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ASYMPTOTICALLY OPTIMAL SEQUENTIAL

POINT ESTIMATION OF THE MEAN
OF AN EXPONENTIAL FAMILY

Mohamed Tahir

Temple Universily

Abstract: This paper provides a fully sequential procedure for estimating the mean
of a one-parameter exponential family of probability distributions with a weighted
squared error loss and a fixed cost for each observation. The procedure is shown to
be asymptotically optimal to second order among all stopping times, for a general
class of estimators of the mean.
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1. Introduction

Let Q be an open interval and let F,,, w € 2, denote a one-parameter expo-
nential family of probability distributions on R = (—o00, 00); that is,

dF,(z) = exp{wz — Y(w)}A(dz)

for z € R and w € 2, where A is a non-degenerate o-finite measure on R,
exp{¥(w)} = [e“"A(dz), and Q is the set of all w for which this integral is
finite. Recall that the mean and variance of F,, are § = ¢/(w) and ¢? = 9" (w),
respectively, where the prime denotes differentiation.

Let X;,X3,... be independent random variables with common distribution
function F,,, under a probability measure F,,, for some unknown w € (1. Based
on a fixed sample size t, the population mean 6 can be estimated by its maximum
likelihood estimator X; = (X7 + --- + X;)/t, which is an unbiased estimator of
6. However, when t is a stopping time, X; may be biased for . For instance,
suppose that F, is the d.f. of the normal distribution with mean § = w and
unit variance, and define a stopping time ¢ by t = inf{n > 1 : 271nX2 > a}
for a > 0. Following the proof of Theorem 9.1 of Woodroofe (1982), it can be
shown that E,[X;] = 6(1 +1/a) + o(1/a) as a — oo, for all w # 0. This suggests
considering estimators of 8 of the form X;/(1+1/a) or 8; = X~ X:/(1+271tX?).
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More generally, let b,,n > 1, be a sequence of bounded, continuous functions
on R, which converges to a continuously differentiable function b, uniformly on
compact subsets of R, and such that sup g |bn(z)| = o(v/7) as n — co. Consider
estimators of € of the form

én = Xn - lbn()zn)

for n > 1, and suppose that when observation is terminated at time ¢ — n, the
loss incurred is

Lo(n,w) = a®y*(w) (8, - 0)? +n (1.1)
for w € Q, where a > 0 and v is a positive twice continuously differentiable
function on €2. Then the risk is R.(n,w) = Ey[Le(n,w)] = L[g(8)]2 +n + o(1/n)

for all sufficiently large n, where E,, denotes expectation Wlth respect to P, and

9(8) = y(w)/¥"(w).

If g(6) is known, then the approximate risk is minimized by letting n be an integer
adjacent to ng = ag(f); in which case the minimum risk is R,(ng,w) ~ 2ag(6)
for all sufficiently large a and all w € Q. However, if g(#) is unknown, then ng
cannot be used and there is no fixed sample size procedure that achieves the risk
2ag9(0). In view of ng, let

t=inf{n >1:n > ajn} (1.2)

for a > 0, where I > 1 is an initial sample size and g, is an estimator of g(6)

which is defined below. This type of stopping procedure was first considered by

Robbins (1959) for the estimation of the mean of a normal distribution.
Recently, Tahir (1989) showed that

lim inf inf sup Te(8; w) > sup G(w)

a—o0 S weJ w€eJ

for every compact subinterval J of €2, where
Ta(8;w) = Ey[La(s,w)] ~ 2ag(8) (1.3)

is the regret of the stopping time s and
TN CAC) TN 2,7 [2(6) ] | b%(6)
6 =¥ G+ )5z ) - O L w09

for w € Q. The main result of this paper shows that lim, . 7o(t;w) = G(w)
uniformly with respect to w on compact subintervals of 2, where ¢ is as in (1.2)
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with §n = gn(Xn) and gn, n > 1, is a sequence of continuous functions on R
such that g, = g on §,, where Q,, n > 1, is a sequence of compact subintervals
of Q2 for which % < g <non ,, for each n > 1. The result implies that ¢
has asymptotic local minimax regret (see Woodroofe (1985) for more details on
asymptotic local minimaxity.) The estimators gn, n > 1, have been considered
by Woodroofe (1987) who shows that asymptotic local minimax regret can be
obta_ined by procedures that take observations in three stages when 6 is estimated
by Xp, n > 1.

2. Preliminary Results

Let t be defined by (1.2) and observe that t > 1/a for all sufficiently large a.

Lemma 2.1. If J is any compact subinterval of C1, then

P,{t < ea} =0(1/a”) and Z nPP,{t >n} —= 0
n>afe

uniformly in w € J as a — oo, for all sufficiently small e > 0 and all p > 0.

Proof. The lemma follows from Lemma 2.1 of Woodroofe (1987) since P, {t <
ea} < Pu{|1/gn — 1/g(8)| > ¢, 3n > y/a} for all w € J and all € < 1/2 such
that 2¢ < inf,c g(6) and sifice, for any n > a/e, Pu{t > n} < Pu{gn > 1/} <
Po{|gn — g(8)] > €} for all w € J and all € < 1/2 such that 2¢ < inf,eyg(0) <
sup,ey 9(8) < 1/(2€).

Lemma 2.2. If J is any compact subinterval of {1, then

lim E, [

a—+00

’ 0 and 25 ! in P,-probabilit
= - — — - ili
t  g(6) !

uniformly with respect to w € J as a — 0o, for allp > 1.

== 9(6)

Proof. The first assertion follows from Lemma 2.2 of Woodroofe (1987) since
It/a—g(8)P < 2P~ 1a~P+22P2|g,_1 — g(6)|P+2°P~2|ge — g(6)F, by the cp-inequality
(Loéve (1963)) and (1.2). The second assertion follows easily from Markov’s
inequality.

In the remainder of this paper let S, = X1 +---+ X, for each n > 1.

Theorem 2.1. Let Wy, = (S, — n8)/v/ny"(w) for w € Q andn > 1. If J 1s
any compact subinterval of 2, then Wy converges in distribution, under P, to a
standard normal random variable, uniformly with respect to w € J as a — oo.

Proof. The theorem can be established by following the proof of Theorem 1.4 of
Woodroofe (1982) and using Lemma 2.2, Kolmogorov’s inequality, and the fact
that 4" is bounded on J.
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Lemma 2.3. If J is any compact subinterval of §1, then there are positive con-
stants C = C(J) and § = 6§(J) for which

sup Pw{ max |S, — nf| > x} < 2max {6_32/(2]"0), e_%&’}
wes | 1<n<n

for all z > 0 and all integer N > 1.

Proof. Since S, —nf, n > 1, is a martingale with respect to P,, for each w € 0,

Pw{ 12?ng<5” — TLH) > LB} < e—rzEw [eXp{r(SN - Ng)}]

= exp{ =12+ N[p(w + 1) — ¢(w) —7'0]}
= exp{ —r:c+Nr21/)"(w*)/2} (2.1)

for all 7 > 0 and all w € Q for which w+r € §, and all z > 0, where w* is an
intermediate point between w and w + r. Let Js denote a -neighborhood of J
and choose § so small that J; C . Let C denote an upper bound for ¥" on Jj.
Then RHS(2.1) < exp{—rz + NCr?/2} = exp{Q(r, z)}, say. The lemma follows
by minimizing Q(r, z) with respect to r > 0 forz < NC§ and for z > N C$é, and
applying the resulting inequality to both S, and —S,,.

Theorem 2.2. Let W,,, n > 1, be as in Theorem 2.1. If J is any compact
subinterval of Q, then WF, a > 0, are uniformly integrable with respect to P,
uniformly in w € J, for allp > 1.

Proof. Let € > 0 be as in the proof of the second assertion of Lemma 2.1, and
set N, = [ea] + 1 and N = [a/e€], where [b] denotes the greatest integer that does
not exceed b. Then
/ (= t0)/Vi[ dP, < (ca?’? / sup | X, — 6PdP,
t<ea t

< <ea 1<n<N;

< Cep/z\/appw{t < Ea}\/Ew“Xl - 9,21)]

— 0

uniformly inw € J asa — oo, for all p > 1, for some constant C > 0, by Schwarz’s
inequality, Doob’s maximal inequality (applied to the reverse martingale X,,,
n > 1), and the first assertion of Lemma 2.1. Next, Let C, = {ea < t < a/e}.
Then an integration by parts shows that for each w € Q

/ St — t6
Ca

Vi

P

AP, < plea)P? [~ 2P 1P {C,, IS, ~ 18] > 2}do
0

o0
< _p_/ :t:p'le{ max |S, — nd| >x}da:. (2.2)
(ea)?P/2 Jo N1<n<N,
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Furthermore, by Lemma 2.3, there are positive constants C and § for which

supLHS(2.2) < 2p(ea)"p/2/ Pl [e'zz/(QCN"’) + e—%‘s‘“] dz — I,
weJ 0

as a — oo, where I, = 2pe PCP/2 [° yP~le= 3V’ dy < oo, for all p > 1. Finally,

A>a/e

uniformly in w € J as a — o0, by Schwarz’s inequality and the facts that the
term under the first square root tends to zero uniformly in w € J as a — oo by
the second assertion of Lemma 2.1; and the other term is O(N, ) uniformly in
w € J as a — oo, by Doob’s maximal inequality and Von Bahr’s theorem.

(S — 16)/v/4| dP, 5\/2 w Pyt > n}, [E, sup X, — 67 =0

n>aje n>N;

Lemma 2.4. Let t* = (t — ag(8))/\/ag(0). If J is any compact subinterval
of §1, then t* converges in dzstrzbutzon, under P,, to a normal random variable
with mean 0 and variance 7%(w) = [g'(0)]*[9(6)) 24" (w), uniformly in w € J as
a — 00.

Proof. The lemma can be established by following the proof of Lemma 4.2 of
Woodroofe (1982) and using Theorem 2.2.

Corollary 2.1. If J is any compact subinterval of ), then

(t —ag(6))’

lim E, [
t

| =@

uniformly in w € J, where 72(w) is given in Lemma 2.4.
Proof. The proof is similar to that of Corollary 4.1 of Woodroofe (1987).

Lemma 2.5. If J is any compact subinterval of 1, then
a? - —
[ | - b@)(X: - 0)|dP, = o(1)
[ X:—8|>€ t

and

a?. o
/l)_f —f|>¢ t_z-[bt(Xt)]Zde =o(1)

uniformly in w € J as a — oo, for all sufficiently small € > 0.

Proof. The lemma follows by Schwarz’s inequality and Lemmas 2.1 and 2.2 of
Woodroofe (1987) (and Lemma 2.2 of Tahir (1989) to obtain the second asser-
tion).
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3. Asymptotic Local Minimaxity
The main result is presented in the following theorem:

Theorem 3.1. Let m = [\/a] and let F,, denote the o-algebra generated by
X1,..., Xm. Also, let t be defined by (1.2) and let J be any compact subinterval
of 2. If there is a constant C > 0 for which m*|E {t—agm|Fm}| < C w.p.1 (R,),
for all w € J and all sufficiently large a, then ro(t;w) = G(w) + o(1) uniformly
mw € J as a — oo, where 4(t;w) is defined by (1.3) and G(w) is given in (1.4).

Proof. Write
X, —6== [m(X —0)+ (Xmp1 = 0+ + X, — 0)] (3.1)

on {t > m}, expand the square, and use the independence of X7, X5, ... to obtain

2 "
BA(Xe = 0P Fm} = B (X — 07 + L T

for all w € 2. Combine this observation with (1.1) and (1.3) to get

(t - ag(6))?

ra(tw) = B[ L] o2)m, (2 (5~ m0)? ()]

2 2
- 20 (0) B | S0 (X = 6)] + 7 Bu | 0 (R

= Bu[T] +7*(0)Eu|Te] - 292 (W) Eu[Ts] + v* () Eu[Ts),  (3.2)
say. Furthermore, [ ( )]
g (6 "

uniformly in w € J as a — o0, by Corollary 2.1. To evaluate E,[T3], write

I, = [%22 B 3712;} [(Sm — mf)? — mqp”(w)]
+ [211; - Ttﬁ—)J [(Sm — m8)? — my"(w)]

e (9) (S ~m0)? — my"(w)]
= T21 + Tag + T3,

say. Then, E,[T3] = 0 for all w €  and all a > 0. For T%;, expand 1/t? about
agm to obtain To; = —2a?g;3(t — agm)[(Sm — mb)? —my"(w)] on {t > m}, where
g« is an intermediate point between t and ag,. Thus, E,[T%21] — 0 uniformly in
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w € J as a — oo, by the assumption of the theorem. Let u() = 1/¢%(8) and
= 1/g% for n > 1. Then Thy = [u/(8)(Xm — 8) + 2u"(0,)(Xm — 6)?][(Sm —
) my”(w)] for a > 0, where 87, is an intermediate point between X,, and

6’. Hence, after some algebra,

2
lim B[] = Jim Bl = (O (@) + W' @)P0(60) = 55 || (39
uniformly in w € J. To estimate E,,[T3], write
B 9_3 sy oy o 00) o a? 1
T, = Th(X)( = 6) = iR =)+ b(6) [t_z - 0)]t(Xt 0)
a2 = -
+ S b(Xe) — BOUT: - 6)
= Q1+ b(0)Q2 + Qs,

say. By Wald’s lemma, E,[Q;] = 0 for all w and all a. For the term Q, write

2

a 1 1
Q2 = [t_2 - a] t(X:—6) + [Qm 2(6)]t(Xt ) = Q21 + Q22,
say. Then a Taylor’s expansion for 1/t? about agm, followed by (3.1), yields
E{Q2|Fm} = —2a2E,{9:3(t — agm)(Sm — mb)|Fn} on {t > m}; so that

E,[Q21] — 0 uniformly in w € J as a — oo, by the assumption of the theorem.
To estimate E,[Q22), let Ry = un(X,) — u(8) — v/ ()(Xn — 6) — 3u"(6)(X, — 6)?
for n > 1 and w € Q. Condition on F,,, use (3.1), and take expectatlon to obtain

E,{Qu|Fn} = v (0)m(Xm —6)* + %“’l(a)m()_(m -0 + mRy(Xm — 0)
= Q221 + Q222 + Q223,

say. Furthermore, E,[Q221] = u'(8)y" (w) for all w and all a > 0. Also, E,,[Q222]
— 0 and E,[Q223] — 0 uniformly in w € J as a — o0, by Schwarz’s inequality
and the fact that sup,ec; Eu[R2,] = o(1/m?) as a — o0, as in Lemma 4.1 of
Woodroofe (1987). Collecting terms yields
. : g'(9)
Jim Bu[Qa] = Jim BulQan] = w/(0)4() = ~235 559" ()

uniformly in w € J. To evaluate E,[Q3), use the first assertion of Lemma 2.5 and
the mean value theorem to obtain

a® -
Eo|Qs) = / ] b (60) % (X, — 6)2dP, + o(1)
| Xi—6|<e t
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uniformly in w € J as a — oo, for all sufficiently small ¢ > 0, where 6} is an
intermediate point between X; and 6. Furthermore, givenn > 0, let 6§ > 0
be so small that |b'(6;) — b'(8)| < n whenever |6F — 8| < &, for all sufficiently
large a. Then E,[Q3] < [¥'(0) + n)E,[a®(X: — 6)?/t] + o(1) uniformly in w € J
as a — o0; so that limsup,_,, E,[Q3] < [b/(0) + nj¢" (w)[9(8))~? uniformly in
w € J, by Theorem 2.1, Lemma 2.2, and Theorem 2.2. A similar argument yields
liminf, o0 By, [Q3] > [b’(0) 9" (w)[g(6)]~? uniformly in w € J. Since n > 0 is
arbitrary, it follows that E,[Q3] = b'(6)y" (w)[g(8)] =2 + o(1) uniformly in w € J.
Therefore, collecting terms yields

Jim, Bul1s) = 25000040 + H gy = LTHO) = ee
uniformly in w € J. Finally,
: b>(6)
alggoEw[T‘;] = =10 (3.6)

uniformly in w € J as a — oo, by the second assertion of Lemma 2.5, Lemma 2.2,
the conditions imposed on b,, n > 1, and Lemma 2.2 of Tahir (1989). Take the
limit as @ — oo in (3.2) and use (3.3)-(3.6) to complete the proof of the theorem.
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