Statistica Sinica 4(1994), 169-185

ESTIMATION IN THE EXPONENTIAL FAMILY IN
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Abstract: The estimation of the common odds ratio in one-to-one matched case-
control studies is a typical example of the trade-off between bias and precision in
public health research. Liang and Zeger (1988) proposed an estimator through esti-
mating functions. An alternative approach motivated by reducing asymptotic MSE
was presented by Kalish (1990). In this paper, a finite sample approach is conducted
under a more general framework. Comparisons for pair-matched case-control studies
are made among these three estimators in terms of bias, MSE, coverage probabil-
ity, and length of confidence interval. Extension to the multidimensional case is also
presented.
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1. Introduction

Very often, when statisticians face the problem of making inferences in multi-
parameter statistical models, attention is usually focused on only one or two of the
parameters, called structual parameters, the others being regarded as nuisance
(or incidental) parameters necessary to characterize the scientific problem but of
no intrinsic interest. To describe the situation in general, consider a sequence of
independent random vectors Y1, Y3, Y3,.... The distribution of Y; depends on
and «;, where the value of 3 is independent of 1, while the value of a; changes with
i. The real-valued parameter J is of interest while the values a1, a3, 3,... are
regarded as nuisance parameters. In this setting Neyman and Scott (1948) showed
that simultaneous estimation of 8 and the a’s via the maximum likelihood method
fails to have the usual asymptotic properties. In particular, B could fail to be
consistent. A typical example of this kind is the estimation of a common odds ratio
in a series of K 2 x 2 tables with sparse data. Here the nuisance parameters, a;,
i=1,2,...,K, are necessary to characterize strata effects. Table 1 presents the
usual format for displaying data from a one-to-one matched case-control study, a
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cross-classification of case-control pairs by joint exposure status. Each frequency
in Table 1 represents the number of pairs. For example, there are b out of K

(= a + b+ ¢ + d) pairs in which the case is exposed and the matched control is
nonexposed.

Table 1. Cross-classification of the K case-control pairs by joint exposure status

Control
Case Exposed Nonexposed  Total
Exposed a b a+b
Nonexposed c d c+d
Total a+c b+d K pairs

A common solution of estimating the structual parameter, 3, is the applica-
tion of the conditional likelihood approach achieved by conditioning the data on
the minimum sufficient statistics T for nuisance parameters (Andersen (1970)).
The merit of this approach is to focus the inference on a genuine likelihood which
depends only on the parameter of interest, so the effects of nuisance parameters
can be reduced. However, it is understandably frustrating for researchers to use
only a subset of the data given the effort made to collect the whole data, es-
pecially when the subset is relatively small compared to the whole data set. A
nice illustrative example is the one from a matched study of endometrial can-
cer and oral conjugated estrogen use reported in Schlesselman (1982). For this
example the entries are @ = 12, b = 43, ¢ = 7, d = 121. Less than one-third
of 183 pairs was used for the conditional estimate (Bs = In(b/c) = 1.82, with
s.e.(Bs) = (1/b+1/c)*/? = 0.4076). An alternative approach is ignoring match-
ing and using Ap = In[(a + b)(b+d)/((a+c)(c+ d))] as an estimator for 8. For
the endometrial cancer example, Ap equals 1.31 with s.e. (Bp) = 0.291. A pri-
mary reason that Bp has seldomly been used is that it is biased except when the
matching (or stratifying) is indeed unnecessary (Breslow and Day (1980, p.271)).
However, if the strata are indeed homogeneous, Bp would be preferred, due to its
higher precision. The typical trade-off between bias and precision can be seen in
this case. " '

It seems sensible to choose an estimator which combines the unbiased prop-
erty of Bs and the higher precision of Bp. Kalish (1990) proposed an opti-
mal estimator within the family of weighted averages between [95 and Bp which
minimizes the asymptotic mean squared error (AMSE), a criterion based solely
on the large sample property. Instead of working on Bs and ﬁp, Liang and
Zeger (1988) used the corresponding estimating functions, Hs(8) = b — ceP and
Hp(B) = (a + b)(b + d) — (a + c)(c + d)e?, respectively. After establishing a
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heuristic criterion, they ended up with a weight, Wrz = bc/(ad). That is, the
estimating function they used for estimating G is

Hyz(8) = (1 - Wrz)Hs(8) — WrzHp(B)/K. (1.1)

Both methods significantly reduce bias and improve precision simultaneously,
compared to the method using either BS or Bp alone. However, the estimator
proposed by Kalish (1990), Bx, is based on large sample theory. This is unsatis-
factory, at least conceptually, as the problem one is facing is purely finite sample.
On the other hand, the estimator presented by Liang and Zeger, ﬁ 1z, does not
satisfy a crucial criterion, namely, it does not converge to 3, (the true § value)
when K — 00. '

In this paper, under a more general framework, we consider a family of
weighted averages between two standardized estimating functions. One is ob-
tained from the conditional likelihood approach, the other is derived from the
profile likelihood method in which the heterogeneity among strata is ignored. An
“optimal” weight was selected on the basis of the criterion proposed by Godambe
(1960) and Godambe and Thompson (1974). We show, in §2.2 and §2.3, some
desirable properties of the proposed estimator. In Section 3.1, application to
the endometrial cancer study is presented. In Section 3.2, comparisons between
this estimator, Liang and Zeger’s estimator, and Kalish’s estimator are made via
simulations. Extension to the multidimensional case is presented in Section 4,
followed by discussion.

2. The Proposed Method
2.1. Notations and estimating functions

We consider the problem of estimating 3, the parameter of interest, in the
presence of nuisance parameters, denoted by o, i = 1,2, ..., K. More specifically,
suppose that there are K independent vectors of observations Y, Yo ..., Yk,
where the Y;, each with dimension r;, come from a relatively homogeneous stra-
tum, while the strata are heterogeneous. It is assumed that given a;, the ith
vector of observations Y; has a joint density f; of the form

fily;; B, ci) = exp{BS; + aTi — $i(B, i)} (2.1)

It is clear that S; and T are sufficient statistics for (8, ;) in the ith stratum.
Furthermore, for fixed 3, T; is a sufficient statistic for a;.

To estimate 3, Lindsay (1982) suggests the use of a “conditional score” func-
tion to eliminate the nuisance parameters. Here, for the ith stratum, the condi-
tional score is defined as

his(B) = U; — E(U; | T:; B),
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which is the residual of the 8-score, U; = 0log f;/90, under its best prediction by
a function of T;. It can also be derived as the S-derivative of the conditional log
likelihood of the data given T;. For (2.1), we can rewrite the above conditional
score function as

his(B) = S; — E(Si | Ty; B),

which is functionally independent of ;. Therefore, an estimating function based
on K strata is

K
Hs(B) => his(B) = Z[S E(S; | T;; B)), (2.2)
1=1 =1

where the subindex “S” stands for “Stratified”. When the strata are heteroge-
neous, this conditional score function has previously been shown to generate the
optimal estimating equation for 8 when the conditioning statistic is complete
and sufficient for the nuisance parameters (Godambe (1976)), which is true in
the exponential family considered here.

With homogeneous strata, i.e. a; = ¢, for all i = 1,2,..., K; or, more
formally, we may assume that the a;’s are unobserved i.i.d. random variables
with mean o and variance # = 0. The likelihood function reduces to

X .
I1 fi(yi; B, @) = exp {ﬂZSi +aY Ti—Y ¢i(B, a)}-
=1

Thus, 3°S; and }°T; are sufficient statistics for (8,a) when 6 = 0. In this
situation, the maximum likelihood estimate of G is seen as the solution of the
profile score equation, i.e.

Hp(8) = X [5i - 2L = 5 hip(g) =, (23)

where &(f) is the maximum likelihood estimate of o given 8. We note that for
the one-to-one matched study mentioned in §1, Hp() reduces to (a+b)(b+d) —
(a+ c)(c+ d)eP.

2.2. The proposed estimator

In this subsection, we propose an optimal estimator within the family of wei-
ghted averages of the standardized versions of Hs(8) and Hp(3). The standard-
ization, namely, H3(8) = [B(—258))|"1Hy(8) and Hp(6) = [E(- 2Hp(B)))
Hp(f), is necessary to insure that they are comparable; see for example (1 1) Mo-
reover, we note that it is appropriate to allow the rescaling factors, [E(— M)]

and [E(— M)] ~1 to depend on 3, because, we believe that it is more similar to
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the original estimating function in spirit to compare the method of substitution
of an estimator. The resulting estimating functions, H5(0) and Hp(B), are the so
called “standardized” estimating functions (see Godambe (1976) for reference).
Thus, we have a family of estimating functions for 8 defined as follows

H(W,B) = (1 - W)H§(B) + WHp(B),
where 0 < W < 1. Moreover, we choose W* to minimize

QW) = E[H*(W, B)],

the expected mean square of H(W, 8), where the expectation is taken with respect
to Y and a.

The reason for choosing this criterion is that we eventually solve the estimat-
ing equation, H(W, 8) =0, for 8 to obtain an estimator. In other words, we want
the value of H(W, B) to cluster around 0, as much as possible (i.e. E(H*(W, B))
should be as small as possible). Furthermore, it is important to note that both
terms in the average have been standardized by their own scale.

After a straightforward calculation, it is easily seen that the optimal weight

I G ) B Gl )
B(- 22e)] ™ ~2[B( - o) T _EEO)

ap op (B(- 228

is

(2.4)

The “optimal” estimator we propose, denoted by B , is the one which satisfies the
following estimating equation

HW*,B) = (1 - W*)H3() + W*Hp(8) = 0.

Note that since W* dep'ends on 3 as well, an iteration procedure is needed
which is outlined as follows

Step 1. Take 8= Bs.

Step 2. Compute

L (2 (- %)) - [ (- %))

[Zi ( - %%i\ﬁ:pﬁ)]—l - 2[21' ( B %%R\ﬁ=ﬁ)]_1 - [Z(.-(zii%i;i):)]?

Note that W* is restricted to the interval [0, 1].
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Step 3. Update 3 by solving I:I(W*,ﬂ) = 0, where

29,9 = - W) - S2] " w4

the empirical version of H(W*, 8).

_ 9Hp

2e]” et

Step 4. Repeat Steps 2 and 3, until convergence is evident.

The above iterative procedure has been used by Williams (1982) and Breslow
(1984) for logistic and log-linear models with extra variation, respectively. It was
also used by Liang and Waclawiw (1990) to extend Stein’s estimating procedure
through the use of estimating functions.

2.3. Some properties of W* and j
For fixed § = Var(c;) > 0, we note that both E(0Hgs/83) and E(8Hp/8)
are Op(K'), while
E(H}(B))/E*(-8Hp(B)/8B) = Op(1).

Thus W* in (2.4) approaches 0 as K — oo, i.e. W* = 0p(1). That is, H(W*, §)
is dominated by Hg(f) as K increases. On the other hand, with fixed K , it can
be shown easily (Patefield (1977), Liang (1984)) that

E(H}(B)) = E(-8Hp/8p)

when 6§ = 0. Consequently, W* approaches 1 and 8 — fp in probability as
¢ — 0. In other words, when there is no or a little heterogeneity among strata,
the optimal estimator of 3 reduces to Sp as desired.

Regarding the large sample distribution of 3, we have

Theorem 1. The two estimators A and Bs are asymptotically equivalent, i.e.
VEK(f — fs) = 0,(1). (2.5)

A sketch of the proof is given in Appendix I. The result of the following corollary
can be seen easily as we note that VK (8s — 8,) — N(0, V1) (Andersen (1970)).

Corollary 1. As K — oo, one has
VE(B - 8o) 5 N(0,V5h),

where

Vs = lim E(-0Hs(B)/0Blp=p,)/ K.
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3. Application to One-to-One Matched Case-Control Studies

For one-to-one matched case-control studies, one has
HW,B) x (1 - W)(b/c—€P)+ Wia+b)(b+d)/((a+c)c+d) - €.
Thus, for given W,
B = (1 — W)b/c+ W(a+b)(b+d)/[(a + c)(c+ d)], (3.1)

a weighted combination between ePs and eﬂP, where the weight W is given in
Appendix II. As discussed in §2.2, iterations between (3.1) and W are employed
until convergence is evident.

3.1. Applications to the endometrial cancer data

We now apply the methods discussed in the paper to the endometrial cancer
and oral conjugated estrogen use example introduced in §1. Results are summa-
rized in Table 2. The compromlse between bias and precision is achieved in this
example by using either Bk, Bz, or the proposed estimator B. For example the
estimated 95% confidence interval for the common odds ratio e’ based on the
proposed method ranges roughly from 3 to 10 rather than 3 to 14 by using BS or
2 to 7 by using Bp.

To examine how typical the above described pattern may be, a simulation was
conducted in which data were generated from a distribution with the parameter
values observed for the endometrial data. Thus, 8 = In(Pyo/Fo1) = 1.82, the log
odds ratio; ¢ = In[P11Poo/(PioPo1)] = 1.57, a measure of heterogeneity across
pairs, and v = Pi; + Po; = 0.1, the probability of exposure for a control (Liang
and Zeger (1988), mistakenly used 0.9). Here

Il

Py Pr(Yn=1Y= k) (LLk=0,1)

— /eai(l+k)+ﬂl(1+eai+ﬁ)—1(1+eai)—1dF(ai),

where F' is the unspecified distribution for a;. The simulation shown in Table 3
reveals that Bp is subject to serious bias in this case, while its variance is less
than one-third that of ,35. The negative bias and increased precision, however,
result in very poor coverage probabilities for Bp. The nominal 2.5% lower and
upper intervals for Bs have actual error rates of 0.6% and 3.0%, a result of high
variability of Bs. On the other hand, the three compromise estimators performed
reasonably well regarding mean squared error. The proposed estimator has a
slight edge in terms of averaged confidence interval length.
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3.2. Simulation study

A simulation study was conducted to compare the finite-sample performances
of Bs, Bp, BLz, Bk, and B. For each value of P = (Py1, Pio, Po1, Poo), which
was chosen from a subset of all possible values investigated by Liang and Zeger
(1988), 1,000 independent realizations of T = (a,b,c,d) were generated from a
multinomial distribution with probability P and sample size K = 60,100, and
200. To avoid numerical problems, we increased both b and ¢ by 0.5 when either
b or ¢ was equal to zero.

The results for Bs, Bp, ,BLZ, and BK are consistent with those in Liang and
Zeger (1988) and Kalish (1990). For this reason, we focus on the comparison
between Brz, Bk, and 3. Results from Tables 4 and 5 suggest that in general Bk
and the proposed estimator B are comparable in terms of bias and mean squared
errors, with both showing improvement over BL z.

Tables 6 and 7 present, respectively, the lower and upper confidence limits for
the true coverage probabilities of a nominal 95% confidence interval, respectively.
Entries in these two tables are the observed probabilities of failing to cover the
true § minus the nominal probability (0.025), divided by 0.005, the standard
deviation of the estimate based on 1,000 replications. All values are rounded
to the nearest integer. Except when the true § is zero, the proposed method
appears to perform reasonably well relative to the other two procedures. These
discrepancies are especially pronounced in the upper limit coverage when [ = 2.

4. Extension to the Multidimensional Case

This section discusses briefly the extension of the results in §2 to the multidi-
mensional case, i.e. 3 is a ¢ x 1 vector. This is common in matched case-control
studies where investigators search for the joint effects of several risk factors. We
adopt the same assumptions as in §2 except now that S;, and hence Hg and Hp,
are of dimension g. Consequently one needs to modify the optimality criterion
for choosing W* by minimizing instead

QW) = Tr{E[H(W, B)H'(W, B)}},

where Tr{-} denotes the trace of a ¢ x ¢ matrix. Tedious, yet straightforward,
calculation gives

o) (B
Tr{[E( - %},ﬁ)]“l} —21r{[B( - %’%ﬂ)]'l} + Tr{E[HLHL])

Again, it can be shown that (i) W* approaches 0 as K — oo and (i) W* ap-
proaches 1 as Var(a;) =6 — 0.
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It should be noted that there are two major issues for extending to the
multivariate case. The first is the choice of weight, W, among real-valued, real
vector-valued, and matrix weight. We used real-valued weight for simplicity.
The second is in regard to the choice of optimal criteria, namely M-optimality
(based on non-negative definite matrix), D-optimality (based on determinant),
and T-optimality (based on trace). All these three optimality definitions refer
to the variance-covariance matrix of a matrix-standardized unbiased statistical
estimation function (see Chandrasekar & Kale (1984)). Our weight is optimal if
one accepts the use of trace as a criterion.

5. Discussion

Stratification has been proved to be a useful tool in accounting for confound-
ing effects in observational studies. Potential problems exist when many strata
are uninformative due to either over stratification or sparse data. On the other
hand, ignoring stratification in the analysis stage generally results in biased esti-
mation. In this note we have introduced an estimating procedure which serves to
compromise between bias and precision. This procedure has empirical Bayes fla-
vor in that the weight W* is dictated by the degree of heterogeneity among strata
which can be estimated empirically. We have presented, in §2.3, some statisti-
cal properties of the proposed method, which are intuitively desirable. Through
simulations, we have demonstrated that the proposed method performs well in
one-to-one matched case-control studies.

The notion of trade-off between bias and precision is well recognized in the
statistical literature. We believe that the proposed method, which accomodates
the estimating function method, is intuitive and likely to be useful in many ap-
plications. Work is currently under way in applying the same method to survival
data from clinical trials and family studies, where one encounters a similar situ-
ation, namely, there are many strata which are sparse.
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Table 2. Estimates and standard errors based on ﬁs, Bp, BLZ, ﬁK and the proposed
estimator 3 for the endometrial cancer data (Schlesselman (1982)).

Bs Bp BLz Bk A
1.815 1.311 1.674 1.686 1.670
(0.408) (0.291) (0.379) (0.358) (0.327)
Estimated W 0 1 0.207 0.257 0.255

95% confidence
interval for e#  (2.76,13.66) (2.10,6.56) (2.54,11.21) (2.68,10.89) (2.80,10.08)

Table 3. Simulation results for comparing ﬁs, Bp, BLZ, BK, and ,3, for a population
similar to that of the endometrial cancer example where § = 1.82, ¢ = 1.57, v = 0.1,
with the sample size K = 183 and 1000 replications.

Bs Bp Brz Bx B

E(B) 1.87 1.33 1.74 1.74 1.74
Var(B) 0.19 0.06 0.17 0.17 0.18
bias(%) 500  —49.00 —800  —800  —8.00
MSE 0.20 0.30 0.18 0.18 0.19
Error rate (%) of nominal

2.5% lower C.I. 0.60 0.00 0.10 0.50 0.50
Error rate (%) of nominal

2.5% upper C.I 3.00 48.60 7.20 8.70 8.70

Ratio of average confidence
interval length to 8 1.21 0.79 1.12 1.04 1.00
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Table 5. Mean squared errors for ,BL z, Bk, B.

MSE x 100
v =0.1 v=10.3 v=0.5
K ¢ |Brz Bx B |Brz Bx B |Biz Bk B
60 0.00 54 45 39 16 14 15 15 13 14
0.25 52 43 37 19 17 18 15 13 15
1.00 56 43 43 21 15 18 17 13 15
0.00 37 32 31 16 15 15 21 19 20
0.25 42 33 34 20 19 20 18 17 18
1.00 39 33 34 24 25 24 21 22 21
0.00 37 31 32 27 25 27 31 28 29
0.25 37 32 32 26 25 28 32 29 31
1.00 34 30 32 31 30 33 31 29 32
100 000 29 25 24| 10 9 10 9 8 9
0.25 27 24 23 10 9 9 8 7 8
1.00 30 24 26 11 8 9 9 7 8
0.00 22 20 20 9 9 9 11 11 11
0.25 23 20 21 10 11 10 10 10 10
1.00 25 22 23 13 15 14 12 14 13
0.00 24 21 24 14 15 15 19 18 19
0.25 22 20 22 13 14 14 18 18 19
1.00| 30 27 30 19 19 20| 24 23 26
200 0.00 13 12 12 5 4 5 4 4 4
0.25 12 11 12 5 ) 5 4 4 4
1.00 13 11 12 6 4 5 4 4 4
0.00 9 9 9 5 5 5 5 5 5
0.25 10 10 10 5 5 5 5 5 5
1.00 11 11 11 7 8 7 6 7 7
0.00 13 11 13 4 2 3 6 2 4
0.25 10 10 10 6 7 7 8 9 9
1.00 13 14 14 11 10 11 12 12 13
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Table 6. Actual o level of nominal 2.5% lower confidence limits for BLz, Bk, and 8.
Entries are the observed probabilities of failing to cover the true 8 minus the nominal
probability (.025), divided by 0.005, the standard deviation of the estimate based on

1,000 replications.

Transformed error rates for
lower confidence limit
v=0.1 =03 v=0.5

K B ¢ |Bz Bx B Bz Bx B | Bz Bk B
60 O 0.00| -1 0 -3} -1 0 -4 0 0o -2
025 | -1 0 -4 1 1 -2 0 0 -1

1.00 | -2 -1 -3 0 0 1 0 1 1

1 000} -1 -1 -2 -1 -1 -3 1 2 -1
02| -3 -1 0 -2 -1 0 -2 -1 -2

100 -5 -3 -2 | -4 -2 4 -4 =2 0

2 000 -2 -1 —4| -2 0 10 -4 -2 -3
025 -2 -3 -5| -3 -1 121 -4 -1 =2

100 -4 -4 -5| -5 =5 14| -5 -4 =2

100 0 0.00| -1 0 -3 0 0 -2 1 1 -1
0.25 | -1 0 -3 0 o -2| -1 -1 -2

1.00 | -1 0 -2 -1 0 0 0 1 0

1 000 O 0 -2 0 0o -2 3 -1
025 | -2 -2 -2 -1 0 -1 0 0 -2

1.00| -3 -2 0| -3 -2 0| -3 -1 0

2 0.00| -3 0 3 -2 0 0| -3 -1 0
025} -4 -3 2|1 -3 -1 0| -4 -1 0

1.00 | -5 -5 10 | -5 ) 21 -5 —4 9

200 0 0.00 1 1 -2 -1 -1 -2 0 0o -1
0.25 0 0o -3 2 2 0 1 1 0

1.00 0 0o -1 0 0 0 1 1 2

1 000l -1 -1 -3| 1 2 -—2| 3 4 -1
0.25 0 1 0] -1 o -2| -2 -2 -4

1.00 | -1 0 1| -2 -1 1| —4 —2 -1

2 0.00 -2 5 41 -1 0 0 0 0 -1
025 | —4 -2 0| -2 -1 -1 -2 -1 0

100 -4 -3 3| -5 -3 2| -4 -2 7
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Table 7. Actual a level of nominal 2.5% upper. confidence limits for ,éL Z, ﬁK, and B
Entries are the observed probabilities of failing to cover the true 8 minus the nominal
probability (.025), divided by 0.005, the standard deviation of the estimate based on

1,000 replications.

Transformed error rates for
upper confidence limit
¥=0.1 v=0.3 v=0.5

K B ¢ |Brz Bx B |Biz Bx B |Prz Bx B
60 0 0.00| -1 0 9 0 0 3 0 0 3
0.25 0 1 8 0 0 7 1 2 7

1.00 | -1 1 12 | -1 0 10| -1 0 8

1 0.00 0 1 0} -1 1 —1 0 1 -1
0.25 | —1 0 -1 0 3 0 0 4 0

1.00 1 6 4 3 16 8 3 15 8

2 0.00| -2 0 -3| -2 1 -4 -1 3 =2
025 | -1 3 -1 0 4 -3 1 7 -1

1.00 2 6 0| 10 16 5 3 9 2

100 0 0.00 0 0 6 0 0 4 1 1 7
0.25 | -1 0 6 0 0 4 0 0 4

1.00| -1 -1 6| -1 -1 8 0 0 10

1 0.00 1 3 0| -1 0 -2 =2 0 -3
0.25 0 2 0 4 1 1 4 0

1.00 0 5 1 5 18 10 5 17 8

2 000 -3 -1 -4 -1 0 -3 0 2 =3
0.25 0 2 -3 0 3 -3 2 6 -1

1.00 5 8 2| 14 16 7 8 11 4

200 0 0.00 0 0 4 0 0 3 2 2 4
025 | -1 -1 4| -1 -1 0 1 1 4

1.00 | -1 -1 6 0 0 11 0 0 6

1 0.00 0 2 0| -1 1 -2 -3 —2 -4
0.25 0 0 -2 2 4 -1 3 6 0

1.00 | -1 4 0 7 12 10 10 15 11

2 000]| -3 -2 -4 | -1 1 -3 -1 1 —4
0.25 2 3 -1 3 6 -1 3 5 -1

1.00 5 5 2| 22 14 11| 11 8 6
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Appendix
(I) A sketch of the proof of Theorem 1

First we note, under some reguiérity conditions, that

A = VKHW*,B)- Hs(B))
= W*VK(Hp(B) - H5(8))
.0 (A1)

as K — oo since \/EW*A—+ 0 and both H3(8) and Hg(B) are Op(1). Applying
the Taylor expansion at § and fOs respectively, A is approximated by

[ VR (6 -5) - [P0 VR (8 - s

9B
= [QE%%E} VE(Bs — B) + VK (B - Bs) [6H(?[/’3*, B _ abgsﬁ(ﬂ)]

= B-VK(Bs-8)+C.

Using the fact that vVE (B — Bs) = Op(1), W* = 0p(1) and 8Hs(B8)/88 = Op(1),
one has B = Op(1) and C = o0p(1). Consequently, VK (Bs — 8) = 0,(1) by (A.1),
and this completes the proof.

(II) The exact terms of E(-8Hs/0B), E(—0Hp/0p), and E(HZ%) in one-
to-one matched study

Using the fact that (a,b,¢, d) has a multinomial distribution of size K and
cell probabilities P = (P11,P10,P01,P00), we can derive the exact values of
E(-8Hs/88), E(—0Hp/0p), and E(H%). This in turn will provide an esti-
mate of W* by replacing P with P = (a/K,b/K,c/K,d/K). Straightforward
but tedious calculation gives

0Hs\ _ p((b+oe
E<— 3ﬂ> - E<(1+eﬂ)2>
B
= W[K (Po1 + Puo)]
— PlO/P01
= (PoL + Pr0)?/ P4 [K (P10 + Po1)]
K

1/P10 -+ 1/P01,

E( - %I':;ﬁ) - E[[(“+ b)(b+¢zli:(e¢;)-: C)(c+d)]eﬂ]
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eP
_ GPoPu(PuyPu+PuPy) K
(Pro + Po1)? 1/Pio+1/Py’

and

_ (a+b)(b+d) — (a+c)(c+d)eP?

B(HL(®)) = E([ o ] )

- (—1-+—16555E<[(a +B)(b+d) — (a+ )(c + d)e]?)

_ N

- TP
where

N = C3(PiyPyo— e’ PPy, )?
( P11 P1o(Pu + Pyo) + ProPyo(6P1+ + Poo)
+Cy +e?2(Pyy Pyt (P11 + Pot) + Por Poy (6Py1 + Pyg))
\ —2€°(Po1 ProPi4 + PyoPot Pi1 + PooPiy Py + Py PigPoy)
( 3P11 Py + TPf) + 3P1oPoo + P11 Pog
+e? (3P Poy + TPy + 3Po1 Poo + P11 Poo)
\ —2¢P (P11 Poo + PioPo1)
+ K(Pyo + €*’ Pyy),

+ Ch

and
P.; = P+ Py, (j=0,1)
Cs; = K(K—-1)(K - 2)(K - 3),
C, = K(K-1)(K - 2),
Cy = K(K-1).
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