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1. Introduction

Discrete failure rates arise in several common situations in reliability theory
where clock time is not the best scale on which to describe lifetime. For example,
in weapons reliability, the number of rounds fired until failure is more important
than age in failure. This is the case also when a piece of equipment operates In
cycles and the observation is the number of cycles successfully completed prior
to failure. In other situations a device is monitored only once per time period
and the observation then is the number of time periods successfully completed
prior to the failure of the device.

In this article we continue the study which was started in Shaked, Shan-
thikumar and Valdez-Torres (1994). In that paper we introduced, among other
things, a definition of discrete multivariate conditional hazard rate functions.
We showed there the usefulness of these functions for modeling imperfect repair
in the discrete multivariate setting and for characterizing aging in the discrete
univariate setting. In the present paper we study several notions of probabilistic
ordering among vectors of discrete random lifetimes. We discuss the well known
stochastic ordering relation and the likelihood ratio ordering relation among such
random vectors. We also introduce a new hazard rate ordering relation among
such random vectors and we study the relationships among these probabilistic
orderings.
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Some of the notions and definitions which were introduced in Shaked, Shan-
thikumar and Valdez-Torres (1994) are used here. They are reproduced in
Section 2. In Section 4 we give the definitions of the probabilistic orderings
which are studied later in the paper.

In Section 3 we introduce an algorithm (called the discrete dynamic con-
struction) which can construct dynamically, using the discrete multivariate con-
ditional hazard rate functions, a random vector having a desirable distribution.
This algorithm may be used for simulation purposes, but here we use it as a tech-
nical tool for proving one of our main results. This result, which states that the
discrete multivariate hazard rate ordering implies stochastic ordering, is proved
in Section 5.

In Section 6 we study the relationship between the discrete likelihood order-
ing and the discrete hazard rate ordering.

The results of the present paper can be looked at as a discrete parallel de-
velopment of the absolute continuous case study of Shaked and Shanthikumar
(1990). However, in the discrete case there are some technical problems which do
not appear in the absolute continuous case. These require the different method-
ology which is used in the present paper.

2. Preliminary: Discrete Multivariate Conditional Hazard Rate
Functions

Consider a random vector T = (T1,75,...,7,) which takes on values in
{1,2,...}" = N%_. For our purposes it is intuitive to think of T} as the fail-
ure time of component 7,1 =1,2,...,n.

The following notation will be used. Let z = (z1,29,...,2,) € N7, and
I = {i1,i2,...,ix} C {1,2,...,n}. Then z; will denote (z;,,2i,,...,2;,). The
complement of I will be denoted by I = {1,2,...,n} — I. We will also denote
e=(1,1,...,1); the length of e will vary according to the expression in which e
appears.

Suppose that all the components start to live at time 0 and are new then. As
time progresses the components fail one by one (we do not rule out the possibility
of multiple failures). Thus, at time t € N, , the information which has been
gained by observing the components is an event of the form {TI7 = t;,T; > te}
for some I C {1,2,...,n} and t; < te. The multivariate conditional hazard rate
functions of T are conditioned on such events. They are defined as

)\J'](t’t]) = P{TJ = tG,Tj_J > te|T] = tI,Tj Z te} (21)

for some J C I C {1,2,...,n} and t; < te. If in (2.1) the probability of
{T; = t;,T; > te} is zero, then Ay ;(t|t;) is defined as 1. Note that in (2.1) it is
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possible that J = 0. In that case we have
)\@u(tlt1> = P{Tf > tCiTI =t;,Tf > te}.

If I = 0 in (2.1) then we abbreviate Agir(tlitr) by As(t). These hazard rates can
be called initial because they describe the hazard rates of the components before
having had any failures.

Clearly, the hazard rate functions are determined by the probability function
of T But also the converse is true. It is possible to express explicitly the joint
probability function of T by means of the hazard rate functions (2.1); see Shaked,
Shanthikumar and Valdez-Torres (1994). It follows that in order to describe the
life distribution of T it is enough to postulate the hazard rate functions (2.1).
This is a useful fact because in the setting of reliability theory the hazard rate
functions have more intuitive meaning than the joint probability function. In
this paper we use these functions to characterize various probabilistic orderings
of discrete multivariate vectors of random lifetimes.

3. Preliminary: The Discrete Dynamic Construction

Let T = (T4, T,...,T,) be a discrete random vector taking on values in

N2 . Let A.(-|-) be its discrete multivariate conditional hazard rate functions as
described in (2.1). We describe now an algorithm, called the discrete dynamic
construction, which, using the functions \..(-|-), constructs a random vector T=
(Tl,j"g, ... ,Tn) such that
' T=4T (3.1)

(here ‘=,,’ means equality in law).

The algorithm is similar to, but different than, the dynamic construction
described in Shaked and Shanthikumar (1991b). The latter construction applies
to vectors of random lifetimes with absolutely continuous joint distributions. In
such a case, no two components can fail at the same time epoch. Here, in the
discrete case, it is possible. Therefore, the discrete construction is different in
nature than the one in Shaked and Shanthikumar (1991b) — it has to allow
multiple failures at some time epochs. The discrete dynamic construction is
described below by induction on t € N, — the countable number of time epochs
in which components may fail. It is unlike the continuous construction of Shaked
and Shanthikumar (1991b) in which the induction was over the ordered failure
times.

We describe now the steps of the discrete dynamic construction. As we
mentioned above, they are indexed by ¢ € N,,. In general, Step ¢ describes
which components failed at time t, if any. These failure times are the 7}’s.
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Step 1. The algorithm enters this step when all the components are alive. The
algorithm now chooses a set J C {1,2,...,n} with probability A;(1) [J may be
empty], and defines (if J # 0)

T =e. (3.2)

For i € J the algorithm does not define Tl in this step; these Ti’s will be defined
in a later step. Upon determination of J and T the algorithm sets ¢t = 2 and
then proceeds to Step t.

Thus, upon exit from Step 1, some of the 7}’s (if any) have been determined
already as described in (3.2), and the other T}’s (i.e., for i € J) are still to be
determined. Therefore T; > e. (If J = 0 then after Step 1 one has T > e.)

Step t. Upon entrance to this step some of the T}’s (if any) have already been
determined. Suppose that the algorithm has already determined the 7}’s with
¢ € I for some set I C {1,2,...,n}. More explicitly, suppose that upon entrance
to this step we already know that T; = t; (where, of course, t; < te) and that
Tr > te. The algorithm now chooses a set J C I with probability A n1(tltr) and
defines (if J # 0)

TJ = te.

For i € I U J the algorithm does not define 7} in this step; these 7}’s (if any) will
be determined in a later step. From Step ¢ the algorithm proceeds to Step t + 1
provided I U J # (). Otherwise the construction is complete.

Thus, upon exit from Step ¢, the T}’s with s € I U J have been determined
already. The other 7)’s (if any) are still to be determined, that is, T > te.
Upon entrance to Step t+1 (if ever) we already know the values of 7} for i € TUJ.

The algorithm performs the steps in sequence until all the 7}’s have been
determined. With probability one this will happen in a finite number of steps
whenever P{T; < 00,1 =1,2,...,n} = 1.

From the construction it is clear that T has the discrete multivariate con-
ditional hazard rate functions of T. Since the discrete multivariate conditional
hazard rate functions uniquely determine the probability function, it follows that
T=,T

The discrete dynamic construction can be used to simulate discrete depen-
dent lifetimes. This can be done by generating a sequence of independent uniform
random variables {U;,t € N, } and using U, in order to generate the required
probabilities in Step ¢, ¢ € N,,. In this paper, however, we use the discrete
dynamic construction as a technical tool for proving Theorem 5.1 in Section 5.
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4. Discrete Probabilistic Ordering
Let X = (X1, X5,...,X,) and Y= (Y1,Ys,. .. ,Y,,) be two discrete random

vectors taking on values in {...,—1,0,1,...}® = Z". The random vector X is
said to be stochastically smaller than the random vector Y (denoted X < Y) if
E¢(X) < E¢(Y) (4.1)

for every real function ¢, with domain in Z", which is increasing with respect to
the componentwise partial ordering in Z" (and for which the expectations in (4.1)
exist). In this paper ‘increasing’ means ‘nondecreasing’ and ‘decreasing’ means
‘nonincreasing’. If Q denotes the probability measure of X and R denotes the
probability measure of Y then we sometimes write Q < R to denote X <, Y.

The establishment of the relationship X <, Y is of importance in various
applications. One can view Theorem 5.1 in Section 5 as a set of sufficient condi-
tions on the discrete multivariate conditional hazard rate functions which assure
the stochastic ordering relation between two vectors of discrete random vectors.

In order to define the next ordering (the one we call the hazard rate ordering)
we need to introduce some notation. This ordering will be used only in order to
compare vectors of discrete random lifetimes. Therefore, we assume now that X
and Y can take on values only in N, .

For t € N, , let hy denote a realization of the failure times of n components up
to time t, ezclusive. That is, if X1, Xo,..., X, are the discrete random lifetimes
of the components, then h, is an event of the form {X; = =, X7 > te} for some
I c{1,2,...,n} and z; < te. On such events we condition the probabilities in
the definition (2.1) of the discrete multivariate conditional hazard rate functions.
Such an event will be called a history.

Fix a t € Ny,. If h; and h, are two histories such that in h; there are more
failures than in h, and every component which failed in h; also failed in h;, and,
for components which failed in both histories, the failures in h; are earlier than
the failures in h!, then we say that h, < h;. More explicitly, if h; is a history
associated with X of the form {X; = z;, X; > te} and h; is a history associated
with Y of the form {Y4 = y4, Y4 > te} then h, < hj if, and only if, A C I and
x4 <y, (of course, we also have z;_4 < te and y, < te).

Remark 4.1. Before proceeding, we note a 1-1 association between {0,1}"
and the set of subsets of {1,2,...,n}. For each point u € {0,1}" let A(u) C

{1,2,...,n} be the set of the coordinates of u which are 1’s. Conversely, for each
set A = {i1,i0,...,4} C {1,2,...,n} let u(A) € {0, 1}" be the vector which has
1’s in places 41,19, ..., % and 0’s elsewhere.

Let 11..(-|-) denote the discrete multivariate conditional hazard rate function
of X (as defined in (2.1)). Similarly let 7..(-|-) be the hazard rate functions of Y.
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Given a history h,, associated with X, of the form {X; = z;, X1 > te}, we
define now a probability measure @, on {0,1}" as follows. For A C I set

Qu{u(IUA)} = pay(tlzr), Acl, (4.2)

and let the mass of @5, on all other points of {0,1}" be 0. It is obvious that Q,,,
1s a proper probability measure; it corresponds to the indicators of the compo-
nents that have failed by time ¢, inclusive. We call Q. the discrete multivariate
conditional hazard rate measure of X.

Similarly, given a history h;, associated with Y, one can define, as in (4.2),
the discrete multivariate conditional hazard rate measure of Y. It is denoted by

R.

Deﬁ_nition 4.2. Let X and Y be random vectors which take on values in I\
The random vector X is said to be smaller than Y in the discrete hazard rate
ordering (denoted X <y, Y) if

Q@h, 25t Ryy  whenever h, < h;. (4.3)
For example suppose that n = 2. Then (4.3) is equivalent to

N2y (t), t€ Niy, 4

pi1,2}(2) (4.
Ny (t) + npey(t), t €N, (4.
(4.
(4.

pay(t) + pyn2y(t
w2y (t) + pya,oy(t
By (t) + g2y (t) + w2y (t

)
) 5)
) 6)
)
pizyi{1 (tlza)
)
)
)

N2y (t) + N2 (), t €Ny,

Ny (t) + 02y (€) + ny (8), ¢t € Nyy,
M2y (t) + naay(E), t>a > 1,
>y (8) + ey (t), t> x> 1,

> neoyqy(tly), t>wyi >z, >1, and
>y (tlye), t>y2 > x> 1

7)

VIV IV IV IV IV

piyi(2y (tlz2
pizyqay (tlza
Biyizy (tles

If in the case n = 2 there cannot be simultaneous failures, that is, if P{X; =
Xp} = P{Y1 = Y2} = 0, then pp10)(t) = nu2y(t) = 0,t € Noy, and (4.7) is
superfluous because it follows from (4.5) and (4.6). Also (4.4) then obviously
holds. The remaining conditions can then be written as

peyros(tlen, s) 2nu(y;), zr < yp < te,
xz; <te, I C{1,2}, JC{1,2}, INnJ =0, ke TUJ. (4.8)

In fact, for a general n, if no two or more simultaneous failures can occur
for a collection of components with lifetimes X, X,,..., X,, and for a collec-
tion of components with lifetimes Y;,Y5,...,Y,, then (4.3) reduces to (4.8) (with



DISCRETE PROBABILISTIC ORDERINGS 573

{1,2} replaced there by {1,2,...,n}). Condition (4.8) is similar to the condi-
tion of Shaked and Shanthikumar (1990) which defines the hazard rate ordering
for vectors of random lifetimes with absolutely continuous distributions. But
in Definition 4.2 we need Condition (4.3) rather than (4.8) because of the pos-
itive probability of multiple failures when one deals with discrete failure times.
One can see now the additional complexity which is involved when one studies
components with discrete random lifetimes which may have multiple failures, as
opposed to the case of random lifetimes with absolutely continuous distributions.

Example 4.3. Consider the following discrete analogue of a model of Ross
(1984) and Freund (1961). Suppose n components start to live at time 0. The
discrete failure rate of each of them at time t = 1 is p,, and they may fail at
time 1 independently of each other. At any time t € N, ., the failure rate of
each of the surviving components is independent of ¢. It depends only on the
number of surviving components, and the surviving components may fail at time
¢ independently of each other. More formally, the A;z(t[t;) of (2.1) is now a
function of |I| (the cardinality of I) and of |J| only. If pz is the failure rate of
any of the surviving components then

AJU(tltI) ':ptI{]l(l -p|f|)m—Ul’ J C T C {172) v ,T'L}-

Let X be a vector of lifetimes having the above distribution. That is, suppose
that X has the discrete multivariate conditional hazard rate functions

par(tler) = P}I{“(l —p|f|)|f|—|J|, JcIc{L2...,n}, te€N;s,.

Let Y have the same distribution but with parameters g.,gn-1,...,q1, rather
than p,,Pn_1,.--,p1. That is, suppose that the discrete multivariate conditional
hazard rate functions of Y are

nar(tlzr) = qt}-’”(l - qm)lfl—lJl, JcIc{12,...,n}, t € N,,.

Then it can be verified (using coupling arguments) that if p; > ¢;, j = ¢, ¢ =
1,2,...,n, then

Qn, >« Ry whenever hy < h;, te&€N,,
' / t ++

where Q. and R. are as described in (4.2) and (4.3). Therefore X <, Y.

Let X and Y take on values in Z*. Let f denote the discrete probability
density of X, that is,

f(z1, 20y ... xn) = P{X1 =1, X2 =20,..., X, =2,}, xTEZ".
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Similarly, let g denote the discrete probability density of Y. We say that X is
smaller than Y'in the likelihood ratio ordering (denoted X <, Y) if

f(@)g(y) < flxny)g(zVy), =€Z*, yeZ,

where Ay denotes (21 Ay1,Z2 AYa,...,Zn AYn) and = V y denotes (z1 V yy, z, V
Y2,--+,Zn V¥Yn); see Karlin and Rinott (1980) and Whitt (1982), where examples
of random vectors which are ordered by the likelihood ratio ordering can be
found.

" It should be noted that <y and <), are not orderings in the usual sense
because they are not necessarily reflexive.

5. ‘The Relationship Between the Hazard Rate Ordering and the
Usual Stochastic Ordering

In this section we prove the following result.
Theorem 5.1. Let X = (X;,X,,...,X,) and Y= (Y1,Y>,...,Y,,) be two ran-

dom vectors which can take on values in N7%.. If X <, Y then

X <, Y. (5.1)

Proof. The proof will be done by constructing, on the same probability space,
two random vectors (X, X»,...,X,) and (¥1,Y5,...,Y,) such that

X st X, (5.2)
Y=Y, and (5.3)
X< Y as. (5.4)

From (5.2), (5.3) and (5.4) one obtains (5.1).

Denote the discrete multivariate conditional hazard rate functions of X by
t.-(+]-) and of ¥ by 77-]-(‘[;)- )

The construction of X and Y will be done in steps indexed by t € N, . Here,
as in the discrete dynamic construction, we describe an algorithm in which ¢ is
to be thought of as a value of discrete time. In Step ¢ it is determined which X,’s
(if any) and which ¥;’s (if any) are equal to t.

Step 1. The algorithm enters this step with the obvious information that X > e
and Y > e. Consider Qp, as in (4.3) with t = 1 and I = 0 (because h; = {X >
e}). Consider Ry, as in (4.3) with ¢t = 1 and I = () except that here 7 replaces
p. From (4.3) it follows that Qn, >4 Rp,. Therefore random vectors U; and Vi,
which can take on values in {0,1}", can be defined on the same probability space
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such that U; has the probability measure Q,,V; has the probability measure
Ry, and U, > V; with probability one (see, e.g., Kamae, Krengel and O’Brien
(1977)). Let S; be the joint probability measure of (Uy, V1). The algorithm now
chooses a realization (u;,v;) according to S;.

Let A C {1,2,...,n} be the set associated with u; as described in Remark
4.1. Similarly let A’ C {1,2,...,n} be the set associated with v;. Since u; > v;
it follows that A D A’. Of course A’ or A may be the empty sets. Define

XA = e, YA' =e€,

set t = 2 and proceed to Step t.

Upon exit from Step 1 some of the X,’s and some of the ),};',S (if any) have
been determined and it is known, then, that Xz > e and Yz > e. It follows that
we already have ‘

X4 <Y, with probability one.

Notice that not all the Y;’s with ¢ € A have been already determined. Some of
the Y;’s (those with : € A — A’) still have not been determined, but they must
satisfy Y; > 1.

Step t. Upon entrance to this step some of the X,’s and some of the ¥;’s (if any)
have already been determined. Suppose that the X,’s have been determined for
all i € A for some set A C {1,2,...,n}. More explicitly suppose that X4 =my4,
X ; > te. Suppose, also, that the Y,’s have been determined for i € A’ for some
set A’ C {1,2,...,n}. More explicitly, suppose Yi = yu, Yz > te. By the
induction hypothesis, A D A’, x4 < te, x4 < yu < te. Therefore, if we define
ht = {XAI = (BA/,XA_A/ = wA-A/,XA > te} and h; = {YAr = yA/,YA/ > te} we
have h, < h]. Consider now Q;, and Ry, as defined in Section 4. From (4.3)
it follows that Qn, >« Rp;. Therefore, random vectors U, and V,, taking on
values in {0,1}", can be defined, on the same probability space, such that U,
is distributed according to Qj,, V; is distributed according to Ry, and U; > V;
with probability one. Let S; be the joint probability measure of (U, V;). The
algorithm now chooses a realization (u,,v;) according to S;.

Let B C {1,2,...,n} be the set associated with u, as described in Remark
4.1 and let B' C {1,2,...,n} be the set similarly associated with v,. From the
definition of @}, is clear that B D A. Similarly from the definition of R;; it is
seen that B’ D A’. Also, since u; > v, it follows that B O B'. Define

XB—A - te, YBI_A' = te

and proceed to Step ¢ + 1.
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Upon exit from Step t some of the X.’s and some of the ¥;’s (if any) have
been determined and it is known that Xz > te and Yz > te. Also, since B D B’,
it follows (using the induction hypothesis X, <Y, a.s.) that

XB < S’B a.s..

Notice that not necessarily all the Y;’s with i € B have been determined by
Step t. The Y;’s with i € B — B’ have not been determined yet, but they must
satisfy Y, > t.

Performing the steps of this procedure in sequence the algorithm finally de-
termines all the X,’s and Y,’s using a construction for all h; and h; which are
realized. The resulting X and Y must satisfy (5.4). The X satisfies (5.2) because
it is marginally constructed as in the discrete dynamic construction. Similarly Y
satisfies (5.3).

As an example for the use of Theorem 5.1 consider the X and the Y defined
in Example 4.3. It has been shown in Example 4.3 that X <, Y. It follows from
Theorem 5.1 that X < Y.

6. The Relationship Between the Likelihood Ratio Ordering and the
Hazard Rate Ordering

The following notation is used in this section: Let Z be a random variable
(or vector) and let E be an event. Then [Z|E] denotes any random variable (or
vector) whose distribution is the conditional distribution of Z given E.

In this section we prove the following result.

Theorem 6.1. Let X = (X1,Xs,...,X,) and Y= (Y1,Y,,...,Y,) be two ran-
dom vectors taking on values in N . If X <, Y then

X <, Y. (6.1)

Proof. Denote the discrete density of X by f and of Y by g.

Split {1,2,...,n} into three mutually exclusive sets I, J and L (so that
L=TUJ). Fix ;,z,y; and t € N, such that z; < y; < te and z; < te. Let
he = {X; =z;,X; = x;,X, > te} and hy = {¥; = y;,Y,uL > te}. First we
show that

(X1, X5, X)X =z, X;=25,X, > te] <y, [(Y1,Y,,Y)|Y: =y, Your > te].

(6.2)

Denote the discrete densities of (X;, X, Xr) and of (Y;,Y,,Yr) by f and g,

respectively. The discrete density of [(X;, X, X1)|X; = o5, X, = =5, X > te]
is
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-~

f(a;l, aj, a'L)

Z f(mhm.]yml,)

:cLZte

f(ahaJaaL) =

provided a; = z;,a; = zj5,a; > te, and is 0 otherwise. The discrete density of
[(Y1,Y5,YL)|Yr = y;, Yiur 2 te] is

g(br,by,byr)
Z Z g(yI)yJayL)

y,2tey, >te

g(br,by,by) =

provided b; = y;,b; > te, by > te, and is 0 otherwise. In order to prove (6.2) we
need to show that

~
~ ~
~

f(ar,ay, aL)?(bz, bs,br) < }(GI Abr,ayANby,ap Abr)g(arVbr,a;Vby,arVby).
(6.3)
Since z; < y; < te,z; < te, it follows that (6.3) holds if

f(iﬂh zy,ar)d(y;,bs,br) < f(mz, zj,ar Abr)g(y;,bs,ar Vby)

for b; > te,ar > te and by, > te. But this follows from the assumption that
X <, Y. Thus (6.2) holds.

Since <,==><4 (see, e.g., Karlin and Rinott (1980) or Whitt (1982)) it
follows from (6.2) that

(X1, X7, X1)|he) <se [(Y7, Y5, Y1)l hy)- (6.4)

Now define, for i € {1,2,...,n},

{1, if X; <t,
0, if X;>t,

and
7z, = 1, ?f Y <t,
0, ifY; >t

From (6.4) it follows that
(Wi, Wa, ..., Wi)lhe] 26 [(Z1, 22y - -y Z0) Ry (6.5)

The conditional distribution of W given h, is determined by the w4705 (tzs, x;),
A Cc TUJ, which are the discrete multivariate conditional hazard rate functions
conditioned on h;. This distribution is the one which is associated with the
discrete multivariate conditional hazard rate measure Qj, of X (see Section 4
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for its definition). Similarly, the conditional distribution of Z given h; is the one
associated with the discrete multivariate conditional hazard rate measure Ry, of
Y. And (6.5) is equivalent to

Qh, 2ot Ry (6.6)

Since (6.6) has been shown whenever h; < h} one obtains (4.3) and this proves
(6.1).

It is well known that X <), Yimplies X <;; Y. Theorem 6.1 gives a stronger
result, that is, that X <, Y. The order <}, enables us to compare the underlying
items ‘locally’ as time progresses, in contrast to the ‘global’ comparison that the
order < yields. More explicitly, given comparable histories associated with X
and.Y at time ¢, the order <;, allows us to stochastically compare the predicted
behavior of the two underlying systems at the next time point. Such a comparison
is not possible by means of the order < solely. '

In Shaked and Shanthikumar (1990) there is an application of the contin-
uous orderings to the area of positive dependence. Several notions of positive
dependence, pertaining to the random variables X;, X5, ..., X,, are obtained in
Shaked and Shanthikumar (1990) by requiring, for example, that X <, X or
that X <;; X. The relationships among the continuous orderings enable one to
study the relationships among the various resulting positive dependence notions
(see Shaked and Shanthikumar (1990)). These notions were also compared there
to other well known positive dependence notions such as the positive association
notion of Esary, Proschan and Walkup (1967). In the present paper we have not
- studied the corresponding analogous discrete positive dependence notions. How-
ever we believe that no essential new technical difficulties arise when one tries
to study them. One use of Theorem 6.1 is to show that the positive dependence
notion defined by X <;, X implies the positive dependence notion defined by
X <, X

7. Conclusions and Some Remarks

In this paper we have introduced some discrete probabilistic orderings and
have studied the relationships among them. These orderings are discrete ana-
logues of the continuous orderings of Shaked and Shanthikumar (1990), but the
technical difficulties which are encountered while studying the discrete orderings
are different from those involved with the continuous orderings of Shaked and
Shanthikumar (1990).

In Shaked and Shanthikumar (1990) an ordering relation, called the cumu-
lative hazard ordering, denoted by <, is also studied. An analogue of this
ordering is not studied here because, as of yet, we do not know what a “correct”
discrete analogue of <., should look like; see Valdez-Torres (1989).
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Shaked and Shanthikumar (1991a) used the orderings of Shaked and Shan-
thikumar (1990) in order to define several multivariate aging notions for contin-
uous dependent random lifetimes such as MIFR (multivariate increasing failure
rate) and a kind of multivariate logconcavity which was called MPF, (multivari-
ate Polya frequency of order 2). Similar discrete analogues can be developed
using the discrete multivariate orderings of the present paper. We may do it
elsewhere.
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