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Abstract: In this paper a systems model is discussed which is sufficiently general to
encompass most situations in which component states at time t determine the system
state at time £. The model is also useful for complex systems which do not have easily
identifiable components.

In terms of this model, notions of “life length” are defined and some results for
standard models concerning life distributions are generalized.
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1. Introduction

The purpose of this paper is to discuss a model for representing components
and systems that is sufficiently general to handle some important practical prob-
lems where neither coherent structure theory nor multi-state coherent structure
theory conveniently apply. The model appears to be sufficiently general to en-
compass most situations in which the component states at time ¢ determine the
system state at time t.

The standard model of coherent structures regards components as being in
one of but two states, “failed” or “functioning”. For systems of n components,
the states of the various components are usually represented together by a vector
x € {0,1}", where z; = 0 or 1 according as the ith component fails or functions,
i = 1,...,n. The structure function ¢ of the system maps {0,1}" onto {0,1}
to classify the system as “failed” or “functioning” as dictated by the component
performances.

This model is often useful even when the components and system can be in
a multitude of states. The reason for this is that it is often possible to classify
the various component states as “failed” or “functioning” in such a way that a
desired classification of system states is determined by component classifications.

1.1. Example

An ordinary pencil can be regarded as a system with two components (lead
and eraser) both of which have many possible states. It is natural to classify
the pencil as functioning if (i) some eraser remains and (ii) enough lead remains
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(the pencil has sufficient length) that the user can hold it without strain. Then
the pencil is a series system which is classified as functioning so long as both
components are appropriately classified as functioning.

1.2. Example

A combination colored pencil has one end with red lead and the other end
with blue lead. This pencil is a multi-state device which is naturally classified as
“functioning” when (i) some red and some blue lead remain, and (ii) the pencil
has sufficient length that the user can hold it without strain. For this example,
the coherent structure model is useless because there is no way to classify the
components (red and blue lead) as “functioning” or “failed” in such a way that
the component classifications determine the system classification.

To obtain models of greater generality it is important to differentiate be-
tween an actual representation of the state or condition of a device and a mere
classification of the state. In this respect, the intent is not entirely clear for
the various models of “multi-state coherent” systems which have been proposed
by various authors (see, e.g., Barlow and Wu (1978), El-Neweihi, Proschan and
Sethuraman (1978), Block and Savits (1982, 1984), and El-Neweihi and Proschan
(1984)). These models replace the set {0,1} of coherent structure theory by
{0,1,..., M}, by [0,00), or by some other subset of (—o0, c0); in so doing, they
use the same set for all components and for the system, and the state space is
linearly ordered. Consequently, these sets are best regarded as classifying rather
than as representing the states. Then, multi-state systems suffer from the same
problem as do coherent systems: they apply only when component classifications
determine the system classification. Even the combination red and blue pencil
of Example 1.2 is not very conveniently modeled as a multi-state system.

1.3. Example

For extra protection, two shields are placed in front of a radiation source, one
behind the other. The system works even though there are holes in both shields
just so long as two holes do not line up with the radiation source. There is no
natural way to classify the shields by real numbers in such a way that component
classifications determine whether or not the system is working.

Another inconvenience of the usual coherent structure model is that there
is no provision made for classifying states according to more than one criterion.
Multi-state systems are also limited in this respect, partly because the chosen
state space is totally ordered.

1.4. Example 1.2 (cont.)

The two-colored pencil can be classified according to whether or not it is
useable for writing in red (alternatively, in blue). To be so useable, it must be of
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sufficient length and must have lead remaining of the appropriate color.

1.5. Example

If a two component system undergoes repair as soon as one component fails,
the system is a series system in the eyes of the repairman. But if the system works
so long as one component works, the system is a parallel system in the eyes of the
operator. Thus the structure function is not intrinsic to the system but depends
upon the point of view; here, two structure functions are of simultaneous interest.

1.6. Example

Recently the space shuttle was grounded when it was discovered that the
ceramic heat shield protecting a rocket nozzle had suffered severe damage on a
previous flight. Even though the heat shield did its job well, the fact that it had
come dangerously close to failure was a cause of considerable concern; the heat
shield was unfit for use in any future flight.

It is particularly easy to consider several criteria for classifying a device when
a model is used that represents the system state rather than classifies it.

2. Representation of States

A set )V used to represent states of a device should satisfy some natural
constraints, which are discussed in this section.

Because incremental changes in state are of interest, the expression “y — z”
should be defined for all z,y € Y even though there is no reason to require
y—x € Y. In addition, the expression “y = z + (y — z)” should have meaning as
representing a new state y in terms of an old state z plus an incremental change.
These basic requirements are met when Y C X’ where X is an Abelian group
under addition.

Certain pairs of points in ) are comparable in the sense that one state is
more desirable than the other: write £ < y to mean that the state y is at least
as desirable as z. Then

: =<z (2.1)

and
sy, yz=>zx =Xz, (2.2)

so that < is a preorder.
If {z;} and {y;} are convergent sequences of points in J, it is desirable that

z; <y,i=12,...=limz;, =z 2y =lim y, (2.3)

but to speak of convergence it is necessary to have a topology for }. This
motivates the assumption that X is a topological group. In this paper it is
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assumed that there is a metric d defined on X’ such that sets of the form {y :
d(z,y) < €} form a base for the topology. In addition, it is assumed that &
is complete (Cauchy sequences of points in X have limits in X') and that X
is separable (X has a countable dense subset D); these conditions are used in
Sections 5 and 6.

In summary, it is assumed that the state space ) has the following properties:

Y C X where X is a separable topological Abelian group with a
metric topology; in this topology, A is complete. (2.4)
Y is preordered by =, and the ordering satisfies (2.3). (2.5)

2.1."Example 1.6 (cont.)

Consider the rocket nozzle as a cylinder C and represent the condition of the
ceramic shield by a nonnegative function defined on C. If m is a function giving
the original thickness of the shield, then } is the set of all function 1 defined on
C and satisfying

0<Y(z) <m(z), z € C.

There is no practical reason for not requiring functions in ) to be measurable
or even continuous. Clearly ¢ =< 9, if ¥1(2) < 9¥o(2) for all z € C, and a
knowledgeable engineer might want to extend this order.

In many applications, including Example 2.1, it is true that

zXy=>c+2=y+z whenever z+2z2,y+2z€ ). (2.6)

When (2.6) holds, it provides a convenient means of extending the ordering <
from Y to X, and it provides a convenient characterization of the ordering: z < y
if and only if y — 2 > 0, i.e.,

rXy—y—x€Cl, (2.7)
where C = {z : z > 0}. The set C satisfies

0ecC (2.8)

and
u,v€C=>u+vecl. (2.9)

Condition (2.8) is immediate from (2.1). Condition (2.9) is true by virtue of (2.1)
and (2.6): 0 < u implies v < u + v and when also 0 < v, then 0 <X v < u + v.
With (2.7), condition (2.3) holds if and only if C is closed.
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2.2. Example

Suppose that the state of a machine which produces two distinct quantities
is represented by the respective rates (1, z2) of production capacity. If demand
rates are (di,dy), if z; < d; < w1, and if yo < 22 < do, it may be that x <y.
But if there is an ¢ such that d; — #; < € and dy — 7, < € < d; — ys, then
dy <z;+e <y +¢eand ys +e < d» < T2 +€ so that x+ (e,e) Ay +(e,¢). Here
(2.6) is violated.

In many applications, including Example 2.1, there exists ¢ € Y such that
¢ < z for all z € Y. Then there is no loss in assuming that £ = 0 where 0 1s
the identity of the group X, in which case 0 X z forallz € V. If (2.7) holds, it
follows that

ycc. (2.10)

2.3. Example

A solar collector on the roof of a house is intended to heat domestic hot
water. If the state of the system is represented by the rate of heat transfer to
the water, then the rate can be negative when the system is working improperly
and in fact there is no obvious “worst state” of this system.

In spite of limitations illustrated by Examples 2.2 and 2.3, conditions (2.6)-
(2.10) can conveniently be exploited when they hold.

For a system of n components having respective state spaces J; C X, 1=
1,...,n, the most natural state spaceis YV = Y1 X -+ X Vp, 80 that a pointy € Y
is simply a vector of component states. Then, X = X1 x --- X &, 1s an Abelian
group under componentwise addition and d(x,y) = [|di1(21,%1),-- -, dn(Zn, Yn)l| is
a metric whenever | - || is a norm on R". With componentwise ordering, (2.4)
and (2.5) are satisfied.

2.4. Example 1.2 (cont.)

Represent the state of the two color pencil by a point in J = [0,1] x [0, 1],
where (z, y) gives the remaining length of red and blue lead. Here (2.7) is satisfied
and C = [0, 00)>.

3. Evaluation of States

The structure function ¢ of a coherent structure can be regarded as an indi-
cator of whether or not the system states meets an appropriate criterion. Then
#, quite naturally, takes the values 0 or 1 and it classifies the states as either
“good” or “bad”.

More generally, let U C ) be the set of “good” states as judged by some
criterion. Because the ordering =< reflects desirability it must be that any state
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better than a good state is also good, i.e.,
z,y€V,zyandzelU = yel. (3.1)

When (3.1) is satisfied, U is said to be an upper set. The complement L of U
with respect to ) is a lower set (i.e., z € L,y <z = y € L) and L contains
all “bad” states. Trivialities are avoided by assuming that U NY and L N are
nonempty so that both “good” and “bad” states exist.

When (2.6) holds and the ordering < has been extended to X, it may be
convenient to replace (3.1) by '

relUandz<y=yeclU (3.1)

whether or not y € ), and to replace L by the complement of U with respect to
A. When this alternative is available, it has no significance apart from possible
convenience.

Since U is an upper set, the indicator function

1, fXeU,
du(z) = {o, if X €L,

1s non-decreasing.

3.1. Example 2.4 (cont.)
The two color pencil works so long as there is some lead of each color and
the pencil is not too short. Here

U={(z,y):2>0,y>0andz +y > a}.

3.2. Example 2.1 (cont.)
Failure of the ceramic heat shield might be regarded as occuring if its thick-
ness anywhere reaches zero, and then the indicator function of the good states is

given by
1, ify(z)>0forallzeC,

$(¥) = {O, otherwise. (3.1)
But also of interest is the function ¢*, where
. _ [0, ifis a condition bad enough to ground the shuttle,
¢"(v) = {1, otherwise. (3.2)

Alternatively, ¢ and ¢* can be replaced by 5 where

_ 0, if ¢(y) =0,
oY) = { 1, if¢(¥) =1, ¢*(¥) =0,
2, if ¢*(¢) = 1.
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In general, a function ¢ taking finitely many values can quite naturally replace
finitely many indicators of lower sets when these sets are nested. However, Ex-
ample 1.4 motivates consideration of two lower sets which can be represented
in the notation of Example 2.4 as Lr = {(z,y) : z+y < a or z = 0},
Lp ={(z,y) : x+y < a or y = 0}; these sets are not nested.

3.3. Example

In an aircraft that can fly on any k of its n engines, a curious passenger will
want to know not just that the aircraft can fly, but also how many engines are
operable. If x = (z,,...,%,) where z; = 0 or 1 according as the ith engine is
failed or not, then the function of interest,

' o(x) =z,

takes on the values 0,1,...,n.
Note here that the multi-state coherent system would be somewhat forced
because the set {0,1,...,n} of appropriate system classifications is not appro-

priate for classifying components.

3.4. Example 2.1 (cont.)
For the rocket nozzle heat shield,

¢(¢) = miny(2) (3.3)

z€C

might be of interest, and this takes on values in a finite interval [0, a].
Just as in the case of indicator function, several multi-valued functions eval-
uating points in ) may be of simultaneous interest.

3.5. Example

A continuous length of pipe is installed for the purpose of conveying water
from the point A to the point B. Represent the state of the system by a function
¥ defined on a cyliner C (the pipe) which gives at each point of C' the burst
pressure of the pipe. If the pipe has a hole at z € C then ¥(z) = 0.

The state of the pipe might be evaluated using any or all of these functions:
#1(2) = 1 or 0 according as the pipe can or cannot convey sufficient
water to meet demand at B,
¢2(1) = maximum rate at which the pipe can convey water,
$3(1p) = fraction of water introduced at A (under a given pressure)
which arrives at B.

Although this system has a complex state space, it has no natural components.
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Of course one could combine several functions used to evaluate the state of
a system and use a single vector-valued function. In general there appears to be
no natural constraint on an evaluating function ¢ except that it take values in a
partially ordered space and be order preserving, i.e., z Xy = ¢(z) < ¢(y).

4. Ordered State Spaces vs Multi-valued Structure Functions

Most generalizations of coherent structures have emphasized a structure
function ¢ taking more than two values, but the purpose of this paper is to
focus on the natural order of the set ) of system states. There are circumstances
in which the two viewpoints coincide: A system with state space ) ordered by <
can be characterized by a multi-valued structure function ¢ if ¢ : V) — R satisfies

z Xy if and only if ¢(z) < ¢(y) wheneverz,y € V. (4.1)

But (4.1) trivially implies that the ordering < satisfies not only (2.1) and (2.2)
but also
r=y or y=Xxuz, (4.2)

and (4.2) is a condition too strong to often hold in practice. Moreover even (2.1),
(2.2) and (4.2) together do not imply the existance of a real valued function ¢
satisfying (4.1) (see Kuratowski (1966), p.26).

If the structure function ¢ is not required to be real-valued but is allowed
to take values in a partially ordered space, say (£, <), then it is always possible
to arrange for the existance of a function ¢ satisfying (4.1); indeed, with (Z, <)
= (Y, X), the identity function is an example. Such a function ¢ does little but
shift attention from the ordering < to < and one may as well start with Z in
place of ) as the system state space.

In Example 3.2, the function defined by (3.1) can be evaluated if the value of
the function defined by (3.3) is known. It would be nice to have one “informative”
order-preserving function ¢, the values of which determine the values of all other
order preserving functions defined on ). Such a function ¢ would serve as a
“multi-valued structure function” in the sense of previous authors.

4.1. Proposition. Suppose that (Y, X) is a pre-ordered space, i.e., < satisfies
(2.1) and (2.2). Let (Z,<) be another pre-ordered space and suppose that ¢ :
Y — Z satisfies (4.1). If (W, <.) is a pre-ordered space and v : Y — W is order
preserving, then there erists a function f : Z — W such that ¥(z) = f(¢(x))
forallz € Y.

Proof. It is convenient to replace J, Z and W by spaces of equivalent classes
determined by the respective pre-orders so that in effect the orderings all satisfy
z <yand y <z =z =y. Then (4.1) guarantees that ¢ has an inverse and

f=v(™).



A SYSTEMS MODEL FOR RELIABILITY STUDIES 557

If such a ¢ satisfying (4.1) exists, one would probably want to replace Y by
Z for representing the system states.

5. Random States and Time Evaluation of a System

To regard the state of a device as random, it is necessary to have a o-field of
subsets of X (or )) so that the notion of measurability is meaningful. Because
there is a topology for X, it is convenient to use the o-field of Borel subsets of
X.

If the device operates over time, then the state X (t) of the device at time ?
is ordinarily a random variable and {X(t),t > 0} is a stochastic process taking
values in ).

Suppose that the initial state m of the device is fixed, i.e.,

P{X(0) =m} =1 for some m € ). (5.1)

In case O is taken to be the worst possible state, it follows that m > 0. In most
applications,
zeEY=>zx=<m,

so that the device will never be in a better state than it is at time ¢ = 0, L.e.,
P{X(t) X mfor allt > 0} = 1. (5.2)
To avoid measure theoretic problems, assume that
sample paths are right continuous. (5.3)
In the absence of repair it is often possible to deterfnine on physical grounds that
P{X(s) = X(t)for alls <t} = 1. (5.4)

Of course (5.1) and (5.4) imply (5.2).

Under the conditions (2.6) and (5.1)-(5.4), Y (t) = m — X (t) can be regarded
as the degradation by time t, and the process Y = {Y'(t),t > 0} satisfies (5.3) as
well as

P{Y(0) =0} =1, (5.1
P{Y(t) = Ofor allt > 0} = 1, (5.2")
P{Y(s) 2 Y(t)for alls <t} =1. (5.3")

Because other statements about X can be similarly translated to statements
about Y and conversely, there is no need to study both processes. See, e.g.,
Proposition 5.3 below.
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In most studies of reliability, the concepts of “time to failure” and “life
distribution” play an important role. In the context of the model discussed in
this paper, these concepts are preserved with the aid of the following notation
and definition.

5.1. Notation
For any measurable set V C X, let

Ty =inf{t: X(t) € V} (Ty =ooif {t: X(t) € V} = 0). (5.5)

For F the class of distributions with increasing hazard rate average and X =
R, the following definition is essentially due to Ross (1979). Various extensions
have been proposed, e.g., by Block and Savits (1981) and Marshall and Shaked
(1986b).

5.2. Definition. Let F be a class of univariate distribution functions and let
X = {X(t),t > 0} be a stochastic process taking values in J). Then

(1) X is said to be an upper F-process if T; has a distribution in F for all closed
upper sets U such that P{Ty < oo} > 0,

(ii) X is said to be a lower F-process if T, has a distribution in F for all closed
lower sets L such that P{T; < oo} > 0.

In the remainder of this section, it is assumed without further mention that
(2.4) and (2.5) are satisfied.

5.3. Proposition. Suppose that <X satisfies (2.6). If X is an upper (lower) F
process, m € X and Y (t) = m — X(t), then Y is a lower (upper) F process.

Proof. Suppose X is an upper F process and L is a closed lower set. Then
inf{t:m— X(t) e L} = inf{t: X(t) € m — L},

and since m — L is a closed upper set, {t : m — X (t) € L} has a distribution in
F. If X is a lower F process the proof is similar.

Upper NBU (new better than used) processes have been discussed by Marshall
and Shaked (1986b), and upper IHRA (increasing hazard rate average) processes
have been discussed by Shaked and Shanthikumar (1987). A number of examples
can be found in these papers, where it is usually assumed that X is a separable
Banach space, (2.6) holds, and C is a closed convex cone.

In this context, Marshall and Shaked (1986b) prove that if ¥; and Y, are
independent upper NBU processes on ), and ), respectively, which satisfy (5.1’ ),
(5.2'), (5.3) and (5.4), then (Y;,Y,) is an upper NBU process on V; x V,. The
remainder of this section is devoted to showing that the corresponding result is
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true for IHRA processes. As shown in Corollary 5.7, this result generalizes the
well known theorem that if T},..., T, are independent IHRA random variables
and 7 is a coherent life function of order n, then 7(T%,...,T,) has an IHRA
distribution.

5.4. Lemma. If X satisfies (5.3) and (5.4), then for all closed lower sets L,

T, >t < X(t) € L. (5.6)

Proof. Suppose T, > t. Then X(s) ¢ L for all s <t and in particular X (t) € L.
On the other hand, if X(t) € L, then by (5.4) X(s) ¢ L for all s <'¢ and so
T, > t. Suppose T;, = t; then there exist t; > t2 2 -+~ such that X (¢;) € L and
t. — t. By right continuity (5.3), lim;_ X (t;) = X(t), and since L is closed,
this means X (t) € L, a contradiction. Consequently T # t so that T, > t.

In the following it is convenient to use the notation
P,(A) = P{X(u) € A} (5.7)
for all Borel subsets A of X'. For the case X = R™ and C = [0, 00)", the following
theorem is due to Block and Savits (1981).

5.5. Theorem. Suppose that X and Y satisfy (2.4) and (2.5) and that X is a
process which satisfies (5.1)-(5.4). Then X is a lower IHRA process if and only

if

Eh(X(t)) £ EY*h*(X(at)) (5.8)
for all o« € (0,1}, t > 0 and all Borel measurable nonnegative nondecreasing
functions h such that the ezpectations exist.
Proof. Suppose that (5.8) holds. Let L be a closed lower set and let h be the
indicator function of L°. Then

P{X(t) ¢ L} = ER(X (1)) < EY*h%(X (1)) = [P{X(at) ¢ L})Ye.

By Lemma 5.4 this is equivalent to

P{Ty >t} < [P{Ty > at}]'/*;

thus X is an IHRA process.
Suppose that X is an IHRA process and let h = Iy be the indicator function
of an open upper set U. Then

Eh(X(t)) = P{X(t) € U} = P{Ty > t} < [P{Tye > at}]/®
= [P{X(at) € UY"/* = EV*h*(X (at)).
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Thus (5.8) holds when h is the indicator function of an open upper set.

Let h = Iy be the indicator function of a measurable upper set and let
L = U*. Since X is a complete separable metric space it follows (Ash (1972,
p.180)) that for fixed t > 0, a € (0,1) and € > 0 there exists a compact set
C. C L such that

P,(C.)>P,(L)y—€¢ for u=at or u=t.
Let C7 = {z: 2 < c for some c € C.}. Then C. C C7 C L and
P,(CI)>P,(L)—¢ for u=oat or u=t.

To see that C is closed, let y;,ys,... be a sequence of points in C- which
converge to y and let c;,c,,... be a sequence of points in C. such that ¢; >
Y1 =1,2,.... Since C, is compact, {c;}{2, has a convergent subsequencs {c;, }32,
converging to ¢ € C,. Since ¢;, = y;,,k =1,2,..., it follows from (2.3) that ¢ > y
ory € C7. Thus C_ is closed.

Let U, = (C7 ) so that U C U,. Then for u = ot or u = t,

P(U)=1=P,(L) 21~ P,(C])—e=P,(U.) -
Thus,
[Pae(U)]® 2 [Par(Ue) — €]V 2 {[PUL)]" = e}/ 2 {[P(U)]* - e}V,
Now let € — 0 to conclude that
[Pt (U)]V* > PU).

This proves (5.8) for indicator functions of measurable upper sets.
Now, let h be a function of the form h = > j=1aih;, where a; > 0 and h; is
the indicator function of a measurable upper set Uj,j=1,...,m. For such an h,

Eh(X(t) ZaJEh (X(t) = Zajpt(U gi )1/

< {Za?Pat(Uj)] e =E1/aha(X(at))'

To complete the proof, use the Lebesgue monotone convergence theorem.

5.6. Theorem. Suppose that for i = 1,2, X; and ); satisfy (2.4) and (2.5) for
the ordering <;. Let X; = {X;(t),t > 0} be a lower IHRA process on V; which
satisfies (5.1), (5.3) and (5.4), and suppose that X, X, are independent. Then
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(X1,X3) is a lower IHRA process on Y, x Yo C X) x Xy which satisfies (5.1),
(5.3) and (5.4) with the product topology and componentwise ordering.

Proof. If h is a Borel measurable nonnegative increasing function defined on
X; x X, then because X; and X, are independent, it follows from Theorem 5.5
that

Eh(X1(t), X2(t)) = E1[Ea2(R(X1(t), X2(1))] < Er[Exh*(Xa(t), X2(at))]!/®
< {EyExh® (X, (at), Xo(at)) /e

5.7. Corollary. If Ty,...,T, are independent IHRA random variables and
7 is the life function of a coherent system, then 7(Ty,...,T,) has an IHRA
distribution.

Proof. Let X; =R, C; = [0,00), and

1, ift<T;,
X"(t)'{o, 1> T,

i =1,...,n. Because T; is IHRA, X, is an IHRA process, : = 1,...,n. Let
L = {x: 7(x) < 0}. Because 7 is increasing, L is a lower subset of R™. By
Theorem 5.6, Ty = inf{t : (X;(t),...,X.(t)) € L} has an IHRA distribution.
But 7 extends the corresponding structure function ¢ and

Ty = inf{t : $(X1(t), ..., Xn(t) = 0} = 7(Ty, ..., Tp).

Note. Here and in the following, “coherent life functions” are as defined by
Esary and Marshall (1970). Such functions can have irrelevant components.

6. Multivariate Properties

As was mentioned in the introduction, it is often desirable to classify the state
of a device as “good” or “bad” according to several criteria. Particularly when
one classification represents “functioning” or “failed” and other classifications
are used to warn of imminent failure, joint distributions of times of entrance
into corresponding lower sets are of interest. These considerations motivate the
following multivariate version of Definition 5.2.

6.1. Definition. Let F be a class of multivariate distributions, and let X =
{X(t),t > 0} be a stochastic process taking values in }. Then

(i) X is said to be an upper F-process if Ty, , . .., Ty, have a joint-distribution in
F for all finite collections Uy, ..., U,, of closed upper sets for which P{Ty, <
oo} >0,i=1,...,m;
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(i1) X is said to be a lower F-process if Ty, ..., T, have a joint-distribution in
F for all finite collections L,. .., L,, of closed lower sets such that P{Ty, <
o} >0,i=1,...,m.

As in the one dimensional case there is a duality between upper and lower F-
processes and here, only lower F-processes are discussed.

In the following, (Xi,...,Xm) € F means that the joint distribution of
Xi,..., X, isin F.

6.2. Theorem. Let F be a class of univariate distributions. Then (i) X is a
lower F-process if and only if (ii) for every finite collection L4, ..., L,, of closed
lower sets and every coherent life function 7 of order m, 7(1y,,...,T¢,,) € F.

Proof. Because 7(71y,,...,Tr,.) = T1, is a coherent life function, the fact that
(i1) implies (i) is trivial. Suppose (i) and let 7 have the minimal path represen-
tation 7(ty,...,t,) = MaX;<e<p, Minjep, t;. Then L = Ni<y<p Ujep, L; is a closed
lower set such that Ty, = 7(Tt,,...,T¢..)-

Theorem 6.2 is given by Marshall and Shaked (1986b) for upper NBU pro-
cesses where the proof is the same.

Theorem 6.2 shows that even Definition 5.2 has multivariate implications
because the joint distribution of T7,,...,7,,, must have the property therein
described. The class of joint distributions for which 7(73,...,T,,) € F for all
coherent life functions 7 of order m is denoted by C3(F) by Marshall and Shaked
(1986a). If X € F, then it is always true that (X,...,X) € C3(F), but vectors
with independent components in F are in C3(F) only for families F of distribu-
tions “closed under the formation of coherent systems”.

Following Marshall and Shaked (1986a), write (17, ..., ) € Cy4(F) to mean
that for all increasing homogeneous functions g : [0,00)™ — [0,00), g(T1,...,Tm)
€ F.

Upper C;(IHRA)-processes are said to be “strongly IFRA” by Shaked and
Shanthikumar (1987). They provide examples of such processes.

It is of interest to see that under some circumstances there is a counterpart to
Theorem 5.6 for lower C,(THRA)-processes and lower Cy(NBU)-processes. This
result requires the following preliminary result.

Let A, ={z:2 <Xz}, T, ={z: 2z > z} and for any set A, denote the interior
of A by A°.

6.3. Lemma. Suppose that X and Y satisfy (2.4) and (2.5), and suppose that
forallz € ),

x belongs to the closure of Y. (6.1)



A SYSTEMS MODEL FOR RELIABILITY STUDIES 563

Let F be a class of multivariate distributions such that

F s closed under weak limits, (6.2)
and
ifU=(Uy,...,Un) €eF, V=(W,...,Vy) € F where U and V are
independent, then (min(Uy, V1), ..., min(Un,, Vy)) € F. (6.3)

Let X be a process satisfying (5.1), (5.3) and (5.4). Then, the following are
equivalent:

Tyr,,...,Tr, have a joint distribution in F for all finite collections Ly, ...,
L., of closed lower sets; (6.4)
Ty,,..- T, have a joint distribution in F for all finite collections L, ...,
L,. of closed lower sets having the form A, for some z1,...,zm € Y. (6.5)

Proof. Trivially, (6.4) implies (6.5). Suppose that (6.5) holds, let Ly, ..., L, be
nonempty closed lower sets and let

Ly = {z:d(z,y) < 1/kfor somey € L;},i=1,....,m, k=1,2,....

Because X is separable, there is a countable dense subset D of X. Let L; , ND =
{d1ix,doiny---},¢ = 1,...,m k = 1,2,.... For typographical reasons write
Ak in place of Ag,,,. Then U2, Agix C Lix. To see also that L, C U2 Agik
let z € L;j. Since L, is open, it follows that Y3 N L;; is open. By (6.1), =
is in the closure of Y?. Since z is also in the interior of L;, this means that
Y9N L4 # ¢. Thus, there exists d € T3 N Lz N D; then d € T, that is z € Ay
and d € Lz ND. Consequently Lix CURApik, and 50 Lix = U2 Ay k.

Let L(J) ' —1Agik. Then T o = = miny<s<j Ta,, .- By hypothesis (6.5),

T m,i = 1,...,m, have a joint dlstrlbutlon in . Since F is closed under

L
weak limits it follows that lim;_, o TL(’) i =1,...,m, have a joint distribution

in 7. But lim;_ TLm =1T,, (Blumenthal and Getoor (1968, p.53)). Since

limg—moo I1,, = T1,, @ = 1,...,m, it follows that T;.,i=1,...,m, have a joint
distribution in F.

A special case of the above lemma forms a part of Theorem 3.1 of Marshall
and Shaked (1986b). They make use of the fact that if X" is a linear space and
< satisfies (2.7) where C is a convex cone with nonempty interior, then (6.1) is
satisfied.

6.4. Theorem. Suppose that for i = 1,2, X;, Vi and =X; satisfy (2.4), (2.5) and
(6.1); suppose also that X, is a process on Y; which satisfies (5.1), (5.3) and
(5.4). Let F be a class of multivariate distributions satisfying (6.2), (6.3) and
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ifU = (Uy,...,Un) € F,V=(WV,...,V,,) € F where U and V are independent,
then (max(Uy, Vy),...,max(U,,, V) € F. (6.6)

If X 1s a lower F-process, i = 1,2, and X,, X, are independent, then X =
(X1, X3) is a lower F-process.

Proof. For any closed lower subset L of J; x ), let T be given by (5.5), and
similarly for any closed lower subset L) of });, let Ty be given by (5.5) with
X; in place of X, i = 1,2. According to Lemma 6.3, it is sufficient to show that
(Tv,,...,Ty1,,) € F whenever each L, has the form Lﬁvl) X ng) with

LY =A, i=1,2

But Ty, = max(T

rwT ). Because of (6.6), it follows that X is a lower F-
process. o

Classes F of multivariate distributions which satisfy the conditions of The-
orem 6.4 include the classes, G3(IHRA), G3(NBU), G4(IHRA), G,(NBU),
C4(IHRA) and C4(NBU) of Marshall and Shaked (1986a).
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