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Abstract: In many clinical trials, it is of interest to compare more than two popu-
lations with respect to multiple correlated end-points. In this paper, we present a
multivariate rank test for the comparison of R-samples (R > 2) with respect to mul-
tiple time-to-event outcomes as well as to repeated measures. We present a statistic
that is a function of a linear combination of stochastic integrals and show that the
large sample distribution of a vector of (R — 1)RK such stochastic integrals for K
(K > 1) variates and R groups is asymptotically multivariate normal. We then
describe an R-sample T2-like K-variate omnibus test similar to the Kruskal-Wallis
test.
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1. Introduction

Many clinical trials are designed to compare more than two populations with
respect to times of multiple events or with respect to a multivariate outcome such
as repeated measures over time. For instance, in studies designed to determine
the efficacy and/or safety of a new drug using a multivariate outcome variable, the
investigators often wish to test for the effects in a placebo group versus perhaps
two or more groups receiving varying doses of a drug.

Aalen (1978) showed that the now classical family of weighted Mantel-Haens-
zel (1959) distribution-free statistics for survival analysis could be obtained using
a counting process formulation. Aalen’s work was extended into R > 2 popula-
tions by Andersen, Borgan, Gill, and Keiding (1982) and was used by various au-
thors as the basis for nonparametric R-sample tests (Aalen and Johansen (1978),
Gill (1980), Jacobsen (1982, 1984), Harrington and Fleming (1982), Andersen
and Borgan (1985), and Jones and Crowley (1989)).

Wei and Lachin (1984) expanded the two-sample univariate Aalen statistic
to the multivariate case. Their test can be applied to K-variate time-to-event



374 YUKO Y. PALESCH AND JOHN M. LACHIN

data where at most one of the K event types can represent an absorbing state.
The Wei-Lachin test allows for general non-informative random censoring where
the amount and pattern of censoring may differ between groups provided that
censoring occurs at random, i.e. independently of the event times. Wei and Lachin
also noted that in the general K-variate case, the model for observations missing
at random (completely) (c.f. Little and Rubin (1987)) is a special case of the
random censorship model. They then showed that the multivariate rank test
can be applied to any multivariate data structure with randomly missing and/or
censored observations and is not limited to time-to-event data. See also Davis
(1991) and Lachin (1992) for general discussions of the Wei-Lachin and related
methods for the analysis of K-variate observations with randomly missing data.
In this paper, we present a multivariate rank test for the R-sample (R > 2)
case. The test is a multivariate extension of the R-sample univariate test of An-
dersen, Borgan, Gill, and Keiding (1982) using the approach adopted by Wei
and Lachin (1984) in their development of a two-sample multivariate test. In
Section 2, a brief review of the R-sample univariate test based on the count-
ing process model is given. In Section 3, we develop the R-sample multivariate
rank statistic which can be expressed as a linear combination of a larger set of
stochastic integrals, and in Section 4, we present a theorem on its asymptotic
null distribution and a test of hypotheses based on the multivariate rank statis-
tic. These methods are illustrated in Section 5 with application to data from the
National Cooperative Gallstone Study (NCGS) (Schoenfield, et al. (1981)).

2. The R-Sample Univariate Rank Test

We first describe the R-sample (R > 2) univariate test for a possibly right-
censored measure such as an event (survival) time. Let X;; > 0 be the time-to-
event variable for the jth individual in the ith group. To incorporate information
from censored or incomplete observations, let U;; denote a latent variable where
Ui; > 0 under a model where observations may be censg_red at random, or U;; €
[0,00) under a model for missing-at-random. Then, X;; = min[X;;, U;;], and
A;; = 1 if X;; was observed and 0 if censored or missing.

Within the ith population, assume that the X;;’s are independently and iden-
tically distributed (iid) with survival function F;(z) and corresponding cumulative
hazard function A;(z). We wish to test

Hy: Fi(z) = Fy(z) = --- = Fg(z) V>0 (2.1)

We also assume that the Ui;’s are iid as L;(u) independently of the Xij;'s. Note
that the censored or missing latent variables may be distributed differently among
the populations.
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Let the event counting process N;(t) represent the number of events in the
ith group that occur no later than time ¢:

n;
Ni(t) = #{] 1 X5 <, A= 1} = ZI(Xij < t)Aij, (2.2)
j=1
and let the risk process
Yi(t) = #{: Xy 2t} = > I(Xyj 2 1) (2.3)
Jj=1

be the number of individuals at risk in group ¢ at time ¢. Also, for every i, there
exists a left continuous function y;(t) defined as

-

yi(t) = [1 = F))[1 — La(?)] (2.4)
such that v
sup i) _ y:(t)| 5 0 as n; — oo, (2.5)
te[0,00) | T4

where F(t) is the assumed common survival distribution under the null hypothe-
sis. Furthermore, let M;(t) be orthogonal square integrable martingales for group
i that can be expressed in terms of counting processes and their compensators:

mm:mm-fn@mmy (2.6)

Finally, let Q(t) be a bounded predictable weighting process that is common
to all groups (i) and depends only on the aggregate observable processes, N.(t) =
$;N;(t) and Y.(t) = ;Y;(t) (both summations going from i = 1 to R), and is
equal to zero whenever Y.(t) is zero. Thus, the weight process Q(t) is a function
of the observations and vanishes whenever min[Yi(t),. .., Yr(t)] = 0.

Andersen, Borgan, Gill, and Keiding (1982) proposed a Kruskal-Wallis like
test for the null hypothesis (2.1) in terms of the corresponding hazard functions,
ie.

Hy : A]_(t) = Az(t) =...-= AR(t) V t>0. (2.7)

Let the elements, Z;, in the vector Z be
. t A A
2 = [ Qe)d(Aits) - A). (2.8)

Thus, Z;(t) is the integrated weighted difference between the estimated hazard for
the sth population and the estimated common hazard under the null hypothesis
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(2.7). In practice, these statistics are evaluated at t = oo or at t = max(X;;,
i=1,...,R j=1,...,n).
Algebraically, this expression is equivalent to the weighted Mantel-Haenszel

(1959) statistic
2= [ Q<s>[dNi<s>—n<s>df('§§) . (2.9)

By applying the martingale central limit theorem, Andersen, Borgan, Gill,
and Keiding (1982) showed that Z is asymptotically normally distributed with
mean vector 0 and covariance matrix V' that can be consistently estimated by
V = {Vi,}, where

Ve = [ Qg b - Zaw ) (210)

—

and é;r is a Kronecker delta or indicator function &;, = I(i = 7) (see Theorem
3.1 in Andersen et al. (1982)). Then, under the null hypothesis in (2.7), the test
statistic X2 = Z'V~1Z is asymptotically distributed as chi-square with R — 1
degrees of freedom.

The choice of the weight function Q(t) determines the nature of the test (e.g.
modified Wilcoxon or logrank test). The weighted Mantel-Haenszel statistic Z;
includes many families of statistics such as those proposed by Tarone and Ware
(1977) and Harrington and Fleming (1982). For example, Q(t) = 1 in (2.8) yields
the logrank test or the generalized Mantel-Haenszel test. If we set Q(t) =Y.(t)
we have the generalized Gehan’s Wilcoxon test proposed by Breslow (1970). If
Q(t) = F(t), where F(t) represents the Kaplan-Meier product limit estimator of
the survival function, we obtain the modified Wilcoxon test proposed by Peto and
Peto (1972) and Prentice (1978). In general, the choice of a weight process should
depend on the nature of the difference in the survival functions F (s) between the
groups under the alternative hypothesis of interest.

3. The R-Sample Multivariate Rank Statistics

a. The Null Hypothesis: We now describe an R-sample (R > 2) K-variate
(K > 1) rank test which can be applied to test the equality of the distributions
of K types of events under random censoring or of a K-variate measure under
random missingship. The test will be described in the setting of an analysis of
multiple events.

An individual j in group i may experience an event of type k at time X ;x and
may also experience an event of type £ at time Xije, where either event may occur
before the other and where the occurrence of any one event does not preclude
the occurrence of any other events. Thus, a given individual may experience any
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number of events between 0 and K. For example, patients with diabetes can
be followed to the times of occurrence of any one or all of three microvascular
complications — retinopathy, nephropathy, and neuropathy.

Tt is possible for one of the events to be “absorbing” (e.g. death) if its occur-
rence implies the occurrence of all of the other events. For example, in a study of
times to occurrence of fatal and of non-fatal myocardial infarctions (MI), a fatal
MI is an absorbing event in that it precludes observing a subsequent non-fatal
MI. However, these data could be analyzed using the times to the occurrence of
any MI, fatal or non-fatal, as Xj;1, and the time to the occurrence of a fatal MI
as X-L'jg.

Under the random censorship model, the vector X ;j = [Xij1,. .., Xijk]) rep-
resents K separate, possibly censored, event times for the ijth subject. The n;
vectors X;; within each group i are assumed to be iid as Fi(z1,...,zx). Simi-
larly, the corresponding censoring vectors Ugj = [Uij, ..., Uijk| are assumed to
be iid as L;(u1,...,ux). Under the assumption of random censoring, the Uj;;’s
are also assumed to be mutually independent of the underlying event time vec-
tors, X;;’s. Often in practice, L; may be degenerate in R¥, e.g. Uyjx = Uije
for some ij when the kth and £th components in the vector X ;; share the same
censoring mechanism.

In summary, therefore, the groups may have different patterns of censoring
(e.g. L # Lyx fori # 4,1 <4< i’ < R and any k), and the censoring
mechanisms within a given group may be the same for two different events (e.g.
Ly = Ly for k # £, 1 < k < £ < K and any i), but no one event process
may serve as a censoring mechanism for any other event process (i.e. Xijjk is
independent of Usje for 1 <k < £ < K and all i and 7).

A special case of random censorship is random missingship, as in the case
of repeated measurements. In this case, if the Xjx's are positive-valued random
variables, then the domain of U;;x now 1s 0 or co. Here, X;x is missing if Usjx =0,
and X, is observed if Ujjx = oo. The concept readily generalizes to any random
variables X;;x which are bounded from below. Therefore, the R-sample multi-
variate rank test also can be applied to multivariate observations in general, such
as repeated measurements.

The hypothesis of interest is

H02F1=F2=---=FR=F v (81,82,...,Sk)'€[0,OO)K (3.1)

where F is a common distribution function for alli = 1,..., R. Note that because
of the monotonic relationship between the distribution function and the cumula-
tive hazard function, the hypotheses (3.1) for K =1 and (2.7) are equivalent.

b. The Rank Statistic: For the kth event type, let the aggregate processes
(over the R samples) be defined as dN.(t) = ZidN(t) and Yi(t) = ;Y ().



378 YUKO Y. PALESCH AND JOHN M. LACHIN

Following Andersen, Borgan, Gill, and Keiding (1982), we can define the weighted
Mantel-Haenszel statistic for event type k for each of the R samples as:

szk(t Yo (t) dN. ()
{ Z Yi(t) Yor(t) }’

where n = X;n;, and where Qx(t) is defined as in Section 2 separately for the kth
measure. Note that ¥;T;; = 0 for each k and that with no censoring, Qr(t) =
Y.x(t) yields the Kruskal-Wallis test statistic.

Ty = / Qu(t)Yir(2) (3.2)

4. The Asymptotic Distribution of the R-Sample Multivariate Rank
Statistic and the Omnibus Chi-Square Test :

_In this section, we show that the rank statistics (3.2) can be expressed as
linear combinations of a larger set of stochastic integrals. We then present, via a
theorem, the large sample distribution of the set of R(R—1)K stochastic integrals
from which the asymptotic distribution of the rank statistics is then obtained.
The natural test of the null hypothesis (3.1) would be an omnibus large sample
chi-square test.

a. The Multivariate Rank Statistic: Expanding (3.2) yields

L * Qe)Yer(t) oy * Qu(t)Yar(t)
T = \/ﬁ[z# 0 v () }:;é A0 dN,k(t)] (4.1)

Substituting the decomposition (2.6) defined under the null hypothesis, (4.1) can
now be expressed as

R
Ty =Y [a(i)rkWi[r]k + ar(i)kWr[i]k]a (4.2)
rirl
where a(;), = +1 and a,(;)y = —1, i # 7, and where the stochastic integral Witk
is defined as
Wz[r \/—— / UTk(t)szk(t) (43)
itk Qu(t)Yi(®)
~ _ k rk
y"f’k(t) - Yk(r) (44)

foralli#r,1<i<r<R.

Throughout, we use the notation “i[r]k” or “r[i]k” where the first subscript
is the group indicator for the martingale process dM;x(t). The subscript in the
brackets is the indicator for the risk process Y, (t) involved in the weighting func-
tion, fi,k(t). Therefore, Wik is a function of /lrk(f(ijk) and W, ;) is a function
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of fiik( ~r3k) Then, Wipx and W), are not necessarily independent, whereas
Wippe and Wy, can be shown to be uncorrelated since they are functlons of
variables representing two independent sample groups.

Now, let T denote an RK x 1 vector with elements T,

T= [Tn - Tr|Th2 - Trel -+ | Tk - ‘TRK], (4.5)

which, from (4.2), can be expressed as T = A'W in terms of an [(R — 1)RK] x 1
vector W and an [(R — 1)RK] x [RK] matrix A.

b. Large Sample Distribution: We now present a theorem which establishes
the asymptotic normality of W and thus of T

Assume the following conditions:
(i) nifn — piasn— oo for0 < p; <lji=1,..., R, Tip; = 1;
(ii) There exists for every k = 1,..., K, a left-continuous function, g¢x(t), with
bounded variation in ¢ taking on values in [0, oo} such that

sup |Qi(t) — ar(t)] B0 as n — oo;
te[0,00) :

(iii) The support of F; for alli =1,...,Ris a K-dimensional interval and for
any i and j, Pr[A;;z =1 forall k = 1,2,...,K]>0.

Theorem. Under the null hypothesis (3.1), and conditions (i) through (iii), the
R(R—-1)K x1 vector of stochastic integrals Wi, in (4.3) converges in distribution

as n — 00 to a multivariate normal vector, i.e. W L MN(0,Xw), where the
covariance matriz Tw is consistently estimated by Lw with elements

n; cp -
. —Gikmles f E=;
COV(Wi[r]k, Ws[m]e) _ ) g Tilrlklmie f (4.6)
0, if 1 # s,

foralli#r,m (i,r,m=1,...,R) and k,£=1,..., K, with

1 & _ R T T .
Gifrlk,[m)e = ;L‘ Z [#rk(Xijk)Aijk - ‘I’i[r]k(Xijk)] [Mme(Xije)Aije - ‘I’i[m]e(Xijz)]
B (4.7)
and
. iy <
\I’i[r (t) — Z “rk(ngk)AkaI(Xz]k t) (4.8)

zk(Xka)

The proof of the theorem is presented in the Appendix where we follow the
approach taken by Wei and Lachin (1984) who used traditional asymptotic theory.
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The multivariate martingale central limit theorem could not be applied due
to the multivariate nature of the problem. For each population, the kth counting
process, N;i, generates its own o-algebra, F;;, which is a subset of the probability
space, §2x. Then, by the Doob-Myer decomposition, for each N;;, we have a mar-
tingale M, expressed in terms of the counting process N;; and its compensator
A;x with respect to the filtration F;;. In the multivariate setting, it is possible
to construct a o-algebra F; that is generated by combining all K o-algebras F;;.
However, since the compensator for N is specific to the o-algebra F;; gener-
ated by the counting process N;x, we have not been able to show that each M;;
behaves as a martingale with respect to the all encompassing o-algebra F;.

Corollary. Under the conditions for the theorem, the vector of rank statistics T
n (4 5) converges in distribution as n — oo to a (singular) multivariate normal

vector, 1.e. T £ MN(0,Xr), where the rank of the covariance matriz, L, is at
most (R — 1)K. The covariance matriz, X, is consistently estimated by

f}T = AliwA. (4.9)

The corollary is a consequence of the Theorem since T = A'W is a linear
function of W and since A is non-stochastic, 2T =ASwA D A'TwA = .
c. Omnibus Chi-Square Test: In general, one might wish to test the null hy-
pothesis (3.1) against the omnibus alternative hypothesis, H 4 : Fix(z) # Fyi(z)
for some i # i’, and some k. From Corollary 1, the T2-like test statistic of Hp
versus Hy4 is
X3 =T'S;T (4.10)

which is asymptotically distributed as chi-square with degrees of freedom equalling
the rank of £p. Note that Lr is of rank at most (R — 1)K and therefore, a gen-
eralized inverse, X1, is employed in (4.10).

d. Remarks: The elements of the covariance matrix are estimated under the
general alternative, but it is easily shown that &;k [me LN Tifrlk,[m)e Under Hy in
(3.1). If it were desired to estimate the covariance matrix under Hy, rather than
using the sample-specific functions \i/i[r] % in (4.8), one would employ

B 2 g (thk)A'thI(Xka<t)

V@) =33 frk

i=1j=1 Yi( ka)

(4.11)

The theorem has many potential applications. In Palesch (1990) and Palesch
and Lachin (1993), the theorem is used to describe the large sample distribution of
the family of general relative risk or hazard ratio estimators proposed by Andersen
(1983).
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Finally, we note that the above tests are based on large sample distribution
theory. However, Wei and Lachin (1983) described an extensive small sample
simulation of the size and power of the Wei and Lachin (1984) omnibus test for
two groups (4.10) and the corresponding univariate tests. They concluded that
a sample size of 50 per group is adequate for the tests to be of proper size even
with moderate censoring In one or more groups.

5. An Application: National Cooperative Gallstone Study

We illustrate the R-sample multivariate rank tests using data from the Na-
tional Cooperative Gallstone Study (NCGS) (Schoenfield, et al. (1981)). The
NCGS was a three-group (R = 3) clinical trial of chenodiol for the dissolution of
gallstones in which 916 patients were randomly assigned to receive either placebo,
low dose of chenodiol (350 mg/d), or high dose (750 mg/d) for up to two years
of follow-up. Two of the suspected side effects which were evaluated were aggra-
vation of biliary symptoms and increase in serum cholesterol levels.

For our purpose, we consider a subgroup of 163 patients (high dose group,
ny = 65; low dose group nz = 50; and placebo group, nz = 48) with floating
gallstones who were expected to have a higher incidence of efficacy, i.e. dissolution
of gallstones. Data from the high dose and placebo groups are presented in Wei
and Lachin (1984). The biliary symptom data and the cholesterol data from the
low dose group are given in Tables 1 and 2, respectively. (Note that Table 1 of Wei
and Lachin (1984) contains typographical errors. The correct data is available
from the authors.)

a. Gallbladder Disease Progression (Multistate Survival Data): These data
consist of event-times, X;;x, for each of the two types of event: biliary pain (k=1)
and cholecystectomy (k = 2). Biliary pain is an acute disabling gallbladder at-
tack which may have resulted in the need to surgically remove the gallbladder
(cholecystectomy). Thus, cholecystectomy is an absorbing event; however, by
definition, it also implies the occurrence of biliary pain so that X;;1 < Xijo.
Censoring could occur if patients prematurely withdrew from the study, or ad-
ministratively after two years of follow-up. The ‘+’ in the data set designates
censoring.

The omnibus multivariate rank test chi-square values with 4 degrees of free-
dom (df) using the Gehan, Peto-Peto-Prentice and logrank statistics are 9.18,
9.81 and 5.27 with p values of 0.06,0.04 and 0.26, respectively. The larger test
values with the two Wilcoxon tests may be due to the greater incidence of biliary
pain reported in the early part of the study for the placebo and low dose groups.

The table below presents the three-sample univariate rank test chi-square (2
df) and p values (in parentheses) for the biliary symptom data:
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Event type Gehan Peto-Peto  Logrank
Biliary pain 9.15 (0.01) 9.78 (0.01) 5.25 (0.07)
Cholecystectomy 2.84 (0.24) 3.08 (0.21) 1.96 (0.37)

Again, due to the higher incidence of biliary pain at the early stages of the
study, the Wilcoxon test values are larger than the logrank test. However, with
cholecystectomy, no such trend is evident.

b. Serum Cholesterol Levels (Repeated Measures Data): Chenodiol inhibits
biliary secretion of cholesterol and hepatic conversion of cholesterol to bile acids
which suggested that chenodiol might increase the serum cholesterol levels, thereby
predisposing the patients to atherosclerosis. Thus, the serum cholesterol levels
were routinely monitored. We consider repeated serum cholesterol measurements
obfained at 6 months, 12 months, 20 months and 24 months of treatment where
some observations are missing at random.

The omnibus multivariate rank test using the Gehan, Peto-Peto-Prentice
and logrank statistics yield chi-square values (8 df) of 12.66,11.27 and 9.72 and
p values of 0.12,0.19 and 0.29, respectively. Therefore, the multivariate rank test
with any of the three weight processes results in failure at o = 0.05 to reject the
null hypothesis.

The table below presents the chi-square (2 df) and p values for the three-
sample univariate rank tests for each visit:

Clinic visit Gehan Peto-Peto-Prentice Logrank

6 months 4.14 (0.13) 3.99 (0.14) 2.25 (0.33)
12 months  6.05 (0.05) 5.41 (0.07) 5.26 (0.07)
20 months  3.67 (0.16) 2.25 (0.33) 3.72 (0.16)
24 months  0.21 (0.90) 0.02 (0.99) 2.24 (0.33)

Note the striking differences in the chi-square and corresponding p values of the
two Wilcoxon tests versus the logrank test at 24 months.

Appendix: Proof of the Theorem

The proof of the theorem is outlined in the two propositions below and is
based in part on the Appendix of Wei and Lachin (1984) and Palesch (1990).

Using p; and gx(t) as defined in conditions (i) and (ii) of the theorem, and
defining §.x(t) = Zip;yix(t), then from (4.4),

g (t)piyix(t) (A1)

ﬂ‘ik(t) = gk(t) ’
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where
sup |iik(t) — pir(t)| 20 as n—oo (A.2)
t€{0,00)

foranyi=1,...,R, k=1,..., K. Then, define the random variable

- Xijk
Viprjjk = Pri(Xijk) Bije — /O prk (1) dAK(2) (A.3)
fori#r (G,r=1...,R),i=1...,7m, and k=1,...,K.

Proposition 1. Asymptotic Distribution and Variance of W~
Let W* be an [(R — 1)RK x 1] vector of elements

B Wik = 2" Vi (A.4)
—

i#r, i,r=1...,R; k=1,...,K. Then, as n — o0,
w* L MN©,Zw). (A.5)
The covariance matrix Ty~ has elements consistently estimated by
Nig for 1 =35
~ * * — Oi[r]k,[m}&> = 8§
Cov (Wi[r]k’ Ws[m]e) =47 , (A.6)
0, for 1 # s,

where ;[r)k,[m)¢ 1S 38 given in (4.7).

As a linear function of the iid vectors Vilr)ss W* asymptotically is distributed
as multivariate normal with mean vector 0 and covariance matrix Ty~. The
detailed proof of the consistency of the estimator Ew~ in (A.6) follows straight-
forwardly using the approach of Wei and Lachin (1984), and is provided in Palesch
(1990).

Proposition 2. Asymptotic Equivalence of W and W*
The vectors W in (4.6) and W™ in (A.5) are asymptotically equivalent, i.e.

[Wi[r]k — Wi"i,]k] 20 as n—ooo (A.T)
foreachi=1,...,Rand k=1,..., K. From (4.3) and (A.4), we have
. 1 [
Wi = Wikl = = /0 [k () — prk()]dMix(2) (A-8)

which is the difference of two stochastic integrals of the form [ HdM. It can
be shown that (A.8) converges in probability to zero as n — o0 when certain
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conditions detailed in Gill (1980) and Wei and Lachin (1984) are met. Then,
(A.7) follows, and consequently, the theorem is proved.
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Table 1. Gallbladder disease progression — time (in days) to occurrence of biliary pain
(k = 1) and to cholecystectomy (k = 2) in the low dose (i = 2) treatment group in the
NCGS (See Wei and Lachin (1984) for the high dose and placebo groups data.)

1 2 1 2 1 2
28 204 230 230 728+ 728+
— 32 264 260 260 728+ 728+
60 748+ 271 719+ 728+ 728+
62 727+ 281 281 733+ 733+
66 738+ 350 350 734+ T34+
66 262 361 570+ 734+ 734+
67 727+ 370 605+ 735+ 735+
77 274 497 497 735+ 735+
91 728+ 529 529 741+ 741+
95 810+ 609 731+ 753+ 753+
102 299 632 736+ 753+ 753+
123 123 714+ 714+ 759+ 759+

183 360+ 721+ 7214+ 763+ 763+
184 810+ 722+ 722+ 775+ 775+
189 729+ 722+ 7224+ 812+ 812+
191 743+ 727+ 727+ 826+ 826+
225 225 728+ 728+
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Table 2. Serum cholesterol levels at baseline and changes from baseline at 6,12,20, and
24 months of follow-up in the low dose (i = 2) group in the NCGS with month of and
reason for premature termination (See Wei and Lachin (1984) for the high dose and
placebo groups data.)

OMo 6Mo 12Mo 20 Mo 24 Mo Termination
Mo Reason
143 -5 . . . 8 Dropout
150 12 19 2 11
152 91 124 . .19 Dissolution
156 12 . 46 45
163 48 41 70 87
172 32 31 18 11
172 14 -1 6 =27
176 31 . . X 9 Cholecystectomy
184 42 41 34 37
195 51 23 37 -9
- 196 22 . . . 8 Cholecystectomy
198 23 18 40 39
199 26 9 15 26
205 24 14 -10 -7
212 47 44 31 45
213 -29 34 31 43
213 22 27 31 70
218 62 61 59 40
221 -17 -1 -17 -10
224 53 21 122 49
226 61 . . . 9 Cholecystectomy
227 68 70 54 58
227 13 60 . .12 Dissolution
229 -6 =27 -6 —18
230 12 53 : .17 Dropout
234 -16 3 -54 —64
235 31 79 18 82
235 37 5 10 —6
235 25 26 6 30
238 -1 -3 . .16 Dropout
240 61 . -3 3
247 -1 . : .11 Cholecystectomy
249 —40 47 18 3
254 30 . . .10 Dropout
259  —67 -11 —46 .
259 —25 : . 7 Cholecystectomy
261 . 7 Dropout
261 12 . . . 7 Cholecystectomy
264 -3 55 -7 43
265 38 27 58 39
269 10 15 29 31
271 -6 -22 -28 -14
273 =37 . . : 9 Dropout
284 —12 -7 27 17
285 30 52 33 63
288 34 -31 -10 7
290 . . . : 4 Cholecystectomy
294 —20 54 -9 .
300 34 —48 15 =31

339 -34 -13 0 -39
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