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PROBABILISTIC PROPERTIES OF THE -ARCH MODEL
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Abstract: In the present paper we consider the main probabilistic properties of the
Markov chain X: = aXe—1 + [a0 + (aF (Xe-1)* +af (Xi-1)7)?#)Y %€, that we call
the S-ARCH model. We examine the invertibility, irreducibility, Harris recurrence,
ergodicity, geometric ergodicity, o-mixing, existence and nonexistence of finite mo-
ments and exponential moments of some order and sharp upper bounds for the tails
of the stationary density of the process {X:} in terms of the common density of the
€¢’s.
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1. Introduction

The purpose of this article is to study the probabilistic properties of a par-
ticular case of the semi-parametric d-dimensional homogeneous Markov chain
{X¢;t € N} defined by the recursive scheme:

Xt = T(Xt_l) + O'(Xt_l)it, (11)

where the R — R function T(z) is such that |T(z)| < plz|, 0 < p < 1 for all
¢ in R%, o(z) is an unbounded function defined on R? such that |o(z)] — o0
as |z| — oo, o(z) has a differential at each point z such that |z| > C, for some
positive C, and {e:} is a sequence of i.i.d. random variables with mean 0 and
variance I whose common distribution has a positive density u(z) with respect
to Lebesgue measure on R, The class of models of time series defined by (1.1)
embodies various nonlinear models. In this paper, we are particularly interested
in the special case where d =1 and {X;} is defined by the following equation:

X = T(Xt_.l) -+ U(Xt_l)Et (1.2)

with
T(z) = azx (1.3)
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and 12

o(z) = [ag + (afzt + ai‘:z:*)m] : (1.4)
where ot = max(a,0) and o~ = max(—a,0), and 3, ag, af, a] are positive
constants.

We call this model, the S-ARCH model. When 3 = 1, the [-ARCH model
reduces to the classical ARCH model introduced by Engle (1982) when a = 0, and
by Weiss (1986) when a # 0. The models (1.2)-(1.4) are important for financial
applications because they take into account the great variability of the data,
allow for modelling of leptokurtik marginal distributions, avoid the limitation of
the quadratic form of the ARCH model and allow the variance of the noise to
follow the level of the process. T

A possible relevant extension of the 8-ARCH model is the 8-GARCH model,
which makes the conditional variance a weighted average of all past residuals.
In this paper, we focus on the 8-ARCH model, since it is much more tractable.
However, a heuristic discussion of the 3-GARCH model is included in the con-
clusion.

In this paper, we only investigate the case where o(z) is unbounded, since
the case o(z) bounded has been extensively studied in the literature (see Section
2). We focus on results concerning the existence of polynomial and exponential
moments, and on the asymptotic behavior of the stationary distribution of X4,
in terms of the common density of the e;’s. Indeed, the existence of certain
exponential moments and the knowledge of sharp upper bounds for the tails of
the stationary distribution of (1.2) are of primary importance, since they lead to
get general results on the fluctuations of the partial sums S, = X;+- - -+X,, of the
process {X:} and of the extreme values X1,n and X, », where X7, < --- < Xnn
denote the order statistics of the sample {X7,...,X,}. Ina companion paper we
will consider the estimation of 3 using the results of this paper and the related
properties of the extreme values X , and X,, », as n — oo.

The article is organized as follows: in Section 2, we give a brief survey of
known probabilistic properties of (1.1) when o(z) is bounded and show how
these properties can be applied to (1.2)-(1.4). In Section 3, we obtain conditions
for the existence or non existence of exponential moments for (1.2) in the setup
where o(z) is non bounded (Theorem 1). Then we derive results concerning
sharp upper bounds for the tails of the stationary density of (1.2) in terms of the
common density of the e;’s. This is the object of Theorem 2. We present specific
results concerning the ARCH model (8 = 1 in (1.4)) in Theorem 3. The results
that we obtain in this direction convey the idea that the classical AR model with
ARCH noise is at the boundary of the set of ergodic models (1.2)~(1.4). Section 4
is devoted to discussion of some extensions of f-ARCH models. The proofs of
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Theorems 1, 2 and 3 are postponed to Section 5.

2. Probabilistic Properties of the Markov Chain (1.2)~(1.4), with o(z)
Bounded

In this section, we first consider the process defined by (1.1) in the case
where o(z) is bounded. This Markov chain has been extensively investigated,
and properties such as invertibility, irreducibility, aperiodicity, Harris-recurrence,
ergodicity, geometric ergodicity and mixing have been studied in many papers.
For example, Jones (1978) introduces a more restrictive class of models (scalar
case, o(z) constant); Doukhan and Ghindes (1980) investigate such properties of
(1.1) as irreducibility, ergodicity and geometric ergodicity for the case where T'(x)
is continuous, o(z) is constant and the common distribution of the &;’s is strongly
symmetric; Chan and Tong (1985) present the first contribution to the case where
T(z) is continuous and o(z) is non-invertible, establishing the geometrical ergod-
icity of certain Markov chains (1.1) under the assumption of the existence, in
a neighbourhood of 0, of a Lyapunov function of the discrete-time dynamical
system generated by T'(z); Chan (1990) establishes the geometric ergodicity of
the Markov chain defined by X; = f(X;—1,€:) in connection with the stability
of the deterministic difference equation X; = T(X:—1), Tjostheim (1990) inves-
tigates ergodicity, null recurrence and transience of (1.1) with o(z) = constant.
Moreover, Mokkadem (1987) deals with a seemingly more general model, namely,
X, = T(X¢_1) + e(X¢-1,t), using Tweedie’s (1975, 1983) results. Finally, in
a recent paper, Meyn and Guo (1990) study the geometric ergodicity of general
Markov chains of the form (1.1) using an approach directly related to Control
Theory. Diebolt and Guégan (1990) investigate most of the probabilistic proper-
ties of the Markov chain (1.1) in a thorough manner. It seems that the study of
the Markov process (1.1) in the case where o(z) is bounded is almost complete
(see Tjostheim (1990)).

We now consider the process defined by (1.2)—(1.4), with the following as-
sumption: (H;) The common distribution of the e;’s has a density u(zx) with
respect to the Lebesgue measure A which is positive almost everywhere.

Under the assumption (H;), if af, af and ag are positive constants, then the
process (1.2)—(1.4) has the following properties.

(1) It is invertible.

(ii) It is an aperiodic, v-irreducible and v-Harris recurrent Markov chain for each
v such that A <K v < A,

If in addition we suppose that 8 < 1, then:

(iii) A necessary and sufficient condition for geometric ergodicity is ja| < 1. In
this case, (1.2)—(1.4) is a-mixing with a geometric rate of convergence.
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(iv) If ja] < 1 and Ele|®* < oo for an s > 1, then (1.2)—(1.4) has finite moments
of order < s.

These properties are easily verified: Assertion (i) can be derived from the
invertibility of (1.4). Assertion (ii) follows from the fact that the Markov proba-
bility transition kernel P(z, B), with B in the Borel o-field of R and z € R, has
a positive density given by

p(e,y) = o(z) " p[o(z) "y - az}]. (2.1)

To obtain Assertion (iii) we use Tweedie’s (1975, p.394) result: If |a| < 1 and
B < 1, then

”az + (ao + (afzt + a;x“)zﬁ)lﬂs

S

1/2
< “a:c + ((ao +afzt + al‘z“)w) / 5”8 < |al|z|(1 + o(1)) as |z| — oo,
which implies that
1/2
Hax + ((ao +afzt + afz")zﬁ) / e“ < p|z| for |z| large enough,

where p is such that 0 < |a] < p < 1. Here |Y|l; = EY*(]Y|*) denotes the
L*-norm (1 < s < o0). If |a] = 1, then EX; = 0 and E(X?) > agt — oo as
t — oo. If (2.1) had a stationary distribution ¢* and the distribution of X, was
¢*, then the distribution of X; would be ¢* for all ¢, implying that E(X?) would
be constant. Hence the contradiction. To obtain Assertion (iv) we can construct
positive constants M, § and s > 1, such that

Elaz + o(z)el® < |z]° — 6 for all z such that |z| > M.

(See Tweedie (1983, p.192).)

Remark 1. For the case § = 1, (1.2)—(1.4) reduces to the classical ARCH model
introduced by Engle (1982). Note that a sharp sufficient condition for geometric
ergodicity then becomes a? + a; < 1. For a = 0 and e Gaussian, Engle (1982)
and Bollerslev (1986) have established sufficient conditions for the existence of
the moments of some even integer order. Pantula (1988) has established the
ergodicity of the ARCH model with a = 0 under the assumption a; < 1.

3. Existence or Nonexistence of Polynomial and Exponential Moments,
with o(z) Non Bounded '

In this section we are concerned with the process (1.2) under Assumption
(H1) and we assume that o(z) defined by (1.4) has a particular form. More
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precisely we assume that o(z) is differentiable, |o(z)] — oo as |z| — oo and

o(z) ~ blz|? as |z| — oo, with b > 0 and § > 0. We assume that a = 0 (so
we are dealing with a pure f-ARCH model). Under the hypothesis that e has
all its polynomial moments, Theorem 1 states that the invariant density of (1.2)
has all its polynomial moments if 0 < 8 < 1. In contrast, (1.2) is not ergodic
if 8 > 1. In Theorem 2, we address the problem of the existence of exponential
moments if u(z) < C exp(—k|z|") for |z| large enough, where k > 0,y > 1and C
are constants. We prove that the stationary distribution has all its exponential
moments if 8 < (v — 1)/v. If p(z) > Cexp(—kl|z|?) for |z| large enough, then
the stationary distribution has no exponential moment if 8 > (y—1)/v or, in the
special case where v =1, for all 3, 0 < 8 < 1. The proofs of the results of this
section are postponed to Section 5.

Theorem 1. Assume that (Hy) holds and a = 0. Assume in addition that

o(z) is increasing on [0, 00),
o(z) ~ blz|P as |z| — oo for some b >0 and B > 0,
o(z) > o9 > 0 for all x, (3.1)
o' (z) ~ sgn(x)Bblz|P~( where sgn(z) =1 if £ > 0 and —1 if z <0),
as |z| — oo.
(i) If B < 1 and if € has all its polynomial moments, then the invariant density
of (1.2) has all its polynomial moments.
(ii) If 8 > 1 and b > 0, then (1.2) 1s not ergodic.
Theorem 2. Assume that (Hy) holds, ai, a] and ag are positive. Assume in
addition that 3 <1 and a = 0.

(i) If € has all its polynomial moments with
p(z) < Cexp(—k|z|?) for |z| large enough, (3.2)

where k > 0, v > 1 and C are constants and if B < (y — 1)/, then (1.2) has a
moment generating function defined in a neighbourhood of 0.

(ii) If € has all its polynomial moments with
u(z) > Cexp(—k|z|?) for |z| large enough, (3.3)

then, if B8 > (v — 1)/7, (1.2) has no ezponential moment. Moreover, if v = 1,
then (1.2) has no ezponential moment whatever 8, 0 < 8 < 1.

Remark 2. (a) Classical densities to which Theorems 1 and 2 can be applied
include the Gaussian (y = 2), the bilateral exponential (Laplace) (v = 1),
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the Rayleigh (y = 2) densities, the Generalized Error Distribution (GED) de-
fined by u(z) = Cexp(—k|z|?), where C and k only depend on the parame-
ter -y (see, e.g., Nelson (1991)), the bilateral Weibull density defined by u(z) =
276|z|"~! exp{—0|z|"} for v > 1, the bilateral Gamma density, p(z) = 2Pp ]xl p-1
exp{—0|z|} for p > 1 (in which case v = 1) and the bilateral logistic, u(z) =

ezl

2(1+e~1=1)2

(b) If we assume that for all v > 1,

(again with v = 1).

p(z) = o(exp(—|z|)) as |z| — oo, (3.4)

then the process defined by the assumptions of Theorem 1 has a moment gen-
erating function defined everywhere for all 5, 0 < 8 < 1. Note that the density
p(z) = Cexp(—el®!) derived from the Gumbel density, satisfies (3.1).

(c) Broniatowski (1990) has studied estimation of the Weibull tail coefficient
o > 0 in the tail Weibull distribution defined by 1 — F(z) = exp{-z'/*L(z)},
z > 0 and F(z) = exp{—|z|*/*L(z)}, z < 0, where the function L(z) is slowly
varying towards infinity. Our results can be applied to such dlstrlbutlons in case
L(z) has a derivative and a > 1.

(d) In general, if 8 = (v — 1)/, no conclusion can be drawn concerning the
existence of exponential moments for processes (1.2) with o(z) defined by (3.1).

(e) Theorem 2 shows that, if 0 < 8 < 1, a = 0 and the density u(z) of the distri-
bution of ¢ is assumed to have all its exponential moments, then the r.v.’s in (1.2)
have all their exponential moments whenever § remains below (y —1)/v. On the
contrary, the r.v.’s in (1.2) have no exponential moment for 8 > (v —1)/~. Since
the parameter v determines the tail behaviour of y(z), our result highlights the
strong relationship between the existence of exponential moments for (1.2) and
the tail behavior of u(z). If § < (v —1)/~, then rough versions of the large devia-
tions inequality can be derived from the generalizations of Bernstein’s inequality
to ¢-mixing processes (Bosq (1975)) and to a-mixing nonstationary processes
(Carbon (1983)). An extension of Bosq and Carbon’s results has been obtained
in White and Wooldridge (1991), using truncation. The actual derivation of such
results would be basic to obtaining approximate confidence intervals from the
perspective of statistical inference in the context of (1.2). On the other hand,
if 8> (v — 1)/, then the qualitative behavior of the process {X;} profoundly
differs from the case 8 < (v —1)/v. This can be seen by examining the behaviour
of the extremes X, , and Xnn of the sample {X1,...,X,} as n — oo. Indeed,
since {X} is stationary and a-mixing, their limiting distribution only depends
on the tail behaviour of the stationary distribution of {X;} (see, e.g., Leadbetter,
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Lindgren and Rootzén (1983)). Furthermore, from a modelling point of view,
Theorem 2 shows that an erroneous choice for the distribution of £ may lead
to some problems concerning the estimation of the parameter 4. In conclusion,
Theorem 2 provides a fresh insight into our newly introduced 8-ARCH model
defined by (1.2)—(1.4), which makes it interesting.

(f) In econometric contexts, several authors have considered non-Gaussian ¢ den-
sities to model time series with heavy tails. In general they have focused on the
case ¢ > 0 a.s. For instance‘, they have considered GED distributions. For a
bibliographical survey, see Bollerslev, Chou and Kroner (1992).

We now establish new results concerning the existence of moments of the
ARCH model defined as:

Xt = aXt_l -+ (ao + alth_l)l/z&?t, (35)

where ag and a; are positive constants. This model has been introduced for the
case a = 0 by Engle (1982) and by Weiss (1986) for a # 0; in both cases, € has
a standard Gaussian distribution. We assume the following hypotheses on the
distribution of €:
(Hy) There exists a bounded function m : [0,00) — [0, c0), decreasing for large
values of z, satisfying [5° r¢~Im(r)dr < co and p(z) < m(|z|) for z a.e. in R.
(H3) (i) For each o > 8 > 0, r%"Im(ar) = o{m(fr)} as r — oo.

(ii) For each a > B > 0, u~!(r)m(ar) = o{m(Br)} as r — oo,

where u(r) = T s

= ()t (r > 0) represents the hazard rate of the pseudo-density

m(r).

Theorem 3. Let the process {X:} be defined by (3.5) and assume that a =
0 and ai/2|l€||1 < 1. Under the assumption (H1)-(Hs) with pu(z) = m(|z|), of

- _ 2 -
there ezists an s > 1 such that a1 > i, oV < %%EE}% and af 7V <
s ay €

ags"l)/s(aﬂ[g”gs — 1), then (3.5) has no moment of order > s.

Remark 3. (a) The assertions of Theorems 1, 2 and 3 cannot be derived from
Tweedie’s results, since their proofs make use of lower bounds for the transition
kernel density. '

(b) For the case # = 1 and a = 0, Theorem 3 shows the nonexistence of higher
order polynomial moments of the invariant density. This is a basic property of AR
processes with ARCH noise (i.e. § = 1). Furthermore, this property disappears
when 8 < 1. It can be proved that if 3 = 1 and b > 1/FEl|e| then (3.5) is not
ergodic, as for the (1.2)-(1.4) model when § > 1. This conveys the idea that
the classical AR model with ARCH noise (8 = 1) is located at the boundary
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of ergodic models of this kind, and, thus, appears as a limiting case. Note that
Nelson (1991) proves, for the case a = 0, af = aJ, 8 = 1, that X; is ergodic if
and only if E[log(a?e?)] < 0, and that E[|X|*] < oo if and only if E[(a?e?)?] < 1.

(c) Theorem 3 shows that for each s > 1, there exist values of ag and a; for which
(3.5) has no moment of order s, whenever the density u(z) satisfies (H;)-(Hs).
In particular, the stationary distribution of (3.5) can have infinite variance, even
if the density u(z) of € decreases to 0 very quickly as |z| — oco. Note that, as far
as we know, such a property has never been proved.

4. Conclusion

In general, obtaining stationary, ergodic and moment properties of ARCH
models can be quite difficult. This paper illustrates several methods of deriving
such properties in the context of a new ARCH model, as the S-ARCH model.
The S-ARCH(1) model is basically an extension of the ARCH(1) model of Engle
(1982), and shares a major limitation of that model, namely that it makes the
conditional variance a function of only one lag of X;.

Possible extensions of the ARCH(1) model are the ARCH(p) and the GARCH
(p, @) models (Bollerslev (1986)). The latter makes the conditional variance a
weighted average of all past residuals. In empirical applications (see e.g., Boller-
slev, Chou and Kroner (1992)) the “GARCH” terms are almost always highly
statistically significant.

Corresponding extensions of the -ARCH(1) model discussed in this paper
can be considered, namely,

— the S-ARCH(p) model, defined by

P 2611/2
X, = aXs1 + [ao + <Z(ajx;: +ar XD z.)) } . (4.1)

1=1

and
— the 8-GARCH(p, ¢) model, defined by

Xt = Eth:tl/2 (42)
with
g P 2811/2
hy = ijht_j + [ao + (Z(anttz + CL:X—_l)> ] ,
1=1 =1
where €; is independent from h¢, h;_1,.... Unfortunately, since the techniques

used in this paper can only deal with the Markovian models of the form (1.1)
with invertible o(z), our results cannot be directly extended to the models (4.1)-
(4.2) for p > 2.



PROBABILISTIC PROPERTIES OF THE 8-ARCH MODEL 79

For the case where p = ¢ = 1, the -GARCH(1,1) model can be rewritten as:
X, = eshl/? (4.3)

with,
1/2

he = by + 0 (ec1hil}),
where b; > 0 and o(z) is defined by (1.4). Thus, in this case, {h¢} is an autore-
gressive nonlinear Markovian process, but the recursion scheme (4.3) does not
have the form (1.2) and appears to be much more difficult to handle than the
recursion scheme (1.2)—(1.4).
However the ergodic and moment properties of autoregressive processes like
(4.3) depend heavily on the response of the system to large values of |e;—1| and

hi—;. But for such values of |e¢—1| and h¢-1, o?(e4-1 h:ﬁ) can be approximated

by Cles—1|% hfﬂl, for some positive constant C. Thus, (4.3) can be expected to
exhibit the same kind of ergodic behaviour as a process of the form:

Xt = Eth%/z (44)
with
hy = bihe_y + CRY 141,
where ni—1 = |ez—1|?P is positive and indepedent of h;—1, hi-2, .. .. Since (4.4)

has a structure similar to that of (1.2)-(1.4), we conjecture that our results can
be adapted to (4.3). The above discussion suggests that our results concerning
several basic properties of the S-ARCH model capture the main features of the
corresponding properties of the -GARCH(1,1) model.

5. Proofs of the Theorem

Proof of Theorem 1

(i) Define, for & > 1 and a positive constant A to be specified later,

Cla, 4) = {qS e LNR; ) : /°° ¢(z)|dz < 1 and |$(z)] < |z|~°
for a.e. z such that |z| > A}.

Suppose for simplicity that ¢(—z) = ¢(z) (without loss of generality, since
p(—z) = p(z)), and choose y > A. Let H denote the linear operator of L'(R)
defined by

Hoy) = /E p(z, y)d(z)ds.
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Then, for ¢ € C(a, A), we have

Ho(y) = I+ 11+ I11, (5.1)
where - .
1= |2 [ u{ s Joterda] < 2uw), (5.2)
=z [* L o] <ot ufoy) 63
and

(5.4)

11| = !2 /Aoo U—(%y{;—éla}qﬁ(:c)dx .

Making the substitution s = in (5.4), we obtain

.’E

‘”I’=(2/0W(A) e )}“(:)‘“!’

where g(z) denotes the inverse function of the restriction of ¢ to [0,00). Since
9(z) ~ (2)'/# as £ — oo and ¢ € C(e, A), we have, for any €' > 0,

(11} < (1+ )87 (bllel(am)/p) @D Py~ (atA-1/E, (5.5)

Using (5.1)—(5.5), we obtain
1
)] < (1+ )87 (lelloiye) /oy~ 1o 1) (5.6)

Hence, if § < 1, then ﬁﬁ— > o, and from (5.6) it follows that H¢ € C(a, A),
which proves (i )

(ii) Following Tweedie (1976), it is enough to construct a nonnegative increasing
function g(z) defined on [0, c0) and a positive constant a, such that

(a) 2/000 2 {a( )}g(y)dy > g(z) forall z > a, (5.7)

a(:z:)

e |
® 2 —)u{%—)}lg(y)—g(z)ldysB for all z € [0,00), (5.8)

o(z

where B denotes some finite positive constant, and

(¢) g(z)> sup g(y) forall z> a. (5.9)
0<y<a
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To this end, we define g(z) = Az for 0 < z < a, where the positive constants a
and ) will be precised in the course of the proof, and g(z) increase from Aa to
(1 +¢)Xa as £ — oo, T > a, for a given arbitrarily small constant ¢ > 0. Since
o(z) ~ baP as z — oo, making the substitution s = ;&-) in the integral in (5.7)
yields

o0 a oo
2/0 }%u{;zc—)}g(y)dy > A\b(1 — 7) [2/0 sp(s)ds} ® + da {2/(1 u(s)ds]
(5.10)
for all z > a, where n > 0 is some small constant. Now, the right-hand side of
(5.10) is larger than g(z) for all z > a if a is chosen so large as to guarantee that
this expression is larger than (1 + ¢)Aa, since (1 + {)Xa = supg¢[o,00) 9(z). But
this inequality holds whenever

Ab(1—1n) [2/ su(s)ds} af + Xa [2/ ,u(s)ds] > (14 ¢)Aa. (5.11)
0 a
Dividing both sides of (5.11) by Aa yields

1+C——2/ p(s)ds
aﬂ—l > a

- b(1 —1n) [2 /Oa su(s)ds] -

(5.12)

Assume 8 > 1. Since a1 — oo as a — o0, (5.12) holds for a large enough.
Furthermore, conditions (b) and (c) are clearly satisfied with, e.g., B = 2Xa.
This concludes the proof of (ii).

Proof of Theorem 2

In order to prove Theorem 2, we first need to establish a technical lemma.

J(z) = /Oz exp{ - (s + Bg?) }ds, (5.13)

where p > 0, p(z) increases to co as z — oo and p(z) = o(z**1) as z — oo.
Then, there ezists zg > 0 such that

Lemma 1. Let

J(z) < exp{ - Mp(z)l/("+1)} for all z > 2 (5.14)

and

J(z) > C' exp{ — M'p(z)l/(“+1)} for all 2z > 2z (5.15)

for some positive constants C', M and M' depending only on p.
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Proof of Lemma 1. The proof basically relies on the substitution

p(2)

t=<pz(s)=s+—#, 0<s <z, (5.16)
s

for all z large enough. For the sake of simplicity, we will denote ,(s) more briefly
by ¢(s) and, similarly, p(z) by p, when no ambiguity can arise.
We define smin(2z) = Smin as the unique value of s, s > 0, such that ¢'(s) = 0.
We have -
Smin = Copl/(”-H), (5.17)

where Cp = p/(#+1), The function ¢(s) takes its minimum value
$Pmin = (P(smin) = Mopl/(““), (5.18)

where My = pl/+1) 4 =#/(+1)  at s = spin. Moreover, the function ©v1(s)
defined by ¢1(s) = ¢(s) for 0 < s < sy, is decreasing from co to Ymin, Whereas
the function ¢(s) defined by a(s) = ¢(s) for smin < s < 2 is increasing from
¢min to (z). Thus, we will have to split the substitution (5.16) into two parts,

t = pi1(s), 0< s < Smin, (5.19)
t = va(8), Smin <s<z. (5.20)

(i) First, we prove (5.14). Split J(z) into J(z) = J1(z) + Jo(2), where

2@ = [ expl-pi(s)}s,
Jo(2) = /: exp{—y2(s)}ds.

min

(a) We first seek upper bounds for Jy(z) = I + II, where

I= /0 " exp{—p1(s)}ds

and .
11= [ exp{-e1(s)}ds,
81

with s1, 0 < 81 < Smin, such that
l¢'(s)| > 1 for all s in (0, s1] and |¢'(s1)| = 1. - (5.21)

Thus,
sy = Cypt/ B+ (5.22)
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where Cq = (%)1/(’”'1) < Cy,
p(s1) = Mypt/ D) (5.23)

and M; > Mp is a constant depending only on p. Making the substitution (5.19)
in I and using (5.21)—(5.22) it follows that

I<exp(- MypM/ (4D, (5.24)
Moreover,
II1 <(Cy— Cl)pl/(“‘H) exp{ - Mopl/(“+1)}. (5.25)
(b) We now turn to J(z). Letting
89 = Cop/(HH1), (5.26)
where Cy = (2u)*/#+1) > Cy, we have
o(s2) = Mypt/ +1), (5.27)

where M, > M is a constant depending only on . As in (a), we split J2(z) into
Jo(z) = II1 + IV, where

52
111 = / exp{—wpa(s)}ds

i (5.28)
IV = / exp{—pa(s)}ds.
s9 .
Proceeding as in (a), we obtain
I11 < (Cz - Co)pl/(“'*_l) exp{ - Mopl/(p'+1)} (5.29)
IV < 2exp { - szl/(““)}. (5.30)

Let M be any positive constant such that M < Mp. Collecting (5.24)—(5.30),
it follows that J(z) = o{exp(—Mp'/#+1))} as z — oo, which implies (5.14) in
Lemma 1.

(ii) We now turn to the proof of (5.15). Proceeding along the same lines as in
(1), we obtain

II+ 111> (Cy — C)pM eV exp { - MDY, (5.31)

where M' = max(M;, M;). Moreover,

1/p  poo
1> =D ne=tgy. (5.32)
Ko Jeo(s1)
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Using the classical result [ t%e~*dt ~ 2%~ as  — oo and taking into account
that ¢(s1) — oo as z — oo, we obtain from (5.32) that

1
n

for all z large enough.
(b) Finally,

IV > %exp{ - M2p1/(“+1)} (5.34)

for all z large enough.
This completes the proof of Lemma 1.

Proof of Theorem 2
Proof of (i). This proof parallels that of Theorem 1 (i). We define

cr,) = {8 L(RN): [ 8o < 1 and |9(2)] < exp(~rle)
for a.e. z,|z| > A}, (5.35)

where r is a positive constant and A > 0 has to be chosen in the course of
the proof. As in the proof of Theorem 1 (i), we suppose, for simplicity that
¢(—z) = ¢(z) and o¢ = 1, without loss of generality. For ¢ € C(r, A), from (3.1),
|7} and |IT| have the same upper bounds as in (5.2) and (5.3), respectively. So we
concentrate on |III|, as given by (5.4). By the substitution s = ;z% in (5.4), we
obtain (5.5). Now the following upper bound for |III] is obtained by replacing

u(z) by (3.2) and ¢(g(¥)) by exp{—rg(¥)} (since g(¥) > A for all 0 < s < U&)

and y > A). For any ¢’ > 0, we have

I11] < wk#(l—ﬁ)y(l—ﬂ)/ﬁ /z t—(l—{-y(l—ﬁ))exp{ _ <t N p(z)> }dt,
b1/6 0 th

(5.36)
where p = ﬁl?’ .
_ Y
2=k [O’(A)] (5.37)
and
ple) = g o), (5.38)

with z > k[;&—)]" for y > A provided that A is large enough. The integral in the
righthand side of (5.36) has the same behaviour for z — oo as the integral J(z)
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defined in Lemma 1. Moreover, since p(z) = Constant. o(A)YPz# = o(2#*1) as
z — 00, the assumptions of Lemma 1 are satisfied. Thus,

I11] = O(y=P/ exp{~ Mp(z)"/#+1})
as z — oo. Now, from (5.37) and (5.38),

\III| =0 (y(l~ﬂ)/ﬂ exp{—Ky’”/('”+l)}>

as y — oo, where K = M[ﬂl—b}/%,ku]l/(““) does not depend on A. Since 8 < 7;—1,
it follows that pu~vy/(x + 1) > 1, implying that

|[III| = o(exp(—qy)) for all ¢ > 0,

as y — oo. Hence, if A is chosen large enough, |I1I| < (1/3)exp(—ry) for all
y > A, whereas |I| and |II] < (1/3)exp(—ry) for all y > A from (5.2) and (5.3)
respectively. Thus, it follows that for all 7 > 0, there exists A large enough such
that ¢ € C(r, A) implies H¢ € C(r, A). As in the proof of Theorem 2 (i), this is
sufficient for proving that the stationary density ¢* of any process (1.1) satisfying
the assumptions of Theorem 2 is in C(r, A) for all » > 0 and A large enough.
This achieves the proof of part (i) of Theorem 3.

Proof of (ii). It can be proved along the same lines that, if the assumption
(3.3) is in force and 8 > 7;—1, then for all » > 0 and all densities ¢ such that
é(z) > exp(—r|z|) for all |z| > A and A large enough, H¢(z) > exp(—r|z|) for
all |z] > A. Since the sequence H"¢(z) converges to ¢*(z) a.e. as n — oo, the
proof is complete.

Proof of Theorem 3

From Hognas (1986), it is sufficient to examine the case a = 0. Let ¢ > 0
be a constant which will be chosen in the course of the proof. If |z| < ¢, then
oo < o(z) < 01, where

oy = (ag)l/2 and o1 = (ap + a1c2)1/2; (5.39)

If |z| > ¢, then by |z| < o(z) < by |z|, where

12 ; 12 ag 1/2 ; ao 1/2
bo = (a1)/2 and by = (a1) (1 + 51?) - 0(1 + alcz)  (5.40)
We need the condition b; E|e| < 1 for the process to be ergodic, i.e.
ap \ /2
bo (1 + ——5) Ele| < 1. (5.41)
aic
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To show that [T%° |z|*¢*(z)dz = co where ¢*(z) denotes the stationary density
of (3.5), we need to verify the following two conditions:

—1/(2s)
(1+2%) 7 @ el > 1 (5.42)
ajc
and ;
100 (00\$
— (=) >c°. 5.43
booy (bo) =¢ ( )
Condition (5.43) is satisfied if
1/2 1/2
ap ag ag\ s/2 s
- — >a®. 5.44
<1+a1a2) (ao+0102> (01) =4 ( )
Moreover, the constant ¢ has to be chosen so that
(a0)1/2
c > , 5.45
(@) 2 (@) (1l — 172 (543)
ag\1/(2s)
< {— .
¢ < (al) (5.46)
and a; and ag have to be chosen so that a; > (”Eﬁ’) ,
- 1 — a;(Ele])?
(s=1)/s < - 5.47
(20) (@) (Blel)?” (547
and |
(a0) ™% < (a1)=/#[(a1)* (llells)* - 1. (5.48)

Finally, for all 0 < ap < 1 and a; < 1, there exists s > 1 large enough such that
(5.47)—(5.48) are satisfied, which completes the proof.
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