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Abstract: A general logistic autoregressive model for binary time series that takes into
account stochastic time dependent covariates is presented, and its large sample theory
is studied via partial likelihood inference in the sense of Cox (1975) and Wong (1986).
The maximum partial likelihood estimator is consistent and asymptotically normal
under some conditions on the asymptotic behavior of the time dependent covariates.
This leads to asymptotic results concerning several goodness of fit and test statistics.
Some of these statistics are applied in logistic regression analysis of level-upcrossings
of runoff data using rainfall as covariate data.
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1. Introduction

Binary series can occur in many different ways. For example, in a chemical
process, a procedure at time ¢ may be under control (Xt =1), or not (X; = 0).
In an industrial process, a drill at time ¢ may become dull (X; = 1), or not
(X; = 0). When X; = 1, the drill is replaced, and the process continues. It is
helpful, however, to think of {X;} as being generated by the upcrossings of a
fixed threshold by an underlying process. Then X; = 1 if the process exceeds a
given fixed threshold, and is 0 otherwise. As an example of this, {X:} can be the
indicator associated with the excitation voltage of a neuron.

In numerous practical situations, one is interested in the prediction of a
future value of a stationary or nonstationary univariate binary time series {X+},
t=0,+1,+2,..., from past values of {X;}, and past (and sometimes also present)
values of an auxiliary (column) vector, {Z;}.

Two typical cases of interest arise. In the first, X; is predicted from the past
only given the past data which generate the o-field

ft—l - U(Xt—17Xt—2, SRR Zt—l, Zt—27 N )
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This is genuine prediction. This situation is encountered in predicting whether
the water level of a river crosses a critical threshold, given past rainfall and runoff
data (Yakowitz (1987)). In the second case, X; is predicted given the o-field

ft-—-l = U(Xt—1>Xt—2) A Zt7 Zt—la . )

Here the covariate information at time ¢ is known before observing X;. This
is more like a classification problem. This situation is encountered in classifying
instantaneous rain rate as being above or below a fixed threshold given the present
and past values of cloud microwave temperature at several frequencies (Chiu
and Kedem (1990)). In either case, the vector of covariates Z; may contain
components that are functions of X;. For example, one covariate component
could be X;_; X;_7. To a biostatistician the components of Z; are time dependent
covariates. In econometrics, the components of Z; derived neither from past
values of X; nor from some related underlying process would be called ezogenous
variables. :

The prediction problem is to estimate from past information the one-step
conditional probability p; = P(X; = 1| F;—1). Our approach is via partial likeli-
hood parametric inference concerning a time tnvariant vector parameter 3 which
parametrizes p; = p;(83). This enables prediction and/or hypothesis testing con-
cerning the strength of dependence between {X:} and the explanatory vector

{Z:}.
1.1. On partial likelihood

Partial likelihood (PL) was introduced by Cox (1972, 1975), and given more
formal definition and theoretical justification in Wong (1986), and Slud (1992,
1993). For survival and counting-process problems, related developments ap-
peared in Andersen and Gill (1982), Arjas and Haara (1984, 1987). The general
definition given below follows Slud (1992).

Let i,k =0,1,2,..., be an increasing sequence of o-fields, and let X1, X», ...
be a sequence of random variables on some common probability space, such that
Xy is Fr-measurable. Let px(z;0) be the probability density given Fp_; for
X under a probability measure Py. The partial likelithood function relative to
6,{Fr}, and the data {X;} is given by the product

N
PL(6; X §) = PL(6; X1,..., Xn) = [] pe(Xx; ). (1)
k=1

We think of F;_; as the o-field generated by past X;, ¢t < k — 1, and past co-
variate information, possibly including also present covariates. In this respect PL
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generalizes the notions of both likelihood and conditional-likelihood. More pre-
cisely, PL reduces to the usual kkelihood when the auxiliary covariate information
is absent, and it becomes conditional-likelihood when all the auxiliary covariate
information is known throughout the period of observation; i.e. is measurable
with respect to some initial o-field Fo, where

fon1Cf2C"'CfN.

There is a subtle difference between conditional and partial likelihood based
inference which needs a clarification. The key idea behind PL is that it permits
sequential conditional inference: data are processed as they arrive in time, taking
into account all that is known to the observer at the time, including past aux-
iliary information. Hence, time ordering is an essential element. On the other
hand, in conditional likelihood based inference the auxiliary information must be
known throughout the period of observation. Examples of conditional-likelihood
based inference, in the context of binary and categorical data, are treated by
Keenan (1982), Muenz and Rubinstein (1985), Kaufmann (1987), Fahrmeir and
Kaufmann (1987), Fahrmeir (1992); see also Kedem (1980), and Liang and Zeger
(1989). The parameter 6 has different interpretations in different contexts and
the choice among the two approaches depends on the scientific problems and
objectives at hand.

To be more specific, if Go C G1 C G2 are nested o-fields generated by the
covariates, and F; = (G, {Xs,s < t}), a conditional-likelihood function for a
parameter 6 given G is

po(X1, X2, X3|G2) = pa(X1|G2)pe(X2| X1, G2)pe(X3| X1, X2, G2).

A partial likelihood with respect to {F:}, on the other hand, is given by

pe(X1]F0)pe(X2|F1)pe(X3|F2)

where Fo C F1 C Fa. Thus pg(X1|G2) depends on future auxiliary information,
as opposed to pg(X; | Fo) where only past auxiliary information and past data
enter.

Among the important properties of PL is that the score process obtained as
the gradient with respect to 6 of the partial likelihood is a (vector) martingale
with respect to the filtration Fx. Hence, rigorous inference about 6 is possible
using asymptotic results from martingale theory. ‘

2. The Logistic Model

Logistic regression models have been used for years by statisticians, econo-
metricians, and psychometricians. Berkson (1944), Cox (1970), and Nerlove and
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Press (1973) are early references. More recently, the following logistic model has
drawn attention in connection with time series applications,

1

pt(IB) = Pﬂ(Xt = 1|'7:t—1) = 1+ exp[_ﬂlzt—l] (2)

where B is a column vector parameter of the same dimension as Z;_;. For
convenience we assume that the first coordinate of Z;_; is 1 (so that there is
an intercept-coefficient), and that Z;_; contains past values of X;. The model
has been considered in various forms by Arjas and Haara (1987), Fahrmeir and
Kaufmann (1987), Kaufmann (1987), Slud and Kedem (1988), Liang and Zeger
(1989), and Fahrmeir (1992). We can see that when 3’ Z; includes linear functions
of X¢—1, X¢—2,..., the model (2) becomes a form of binary autoregression.
Since X; is binary, (2) implies that

pt($t§,3) = Pﬁ(Xt = $t|-7:t—1) = [Pt(,@)]mt [1 - Pt(ﬂ)]l_zt-

The corresponding partial likelihood is simply the product
N N
PL(B) = [] (X B) = [I[pe(B)**1 = pe(B)) ~=. (3)
t=1 t=1

The maximizer 3 of PL(B) is called the Mazimum Partial Likelihood Esti-
mator (MPLE) of 8. Under rather mild regularity conditions on the large-sample
behavior of the covariate process {Z;} as N — oo, 8 is a numerically stable esti-
mator of B, which is consistent and asymptotically normal with easily estimated
covariance matrix (Arjas and Haara (1987)). This will be shown in Section 3.

How can time series models of the type (2) arise? To answer this we discuss,
next, two important special cases.

2.1. Logistic autoregression

Let {Y:}, t =0,%1,%2,..., be an autoregressive process of order p,
Yi=v+mYi-1+ - +%Yip + A&

where A is a constant, and the ¢; are i.i.d. random variables logistically distributed,
e: ~ f(z) = /(1 + €%)%. Now fix a threshold r € (=00, 00), and define a binary
time series by clipping Y; at this threshold:

1, if Yi>r
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Then X; = Ijy,>, satisfies (2) for each fixed r, with
Zt-l = (1, Yt_1,Yt_2, Ceey Yt_p)l
and .
ﬁ = ')_\('70 — T 7, 37})),-
That 1s,

1
1+ eXp{—('YO —r+mYi_1 4+ + ’Yth—p)/’\

pi(B) = Pp(Xt = 1|Fe-1) = I (4)
In other words, an AR(p) model with logistic errors implies (2) for all r, with only
the intercept component of 3 depending on r. Conversely, it is easy to see that
if (4) holds for X; = Ijy,>, for all 7, then Y} is an AR(p) process with logistically
distributed noise. -

The model (4) for X; = Ijy,>,) with a fixed known r, is a much weaker
restriction than the assumption that Y; is an AR(p) process with logistic errors,
since it leaves the conditional law of Y; given F;—1 and {Y; > r} completely
unspecified. In Section 6 we shall present an example where the data seem to
obey (4) for X; = Ijy,>,) with some fixed 7, but the data seem not to fit an AR(p).

2.2. Discrete-time Cox models with time-dependent covariates and
multiple event-times

The logistic regression model (2) can accommodate multiple independent

realizations {Xt’ yZ;_1},3=1,...,m. In this case we may entertain the model
i(8) = Po(Xi = 11Fy) = : (5)
PAE) = e = A = T exp|-B'Z_ ]
where F;_1 is now generated by all the variables Xi, Zi, 1=1,...,m,0< s <

t — 1. General models of the type (5) have appeared before in the context of
survival analysis (see Cox (1975), Andersen and Gill (1982), Arjas and Haara
(1987)). In that setting, X} is the indicator of the event that the ith individual
under study fails at time ¢ (or before time ¢, if time is continuous), and the vector
Z' of time dependent covariates contains all the observable data relevant to the
failure of the ith individual at time ¢+ 1 (or, in continuous time to failure in the
period (,t + 1]).

The model (5) can be applied in studying multiple failures for the same
individual, such as multiple times to tumor corresponding to an individual (see
Gail et al. (1980)). In this case, Z%_; may contain differently modified medical
measurements according to the number of values s = 1,...,¢ — 1, for which
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X! = 1. The purpose of this is to allow different coefficients 3, to operate when
previous failures have occurred. We could condition in (5) also on {X{ ,j # 1} in
addition to F;_1.

The partial likelihood corresponding to (5) is a generalization of (3), and is
given by,

N m N m ) . .
PL(B) = [] [[pe(Xi;8) = [T T1Ipi(B)I" (1 — pi(B)]' . (6)
t=11=1 t=11i=1
The MPLE, f3, is obtained by maximizing (6) with respect to 8.
The following key fact about the logistic regression model (5) will be used

repeatedly. Conditionally given F;_;, the binary variable X} has mean pi(3) and
variance pt(8)(1 — pi(B)), so that for each i and s <t

Ep|Zi 121y (Xi - pi(B)(X] — Pi(B))|Fomi
_ { 0, if s<t
Zi_ 1 Z%_pi(B)1-piB)), if s=t.

3. Large Sample Theory

Because the extra generality achieved by (5) is useful for certain applications
when independent binary processes {X}} are available, we shall follow the general
case presented in Section 2.2, using (6). Throughout the paper Eg and Varg in-
dicate that expectations are being taken with respect to probability Ps satisfying
(5).

Let the dimension of B be d, B8 € R%, and let V denote the column gradient
operator:

of of of )’
0B’ 0B’ B4

so that the Hessian matrix-valued operator of second order partial derivatives is
given by VV’. With this notation,

vi@) =

Vpi(8) = Zi_1p:(B)(1 — pi(B))

and the score vector (d-dimensional) is defined by,

N m
Sn(B) = VIegPL(8) = D> Z,_1(X; - pi(B)).

s=11=1
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The score vector process Si(8),t=1,2,..., N, is defined by the partial sums,

S:(B) = Z Z Z,_1(X; - pi(B))-
s=11=1
The score process, being the sum of martingale differences, is easily seen to be a
martingale with respect to the filtration F;, relative to Pg. That is, E[S:(B) |
Fi-1] = St—1(B). Clearly, E[S:(8)] = 0. Next we define,

I(B) = VV'(~ log PL(B)) = Z S 73, 22 w81 - 5iB)).
t=1:=1
The quantity I(8)/mN is the sample information matriz per observation for
estimating B. It is easily seen that I(3) is the sum of conditional covariance
matrices,

N m
I(8) =" Varg| > Zi_1(X; = pi(B)) | Fe-1|.
s=1 i=1

Since Si(B) is a martingale, we refer to I(83) as the cumulative conditional
variance-covariance matriz for Sy (08).

The large sample properties of the MPLE 3 are studied with the aid of S;(8),
and I(B). This theory was developed by Andersen and Gill (1982), Wong (1986),
and Arjas and Haara (1987). We follow the general development given in Slud
(1993, Chs. 6, 7). The approach taken in these references for proving consistency
and asymptotic normality of MPLE’s is based on the martingale Central Limit
Theorem for Sx(8)/vmN, the almost sure concavity of the random function PL
on R%, and the stability of the sample information matrix I(3)/mN. There is no
need to duplicate formal proofs, and we shall be content with general comments,
a precise set of regularity conditions, and statements of some small extensions,
helpful in time series applications.

Our regularity conditions, chosen for simplicity rather than utmost generality,
are:

(A.1) The covariate-vectors Z: almost surely lie in a nonrandom compact subset
I of R

(A.2) The probability measure P governing {X}, Z}},i=1,...,m,t=0,...,N,
obeys (5) with 8 = 3,.

(A.3) There is a probability measure v on R? for which [rs zz'v(dz) is positive
definite, such that under (5) with 8 = 3, for Borel sets A C R¢

NZZ[Z‘ €] ——+U(A) mN — oo.

t=1 =1
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Assumption (A.1) is somewhat restrictive, but it can be replaced by a more
general assumption uniformly bounding the moment generating function of Z:
as remarked in Andersen and Gill (1982). The logistic autoregression model (4)
satisfies the weakened assumption but not (A.1).

The motivation for Assumption (A.3) comes from the Birkhoff Ergodic The-
orem in the setting of independent ergodic stationary processes {Z%,¢t > 0},
i = 1,...,m. Assumption (A.3) says that the empirical measure of the set
{Z: : 0 < s < N,1 < i < m} converges weakly almost surely to a nonran-
dom measure v. This implies that for every continuous function g : R¢ — R,
(necessarily bounded on the compact support I' of Z?)

zzgw 5[ a(zw(az)

t_l =1

as mN — oo. From this convergence, it is easy to see that I(3)/mN has a limit,
say A(B), given by

!

eB'z

A(B) = /';24 mzz'v(dz). (7)

The matrix A(B) at 8 = B, is called the information matriz per observation
for estimating 3. By (A.3), A(B) is positive definite for every 3, and hence
also nonsingular. Now, Vlog PL(ﬁ) = 0. Thus by Taylor series expansion of
Vlog PL(B) to one term about By, we obtain the useful approximation up to
terms asymptotically negligible in probability,

VmN(B - By) = ( _ 1 yvw log PL

— V log PL(B,)

#0) =

(L))l
= (5180)) —==5n(80)
A(By)™ ﬁ_m-sN(ﬁo). | (8)

Q

Note that I(8,) behaves asymptotically as mNA(B,), so that (I(By))"1Sn(B,)
converges in probability to 0. Thus, Sy(B,)/vmN is a martingale, with asymp-
totic covariance matrix A(B,). Hence, by appealing to Slutsky’s theorem and
the CLT for martingales, we have

Theorem 3.1. Under assumptions (A.1)-(A.3), the MPLE 3 is almost surely
unique for all sufficiently large mN, and as mN — oo,

(i) BL s,
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(id) VmN(B - Bo) 2 N(0, A71(By)).
(i) VN (B - Bo) - ———A"1(Bo)Sn(Bo) L 0.

vmN

The large sample behavior of B described here is based on the assumed
stability of I(8)/mN, the information per observation. It is convenient that a
single theoretical result encompasses all three cases where m and/or N become
large. However, in general I(3)/mN could converge in probability to a random
limit as in the non ergodic cases treated in Basawa and Scott (1983).

We turn next to the question of goodness of fit. In any attempt to fit (5), it
is important to examine the logistic regression residuals X} — pi(8) in order to
judge the quality of fit. This, however, can be done in many different ways.

One useful way to test goodness of fit is to classify the responses X! according
to mutually exclusive events defined in terms of the covariates Z:_;, and then
check for each category the deviation of the number of positive responses from its
conditional expected value (Schoenfeld (1980)). More precisely, let Ci,...,Ck,
constitute a partition of R%. For j = 1,...,k, define,

M; = ZZI _ec;) X’

i=1t=1

and

e;(8) = ZZI[Z’ LEG;] Pt(ﬂ)

i=1 t=1

Put M = (My,..., M), e(B) = (e1(B),...,ex(B))’. The goodness of fit can be
tested with the help of quadratic forms of the type

(M~ e(B)V(M ~ e(B))

where V is a suitable £ x k matrix.
For testing the hypothesis that B = 3, we can use statistics of the form

k
S (M5 - e3(80)) W

J=1
or
m N
E Z ( Pt ,30))
=1 t=1
using appropriate normalizations and weights W.

The theory underlying the preceding goodness of fit and hypothesis testing
statistics 1s contained in the next two theorems. The theorems follow readily from
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Theorem 3.1 and several applications of the multivariate Martingale Central Limit
Theorem as given in Andersen and Gill (1982, Appendix II). In both theorems,
the crucial fact that Eg,pi(3) lies in a nonrandom compact subset of (0, 1), for
all 7 and t, and for all B in a neighborhood of 3, is guaranteed by Assumption
(A.1) or the weakened assumption mentioned following (A.1)-(A.3).

Theorem 3.2. Let Ci,...,Ck, be a partition of R®. Then we have as mN — oo
(i)
~ ! D
VmN (M - e(8o)) /mN, (B - B,)') = N(0, )

where X is a square matriz of dimension d + k,

A B’
o (B A~ (Bo) ) .

Here A is a diagonal k X k matriz with the jth diagonal element given by

A71(B,) is the limiting d x d inverse of the information matriz, and the jth
column of B is given by

-1 eﬂblz
A (,30)/ —————-—I—-—zzu(dz).
Cj (1 + efo*

(ii)

2L r‘njéﬂ ) _ /N B AB)B - o) £ 0

(iii) As mN — oo, the asymptotic distribution of the statistic

k
X2(Bo) = —= 3 (M; — e5(80))*/
j=1

is X2
In verifying Theorem 3.2 it is helpful to note that by Taylor series expansion
of e(B) to one term about 3, one obtains for sufficiently large mN (replacing 3

by B),
1

mN

(e(B) — e(By)) = VmNB'A(Bo)(B — Bo)
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and therefore, by adding and subtracting e(8,),

, 1 .
(M —e(B) = == (M e(Bo) + e(80) — e(B))

— e(By)) - VmNB'A(Bo)(B - Bo)- (9)

1
~ —=(M
\/mN(
It follows that the asymptotic covariance matrix of (M — e(B))/vmN is given

Remark 3.1. Another useful test statistic is the quadratic form

1 5 _ .
(M — e(3))'(A - B'A(B)B)™ (M — e(5))
where the inverse is a symmetric generalized inverse. The asymptotic distribution
of this quadratic form is x2 with n = rank(A — B'A(y))B) <k-1.

For the next result, define v(i, t) = pi(B,)(1 — pi(By)) for all i,z. Then with
any a > 0,

T i 1
- (X¢ "Pi(ﬂo))z _ . \\1-a
22 e~ ~ (W)
S5 (i)
is a zero mean martingale with cumulative conditional variance

m T
3o 3 (w(E)) A - 4u(, 1)

1=1 t=1
We therefore have

Theorem 3.3. Under assumptions (A.1)-(A.3),
o (K=l e
37, o GO s )

{Zzlzil(”(i’ )21 - 4v(i,t))}%

The result of Theorem 3.3 is equally valid when B¢ in pt(B,) is replaced by B.
However, the limit in (10) may not be very reliable when values pi(B) can be
close to 0 or 1, unless a € [0,1/2].

We end this section with well known results concerning the partial likelihood
ratio statistic. First notice that by expanding log PL(,) to two terms about B,

D N0,1).  (10)

Wa(IBO) =

log PL(8,) = log PL(B) + Sx(B)(80 ~ B) - 5(B - Bo) I(Bo)(B ~ Bo)
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and that Sy (8) = Vleg PL(B) = 0. It follows from (ii) of Theorem 3.1 that as
mN — oo,

2| log PL(B) — log PL(By)] ~ mN (B ~ B A(8o)(B - Bo)

is asymptotically x2. One can use this last statistic for testing the hypothesis
Hy : B = By. With a little more effort we can also test the hypothesis Hy that
¢ (¢ £ d) of the components of B are equal to specific values, for example, that
c of the components are equal to 0. To do that, maximize PL(83) with respect
to the remaining unspecified d — ¢ parameters, and denote the maximum by
PL(B*). Clearly PL(3) > PL(B8*). Then under (A.1)-(A.3) and Hy (see Slud
(1993, Th. 6.5)), as mN — oo,

2[log PL(B) — log PL(8")] 5 x2. (11)

4. Asymptotic Relative Efficiency

How efficient are maximum partial likelihood estimates compared with the
usual maximum likelihood (ML) estimates? While no general answer to this
question is possible, we can give an answer in the case of an AR(p) process as
discussed in Section 2.1. In this special case, a fully specified model for {X;, Z:}
is readily available, and a comparison is possible via the information matrices
corresponding to partial and full likelihoods.

Referring to Section 2.1, we make the following simplifying assumptions.
First, set r = 0, A = 1, and consider the stationary AR(p) process, Y; = f3; +
PeYeo1 + - + Bp1Yip + €. Here, B = (B1,Bs,...,6p41)s Xi = Xi = Iiy;>0),
and Z%_l =2Zi1=(1,Y1,Y0,..., Yt—p)la and

€ =Y — ,BIZt—l (12)

are i.1.d. logistic random variables with density, f(z) = e*/(1+¢€%)%. The variable

€ is independent of F;_; = 0(Z,,s < t). Under the assumption of stationarity,

let Z be distributed as Z;_;. Also let ¢ be distributed as ¢;, independently of Z.
The PL information matrix (7) corresponding to (5) and (6), is given by
7

(1 + ePoZ)?

The likelihood L(B) based on Yp41,..., Yy, is given by

ATV (By) = A(By) = Epy 22| = Balf(82)22).  (13)

N
LB)= [I f(e) (14)

t=p+1



PARTIAL LIKELIHOOD FOR LOGISTIC REGRESSION 101

where ¢, is given in (12). The information matrix is obtained in exactly the same
manner as in the PL case, as the limit of the information about 3 per observation.
This information matrix, equal to the inverse of the asymptotic covariance matrix
for the ML estimator of B when the true parameter value is B, is given by

ee

1
L - — _
A=(Bo) = 2Ep, [mzz’} = 2Ep,|f(€)22'] = 3Ep,(22]  (15)
upon noting that [ f2(z)dz = 1/6.
Since f(z) < 1/4, it follows immediately from (13), (15), that for every vector

b € RPHL
3
b'APL(B,)b < Zb’AL(;so)b. (16)

Thus, any scalar parameter derived from 3 linearly can be estimated with asymp-
totic relative efficiency (ARE) at best 3/4 via the PL logistic regression method
as compared with ML analysis for AR(p). The worst ARE is obtained when
p¢(Bo) is often close to 1 or 0, i.e., the case where prediction is very good!

5. Other Link Functions

In the foregoing analysis, we have modeled pi(8) in (5) in terms of F(B'Z:_,),
where F(z) = 1/(1 +exp(—z)) is a standard logistic distribution function. How-
ever, other “link” functions F can be used. One attractive link is defined by
F = &, where ® is the standard normal distribution function. In this case we
obtain what is known as probit model, '

Pi(B) = Pa(Xi = 1| Fem1) = ¥(B' Z1 ). (17)

Virtually every aspect of our analysis under (5) has an analog under (17). Thus,
under (17), in the AR(p) example for X; = I[y,>() with variance 1, the errors are
now Gaussian instead of logistic, and the ARE calculations give

AY(By) = Eg|ZZ']

and
¢*(BoZ)

®(BZ)(1 - 2(B,2))
where ¢(z) is the standard normal density. It can be checked that the upper
bound for the asymptotic relative efficiency is 2/7, and again the ARE is much
worse when p;(8,) values often fall near 1 and 0.

The proofs of theorems analogous to Theorems (3.1)-(3.2) are very similar
to those in the logistic case, with extra complication due to the fact that the log
partial likelihood will no longer be a.s. concave for finite time series.

ATY(B,) = Eg, |22’
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6. Application to Rainfall-Runoff Data

We apply the logistic regression model (2) in the analysis of daily rainfall-
runoff data obtained by the National Weather Service in the Bird Creek Ohio
watershed, and described in Yakowitz (1987). The data were collected in in-
tervals of 13-15 weeks during each of the years 1939-1964. In what follows, we
regard daily runoff Y; as the response variable, and rainfall R; as the explanatory
variable. Since flooding is of interest, it is natural to try to understand the re-
lationship between level exceedances X; = Ijy,-,) and the explanatory variables.
Our primary goal is to illustrate how the model (2) can be estimated and pass
goodness of fit tests in a particular situation when the linear autoregressive model
turns out not to be adequate.

The 26 years of data were split into a testing set (the 10 years 1939-48,
consisting of 1031 rainfall-runoff pairs), and a training set (the 16 years 1949-
64, consisting of 1691 rainfall-runoff pairs). Since the models we contemplate
involve explanatory variables defined from (Y;—1,...,Y:—4, Rt, ..., Rs—3), we lose
4 observations per year which lead to 991 rainfall-runoff pair observations in
the testing set, and 1627 in the training set. The threshold values chosen are

= 1,3 cubic ft/sec. During the training period 1949-64, there were 401 and
87 positive responses (i.e., level-upcrossings) corresponding to levels r = 1,3,
which respectively were chosen as moderate and high levels. The corresponding
respective numbers for the testing period 1939-48 were 244, 56.

Residuals plots and partial likelihood ratio statistics (11) obtained from a
preliminary fitting of the model (2) for the 1939-48 data, suggest the importance
of the covariates

Z, = (1, Ry, Yi1, RtYy 1, Ri—1, RiR¢—1, Rt_9, Ry_1R¢—2,Y;_2, Y;t-—ln—2)-

Other covariates that we examined did not appear to play a significant role.
In particular, our attempts to discover covariates to account for year to year
differences in runoff, did not produce new covariates worth including in the logistic
model (2).

Our first results are given in Table 1. The table gives the estimated values,
from the 1949-64 training data set, of the components f; of the MPLE 3, and

the standardized values §;/1/ Var(f;), corresponding to X, = Iy,5r), 7=1,3. In
each case, the 10-dimensional covariate vector is Z; defined above. Attempts to
add the residuals of linear regression as additional covariates resulted in only a
slight change in the maximum log-partial likelihood and were therefore neglected.

To begin to assess model adequacy for the logistic model (2) fitted to the
1949-64 rainfall-runoff data, we calculated the goodness of fit statistics x 2(83),

W, (B) described in Theorems 3.2, 3.3, replacing 8, with the MPLE 3 obtained
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from the 1949-64 data. Thus, the goodness of fit statistics x2(8) and W, (B) were
evaluated from both the training data set (1949-64) and from the testing data set
(1939-48), using the same B obtained from the 1949-64 training data. Also UJZ-
was estimated in each case from the data to which the x? test was being applied,
using the estimator

.
62 = =3 Tz yec,pB)1 — pi(B)).
N t=1

For the statistic x2(3), the partition cells C; C R are defined as the in-
tersections of all sets satisfying the conditions that R; is in one of the three
intervals [0, 0.004], (0.004,0.008], or (0.008, 00), R¢—1 + Rq is in one of the inter-
vals [0,0.01], (0.01,0.02], or (0.02,00), and Y;— is in [0,0.5], (0.5,1], or (1,00).
This gives k = 33 = 27 partition cells. However, because By 1s replaced by ,Zi,
x2(B) is (asymptotically) stochastically smaller than x2; on the training data
(due to having estimated B, from the same data), and stochastically larger than
x3; on the testing data (since 3 is approximately independent of (M — e(By))
for the testing data). An indication of this is provided by invoking (9). Thus, for
the training data,

EP(B)] ~ k- 21B'A(Bo)BA™ + trB'A(By) BA™

k
= k— 3 (B'A(Bo)B)jj/ o}

j=1

while for the testing data the middle term —2trB'A(By)BA™! is absent due to
approximate independence of the training and testing data, and hence

E[x*(B)) = k+ttB'A(B))BA™

k
= k+_(B'A(Bo)B)j;/o;.
i=1

The estimated value of Z?zl(B'A(ﬂO)B)jj/a? was 5.3 for r = 1, and 3.6 for
r = 3. The difference is attributed to the very different response probabilities
p+(B) corresponding to different levels 7.

The statistics Wa(,f'}), a = 0,1, are asymptotically normal; however, some
care is needed in interpreting the results due to division by [p:(B)(1 — pe(B))]e.
This is so because many of the logistic probabilities pt(ﬁ) are either quite close to
0 or 1, a tendency already seen in the previous example. For this reason WO(B)
is more reliable than W1(B3).
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The values of x*(3), Wo(B), W1(B) are given in Table 2, leading to some
interesting conclusions. The table indicates that the logistic model (2) with

Xt = I,y for r = 1,3 are adequate for both the training and testing data

because the three statistics admit relatively small values, except for W;(8) for
the test data with 7 = 3 (the choice of r is discussed in Chiu and Kedem (1990),
Kedem and Pavlopoulos (1991)). However, as remarked above, the fact that the
predicted response probabilities pt([:l) are so often very close to 0 or 1 makes the
statistic W1 () less reliable and more difficult to interpret than the sum of the
unnormalized squared residuals Wo(ﬁ). At any rate, since comparatively few of
the response values X; = Ijy,.3) are 1, the large sample theory on which we rely
for the validity of our analysis may be less reliable than in the case of r = 1. This
is the chronic problem associated with predictive models for exceedances of high
levels — that there is relatively little data where high levels are exceeded.

In conclusion we would like to note that, as in Yakowitz (1987) and following
our reasoning in Section 2.1, we have gone through numerous linear regression as
well as linear autoregression fits, assuming logistic errors, using different thresh-
olds r and various covariates. The result was that the prediction of X; = I [Ye>]
was much better with our logistic model than with linear autoregression. Thus,
a further interesting conclusion from fitting the logistic model (2) to the rainfall-
runoff data, is that while the logistic model appears to fit reasonably well with
both levels 7 = 1,3, it does not appear to be compatible with a single linear
model for rainfall-runoff. That is, the coefficients 3 are markedly different for
the different levels r, violating (4).

Table 1. Logistic regression parameter estimates §; obtained from
the 1949-64 rainfall-runoff data.

r=1 r=3

1 | Covariate ﬁi ~——'61—-—- Bi "i*—
v/ Var(5;) \/ Var(5;)

1 | Intercept -6.31 -13.6 —6.25 -13.9
2| Ry 161.20 6.9 99.70 6.6
3| Yia 4.38 9.6 1.05 5.8
4| RY; 4 58.50 1.4 64.40 3.9
51 Riy 70.90 3.0 -50.50 -1.9
6 | B4Ry, -2509.00 ~1.5 | 3392.00 2.3
7 | Ri_o -63.00 -4.3 -23.50 -1.2
8| Ry_1R;_5 | -2124.00 -1.2 | -2498.00 -2.2
91Y - 0.24 0.6 0.29 2.4
10 | Vi_1Yio 0.31 1.4 -0.04 2.7
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Table 2. Goodness of fit statistics on training and testing data for the logistic
model (2) with coefficients displayed in Table 1.

Training data (1627 obs.) Test data (991 obs.)

Statistic | 7 =1 r=3|r=1 r=3

x2(B) 42.40 18.90 | 53.10 18.70

Wo(B) | -0.93 0.10 | -0.73 1.64

W1(B) 0.28 -0.26 | 0.01 16.50
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