation of bootstrap distribution functions. We only illustrate the
application in the framework of the smoothed bootstrap. However, the appli-
cation is not restricted to the smoothed bootstrap. The methodology can be
applied similarly in the unsmoothed bootstrap while still retaining the desired
accuracy.

Before continuing, we give a brief explanation of how the error rate O(n™%)
can be retained in the un-smoothed bootstrap while a density function does not
exist. There is always a continuous distribution function, say F , with a density
function such that the distribution function of S, under F, Fs,,, differs from
the bootstrap distribution function F, s, only by an error of order O(n™"). For
example, we can take F as

0, T < T — €
i(m—x(1)+e), Ty — € ST < Ty,
- Fn(ib‘(z‘)) + ;1;(:8 - Z(i41) + €), T(i+1) — € < T < Z(i41),
F(z) = .
1=1,...,n—1,
F,(z), i) ST < T(i41) — €
\ i—_—_l,...,n-l’
where the z(1),...,Z() are order statistics. With an appropriate ¢, it follows
from an Edgeworth expansion argument that Fs = F, 5, + O(n™"). In fact, the

difference can be made to any order of n by appropriately choosing €. Thus Fg,
can well be taken as an approximation to Fs, with the same error rate O(n~') and
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the hybrid method can be applied to F. Let K (t) and K, (t) denote the cumulant
generating functions of Y, under £ and F’, respectively. It follows from a Taylor
expansion argument that the difference between the two cumulant generating
functions can be made to any order of n by appropriately choosing ¢. Thus in
the saddlepoint approximation, if K is replaced by K, the same error rate of
approximation can be retained, (c.f. Field and Ronchetti (1990, Section 4.3)).
Therefore, in the case of un-smoothed bootstrap, conceptually, we approximate
the distribution function an, but computationally, we do not need to know F
and can treat all the empirical quantities as if they are their counterparts under
F while still retaining the error rate O(n=1).

We now return to the smoothed bootstrap. The smoothed bootstrap amounts
to replacing the role of the empirical distribution function F,, in the original boot-
strap by that of a smoothed version F. The possibility of using the smoothed
bootstrap to improve the performance of the ordinary bootstrap was first dis-
cussed in Efron’s pioneer paper, see Efron (1979). Silverman and Young (1987)
and Young (1988) described a particular version of F with density function

b= 15 do(52),

where @ is a probability density function with zero mean and unit variance. These
authors have developed criteria for determining whether it is advantageous to
use the smoothed bootstrap instead of the original bootstrap. The choice of the
smoothing parameter A has been considered by De Angelis and Young (1992a,b).
In particular, a general algorithm was developed for the smoothed bootstrap
which relies on constructing a bootstrap estimate of the mean squared error
of the smoothed bootstrap estimator and choosing the smoothing parameter to
minimize this quantity.

We shall illustrate the application to the Studentized mean. In our illustra-
tion, take @) to be ¢, the density function of the standard normal distribution.
Throughout, let Z* denote the random variable associated with this density and
let /1; denote the jth moment of fy(z), i.e. f; = [ 27 fr(2)dz.

Studentized Mean. The Studentized mean of the data Z is given by
S, =n?26"YZ - i),

where

Z:n'IZZ,-, 1. =FEZ;, and &2=n_IZ(Z,»—Z)2.

=1 =1

The smoothed bootstrap distribution of S,, is the distribution of S, given by

S,;: — n1/25*—1(2* _ ’u’z‘)7
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where

z -1227,,% =E'Z' =2, and ¢ =n"'Y (2] - Z")

=1
Asymptotic Expansion. After some trivial calculation, it can be shown that
Si =Yg +n72Y +0,(n7Y),

where

Yo* — n1/26.——1(2* _ Z),

— — -

Yy =ne~2(2" - 2) -

%(Z* — Z)n? ‘i‘(z;z -z - N},
=1

Cumulant Generating Function. In the context of the Studentized mean, the
V in the definition of the cumulant generating function K(t) is given by V* =
(Z* — Z)/6. Hence

tZ  t2)\? = .
K(t) = s + 557 + log ( Zetz"/") . (13)
i=1

Ezponential Tilted Density. The exponential tilted density used in resampling
for the Studentized mean is as follows:

§(2) = exp{an™?67 (2 = Z) + £} fi(2),

where 3 = —K(n"'/?a) and K is given by (13).
For the technique of resampling under the exponential tilted distribution,
see Chen and Do (1992):

Optimal Bandwidth in the Estimation of u1.0(s). To calculate the optimal band-
width h in the estimation of u10(s), we need first to calculate the limit version
of E(Yy | Yy = s) and Var(Yy | Yy = s). Let

Xin =067 HZ" = 2),  Xpo=n'?770 <n-1 Sz - ,12> :
=1

where 72 = [(22 — j15)?f(2z)dz. By the multivariate central limit theorem

Xln D Xl)
— ~ 0,%),
<X1n> (X2 N@©.x)
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(1 h
2‘(;3 1)

p= (/13 - /11112)/&’/:-

where

and

We can write Y and Y as
* ~ A — 1 A A *
Yl = K10 1X12'n, - 57‘0’ 2X1nX2n7 1/0 = Xln'

Hence the limit of E(Yy" | Yy = s) and Var(Y;" | Yy = s) are given, respectively,
by

] (P 17PN
6(3)—(& 2&2)8, (14)
72(1 — p%)s

Substituting (14) and (15) into (10), we obtain

= [ \/ﬂk07“-2(1—'52)32 )2]%. (15a)

4B(2/1,6 — 75)2(1 — 252

4. Simulation Study

We summarize a small simulation study which compares the performance of
our method relative to smoothed asymptotic importance resampling in the con-
text of estimating the bootstrap distribution function of a Studentized mean. We
shall use the subscripts (SPI) to denote the values of estimates resulting from our
method employing saddlepoint approximations to estimate the linear part and
importance resampling to simulate the quadratic part conditional on the linear
part; the subscript (SAI) denotes values of estimates obtained using smoothed
asymptotic importance resampling method, that is, a slight perturbation is added
to the importance resamples as described by Chen and Do (1992). We report
results for the case where the sample size n = 10, 20, or 30; where B = 200 and
for various tail probabilities p = 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.4 with
corresponding t-quantiles s = ¢;1;(a). Assume that the underlying parent pop-
ulation is Normal which gives us conservative estimates of the efficiency gains.
Other assumptions for underlying distributions, especially skewed distributions,
are also appropriate and usually give better efficiency gains than what we report,
here. We chose a generic value A\ = 1; the choice of the smoothing parameter
should not affect the relative efficiency gains since importance resampling in the
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second stage should balance out whatever bias is introduced in the first stage.
Extensive work on choice of A has been investigated by De Angelis and Young
(1992a,b) and Silverman and Young (1987). We do not focus attention on this
issue here.

Let Fs_(s) = p denote the tail probability of the Studentized mean which is
fixed in advance. Let Fspl(s) and FSAI(S) denote the approximations to Fs_(s),
using B resamples from our method and B importance resamples from the
smoothed asymptotic method respectively. We computed the average Dspr of
[Fspi(s) — Fs, (s)]? over M = 10,000 independent samples and Dsay is calculated
similarly. Finally, we took the ratio r = DSAI / ﬁspl as a measure of the efli-
ciency of our method in combining saddlepoint approximation with importance
resampling relative to smoothed importance resampling alone.

Table 1. Column 4 presents efficiencies of our hybrid SPI method relative to smoothed
asymptotic importance (SAI) method in the problem of estimating the distribution func-
tion for the Studentized mean. Here B = 200, n = 10, and the underlying parent
population is Normal.

P s = t;ll(p) Johns’ A, r= bSAI/éspl
0.025 -2.262 —2.178 1.25
0.05 —1.833 —1.894 1.59
0.1 —-1.383 —1.575 1.77
0.15 —1.100 —-1.371 1.91
0.2 —0.883 —-1.216 2.27
0.25 —0.703 —1.078 2.94
0.4 —0.261 -0.773 5.03

Table 2. Same as for Table 1 except that n = 20.

p § = t,,—lil(p) Johns’ Ap r= -éSAI/bSPI
0.025 —2.093 —2.178 1.45
0.05 -1.729 —1.894 1.96
0.1 —1.328 —1.575 2.35
0.15 —1.066 —1.371 2.49
0.2 —0.361 —1.216 3.03
0.25 —0.688 —1.078 3.97
0.4 —0.257 —0.773 8.29
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Table 3. Same as for Table 1 except that n = 30.

p s = t;il(p) Johns’ Ay = ﬁSAI/[)SPI
0.025 —2.045 —-2.178 3.14
0.05 -1.699 -~1.894 3.42
0.1 —1.311 —-1.575 3.85
0.15 —1.055 ~1.371 4.21
0.2 —0.854 —-1.216 4.86
0.25 —0.683 —1.078 5.96
0.4 —0.256 -~0.773 15.41

Tables 1, 2, and 3 report our simulation results in the problem of estimating
the distribution of a Studentized mean using B = 200, n = 10,20, or 30 and
employing the optimal bandwidth value of h as given in (15a). For each table,
column 1 gives the tail probability; column 2 gives the corresponding ¢t-quantiles
s =t;2,(p) from which the conditional importance resampling probabilities gen-
erating the quadratic parts Y3, (b=1,..., B) are obtained as

p; = exp{sn'%&_lZi}/ [Z exp{sn"%&"le}J;
=1

column 3 gives the values of Johns’ A, from which we calculated Johns’ asymp-
totic resampling probabilities to be of the form

pi = exp{Apn‘%é_lZi}/ [Z exp{Apn'%c%'le}J.
7=1

Smoothed importance resamples are easily generated by introducing a perturba-
tion to Johns’ importance resamples. Exact details have been described in Chen
and Do (1992). Column 4 presents the efficiency gains of our method relative
to smoothed asymptotic importance resampling method. The most dominant
feature that emerges from our study is that our method (SPI) always performs
better than smoothed asymptotic importance resampling method (SAI); espe-
cially towards the centre of the distribution. It can be seen from our simula-
tion study that our SPI method has the additional advantage that the efficiency
gains increases with m so that as n increases beyond 10 our SPI method may
also outperform other methods that do not possess this property, for example,
balanced importance resampling (see Booth, Hall, Wood (1993)). Note that
the SAI method performs very well relative to uniform resampling towards the
tails, so we can deduce that the efficiency gains of our SPI method relative to
uniform resampling is excellent throughout, for example when n = 20, our SPI
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method outperforms uniform resampling by at least a factor of 7 irrespective of
the quantiles we are trying to estimate. This feature alone is a significant im-
provement over existing efficient resampling methods where efficiency gains are
only good at the tails of the distribution (such as asymptotic importance resam-
pling or balanced importance resampling) or only superior towards the centre
of the distribution (such as balanced resampling or antithetic resampling). We
also investigated the relative performance of our hybrid method in comparison to
using the saddlepoint method alone. We consistently observed that the former
is superior to the latter, for example, define 7' = f)s ADDLE/ f)spl, then for n = 10
we obtained ' = 1.55,1.82 when p = 0.05,0.10 respectively.

Appendix

In this appendix, we prove that the asymptotic mean squared error of ,uIO(S)
is given by

B (i o(6)  pofs))” ~ L2 P0G T 5) (L) se'(s))

(A1)

Proof. First, note that
E ud(s) =po(s),

ETNL(S) =Ho1(8)-

Expanding uo(s) = u (5)/1d (5) at (1o(s), or (s)) and noting that

ud(5) = po(s) = 0p(B~4) = i (s) = poa(s),

we have

/»LIO(S) = Ji1.0(8) + ;%5 [/‘l’gl(s) - ﬁle(S)ug(S)] + Op(B_l)'

Since Ji1.0(s) = p1.0(8) + ch? + o(h?), where

e = sy L[ vl wdn: - £ (mal)] (A2)

(see (6)), it follows that

=B () - el (0)

+ c*h* + 0,(B™%) + O,(B™*h?). (A3)

ET (MIO(S) - Hl.o(s))
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Now

B (udi(s) - Fro(s)ud(s)) = %e"”'”ﬁ /(y1 = H1.0(5))” for (s, 91)dys + O(B™Y).

Substituting (A2) into (A4), then (A4) into (A3), we obtain A
B (wh(9) - o) = Be o var(r 170 = )+ 0 4.0, (a5)

Note that
/ v for(5,52)dys = fo(s)aols). (A6)

Differentiating both sides of (A6) with respect to s yields

/ylf(;ll(s’yl)dyl = fo (8)k1.0(8) + 2£5(s)yo(8) + 1.o(8) fo(s).

Hence
1

c= m[Qfo(S)Ml.o(S) + p10(8) fo(s)). (A7)
Since Y, — N(0,1) in distribution, fo(s) — ¢(s) and e™™ — e°*/? (noting
that e™™ = Ee®¥). Substituting (A7) into (A5) and replacing e, f,(s),
Var(Y3|Y; = s) and p;.0(s) by €72, ¢(s), v(s) and e(s) respectively yields (A1).
The proof is complete.

Note: A detailed version of this paper which includes mathematical derivation
for the Studentized variance exists in the form of a CMA technical report (The
Australian National University) and can be obtained from the second author.
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