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SEQUENTIAL UNBIASED ESTIMATION OF THE
NUMBER OF CLASSES IN A POPULATION
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Abstract: We consider the unbiased estimation of the number of classes, v, in a pop-
ulation when the classes are equally likely to occur. Among the stopping rules based
on a minimal sufficient statistic, the closed and complete plans are characterized. It
is shown that v cannot be estimated unbiasedly if the sample size is bounded; but
unbounded, closed and complete plans admit best unbiased estimators of all func-
tions of v. A general rule for obtaining such estimators is given. It is also shown
that without any assumptions about the class probabilities, v cannot be estimated
unbiasedly.
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1. Introduction

Consider a population consisting of an unknown number, v(> 1), of classes.
Each member of the population belongs to one of the v classes and any specific
class is discovered when a member of that class is observed for the first time.
The members of the population are selected at random, one at a time, and with
replacement if the population is finite. We shall consider unbiased estimation of v
(or a function of v) using the data, which consist of the class types of the successive
members selected in the sample. Since v cannot be estimated unbiasedly without
any further assumptions (see Section 5) we shall assume as in Goodman (1953),
Harris (1968), and others that all classes are equally likely to occur. The problem
can also be stated in terms of an urn model where an urn contains equal numbers
of v differently colored balls. Balls are drawn at random and with replacement
and the colors of the selected balls are noted. The problem is to estimate the
number of colors using the data. For any given set of selections, let R (M) be the
number of selections in which a new class is (not) discovered. Clearly, R+M = N
is the total number of selections. Harris (1968) showed that from a sample of
fixed size n, v can be estimated unbiasedly if and only if it is assumed that v < n.
Goodman (1953) showed that v is unbiasedly estimable when M is fixed, i.e., if
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sampling stops when m selections not discovering a new class are observed. Some
other stopping rules appear in Darling and Robbins (1967), Samuel (1968, 1969)
and Freeman (1972, 1973) but they were not concerned with unbiased estimation.
The objective of this paper is to discuss a class of sampling plans for which a
minimum variance unbiased estimator of v exists without any further assumption.
Thus, our parameter space is {v : v > 1}.

We shall consider the stopping rules for which the decision of whether or not
to continue sampling, after N selections have been made, depends only on N
and R, or equivalently on R and M, because for any fixed number of selections,
R is a complete sufficient statistic for v (Harris (1968), Nayak (1992)). Then,
from Blackwell (1947), (N, R) or (R, M) are jointly sufficient for v, where N is
the sample size. Note that, NV is the total number of selections made during the
experiment and it can be a random quantity. For such plans, it is helpful to
regard the outcome of a sequence of selections as a path in the (R, M) plane.
The paths start at (0,0) and at the jth ( > 1) step move one unit to the right if
the jth selection discovers a new class; otherwise, move one unit up. Clearly, all
paths move to the right at the first step. Hence, a sequence of points {v1,72,...}
in the (R, M) plane, where v; = (Rj, M;), j > 1, defines a path if and only if
71 = (1,0) and, for all j > 2, ~; is either v;_1 + (1,0) or v;—1 + (0,1), i.e., either
R;=R;_1+1or M; = M;_1 + 1 but not both.

A stopping rule can be regarded as a function ¢ defined on the (R, M) plane
such that ¢(r,m) is the probability of continuing sampling when the point (r, m)
is reached. We shall consider the non-randomized rules, so that ¢ takes on the
value 0 or 1. For a given stopping rule ¢, a point (r,m) is accessible if there
exists at least one path {v1,72,...} such that v+, = (r,m) and ¢(vy;) = 1 for
1 < j <7+ m. Otherwise, the point (r,m) is inaccessible. An accessible point =
is called a boundary point if ¢(v) = 0; otherwise, it is called a continuation point.
Then, a stopping rule is characterized by the set B of all of its boundary points.

The preceding development and definitions are similar to the developments
in sequential unbiased estimation for binomial sampling, discussed by Girshick, et
al. (1946), Lehmann and Stein (1950), DeGroot (1959), Gupta (1967), Sinha and
Sinha (1975), Sinha and Bose (1985), and others. Some differences between the
two problems may be noted. Unlike in binomial sampling, our sample space (e.g.
the range of R) depends on v, the parameter of interest; and the probabilities
of vertical and horizontal movements of a path at any step depend on the point
reached prior to that step.

In the next section, the necessary probability distributions are derived. The
closure of stopping rules is investigated in Section 3. The closed plans, for which
sampling stops with probability 1, are considered in the subsequent sections.
Necessary and sufficient conditions for completeness of closed plans are discussed
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in Section 4. The results are similar to those for the binomial sampling plans.
Unbiased estimation of v is discussed in Section 5. It is shown that v cannot
be estimated unbiasedly if the sample size is bounded. Conversely, unbounded,
closed, complete plans admit unique (and hence best) unbiased estimators of all
functions of v and the values of those estimators can be calculated recursively.
It is also shown that v cannot be estimated unbiasedly without any assumptions
about the class probabilities.

2. Probability Distribution

In this section we derive the probabilities of the boundary points for any
given sampling plan. Given any stopping rule ¢ with boundary B and a point
~ € B, let p,(7y) be the probability, given v, of observing the point . The point
~ = (r,m) is observed if and only if it is the first boundary point encountered in
the sample path. Further, such paths are characterized by the first (r +m) points
in the path. Let A(r,m) = {a = (7, Yrim) : Yr+m = (r,m) and é(y;) =1
for 1 < j < r+m} so that

p(y) =po(A(r,m)) = Y pu(a). (2.1)

acA(r,m)

Since the number of classes discovered cannot be greater than v, we have p,(y) =0
whenever v < . So, consider the case v > r. Any given a € A(r,m) has exactly
r steps to the right and 7 runs of vertical steps. Let a;, 1 < j <7 —1, be the
length of the vertical run between the jth and (j + 1)th discoveries and let a, be
the length of the vertical run between the rth discovery and reaching the point
(r,m). Some of the a;, 1 < j < 7, may be zero, but _; a; = m. Then

r+m

p(a) = po(m) [I po(yilm, -5 7i-1)
i=2

- (O EHE) (=6
v(u—l)-..(u—'r-i—l)f[jaj’ (2.2)

V'r+m

because p,(v1) = 1 and, for j > 2,

2 (Y17, - - vi-1) = Pu(Vilvi-1)
_ { (v = ri-1)/v, i 75 =7-1+(1,0);
(rj—1)/v, if 5 =7j-1+(0,1).
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Letting (v), =v(v—-1)--- (v —r +1) and

Ko =Kmm)= 3 (Hy)

acA(r,m) \j=1
we get from (2.1) and (2.2) that, if v = (r,m) € B,

pl) = 20 k(). (23)

It may be noted that K(-y) depends on v and the given boundary but not on v.

Ezample 2.1. Suppose the experiment stops after n (fixed) selections so that
B = {(r,m) : r + m = n}. Then, for any (r,m) € B, the sum in K(r,m) is
over the set {(a1,...,a,) : @; > 0,3%_; a; = m} and it follows that K(r,m) =
S(r +m,r) = S(n,r), where S(n,r) is a Stirling number of the second kind and
is defined as (Abramowitz and Stegun (1972))

S(n,r) = %i(-nr—i ( " ) .

=0 t

Ezample 2.2. For Goodman’s (1953) stopping rule with fixed m, B = {(r,m) :
r 2> 1} and the sum in K(r,m) is over {(a1,...,a,) : ar > 1, a; >0, 5 =
1,...,r—=1,and 33%_; a; = m}. Here K(r,m) = rS(r+m—1,r) (Harris (1968)).

3. Closed Plans
A stopping rule ¢ with boundary B is said to be closed if

p(B)=> p(y)=1 forall v>1, (3.1)
Y€B

Le., the sampling stops with probability 1 for all v > 1. Obviously, only the closed
plans are of interest in most applications. To characterize closure, first consider
the boundaries with finitely many points. If B is finite, S = max{r +m : (r,m) €
B} exists and is called the indez of the boundary. The indez of a point (r,m) is
defined as r +m, which is the sample size necessary for reaching the point (r, m).
The following result can be proved easily.

Proposition 3.1. Let B be a finite boundary of index S. Then B is closed if
and only if there does not exist any continuation point of indez S.

Let C; and B; be the sets of continuation and boundary points, respectively,
of index 7. The continuation sets C; can be obtained recursively by

C; = {(r,m) : either (r — 1,m) or (r,m — 1) in C;_;} — B;.



SEQUENTIAL ESTIMATION OF POPULATION SIZE 339

To use Proposition 3.1 one needs to obtain Cs and check whether it 1s empty or
not. ‘

For further discussion of closure, let B(r) = {(r,m) : (r,m) € B} and C(r) =
{(r,m) : (r,m) is a continuation point}, i.., B(r) and C(r) are respectively
the sets of boundary and continuation points with R = r. Further, let m, =
max{m : (r,m) € B(r)} and m; = max{m : (r, m) € C(r)} when B(r) and C(r),
respectively, are non-empty and finite. Now, note that when v = 1, the path
{71,72,---} with 7 = (1,4 — 1), i > 1, occurs with probability 1. So, (3.1) is true
for v = 1 if and only if B(1) is non-empty. Further, as we require the boundary
points to be accessible (by definition), B(1) can have at most one element. Thus,
(3.1) is true for v = 1 if and only if B(1) contains exactly one point, (1,m;)
say, in which case C(1) = {(1,m) : m < m1}, and {(1,m) : m > m;} are
inaccessible. We assume that m; > 0 because for m; = 0 sampling stops after
the first selection.

Now suppose v = 2 and (1,m;) € B with m; > 1. Then, B(2) can have at
most mj points as it can have at most one point (2, m) with m > mq — 1. If B(2)
is empty or if B(2) is non-empty but my < m; — 1, then

P, —2(not stopping sampling)
P, —3(reaching (2,m1 — 1))

> Pooa({(1,0),(1,1),. -, (1,ma = 1), (2, — 1)})

1\™
(5) > 0.
Conversely, if B(2) is non-empty and m2 > my — 1, sampling stops with at most
(mg + 2) selections when v = 2. Thus, (3.1) holds for v = 2 if and only if B(2)
is non-empty and mg > m; — L.

Suppose that (3.1) is true for » = 1 and 2. If C(2) is empty, geometrically
(and also by Proposition 3.1) it is clear that the boundary is closed also for all
v > 2. So, suppose C(2) is non-empty. Then, B(3) must be finite as it can
contain at most one point, (3, m), with mm > m3. As in the previous paragraph,

it can now be seen that B is closed for v = 3 if and only if B(3) is non-empty
and m3 > m3. Using induction on v, we can prove the following result.

Proposition 3.2. A stopping rule ¢ with a boundary B s closed if and only if
(i) there ezists a unique value my such that (1,m1) € B, and

(ii) C(r — 1) is finite, B(r) is non-null and finite, and m, > mi_; for allr > 2
such that C(r — 1) is non-empty.

The following corollaries are easily derived from our preceding discussion.
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Corollary 3.1. Let B be a finite boundary with r, = max{r : (r,m) € B}. Then
B 15 closed if and only if C(r,) is empty and conditions (i) and (ii) of Proposition
3.2 are true for 2 <r <r,.

Corollary 3.2. If for allT > 1, B(r) contains ezactly one point, then B is closed
if and only if (i) holds and m, > m,_1 — 1 for all r > 2.

4. Completeness

A closed stopping rule ¢ with boundary B is said to be complete if for any
function f defined on B,

E,[f(7)] =0, forall v>1, (4.1)

implies that f(y) = 0 for all v € B. Completeness of B implies that, based
on (R, M), there can be at most one unbiased estimate of v (or a function of
v). So, if E,[f(R,M)] = g(v) for all v > 1, f(R, M) is the minimum variance
unbiased estimator of g(v). In this section we characterize the closed plans which
are complete.

The following definitions are needed: A boundary B is said to be simple if
for each n > 1, the continuation points of index n form an interval. A closed
boundary B is said to be minimal if changing a boundary point to a continuation
point destroys closure. A boundary point (r,m) is a lower boundary point (LBP)
if for some a > 0, (r — a, m + a) is a continuation point and is an upper boundary
point (UBP) if for some a > 0, (r+a, m — a) is a continuation point. A boundary
point can be either a LBP or an UBP but it is possible that a point in B is neither
a LBP nor an UBP; for example, the boundary points in B = {(r,m) : r+m = n}
are neither LBPs nor UBPs. It is also possible for a point in some B to be both a
LBP and an UBP but, if B is simple, then no point is both a LBP and an UBP.
For any boundary B, for all » > 1, B(r) can contain at most one point which is
not a LBP since if B contains (r,m;) and (r, m3) with m; < m, and both are
not LBPs, (r,m2) would not be accessible. Similar to binomial sampling plans
(Girshick, et al. (1946), Savage (1947), Lehmann and Stein (1950)) we shall prove
that a closed boundary B is complete if and only if it is both simple and minimal.
For convenience and clarity, the results will be presented in several propositions.

Proposition 4.1. A closed sampling plan ¢ with boundary B is complete only if
it 1s minimal.

Proof. It is shown that a non-minimal boundary is not complete. Suppose B is
not minimal and a boundary point o = (z,y) can be deleted without destroying
closure. Let B* = B — o be the boundary of the plan obtained by deleting o
from B. Given v and v € B*, let p}(y) be the probability of reaching v under
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B*. Let the probability distribution for B be p,(7), ¥ € B. Note that, if v € B*,
the probability of reaching v without passing through a under B* is (7). So,
for all v € B*,

5 (7) = po(7) + P (@)p; (V]@), (4.2)

where p*(v|a) is the conditional probability under B* that a path reaches v given
that it reached «. Hence, the product term in (4.2) is the probability under B*
of reaching v by passing through a.

To calculate the conditional probability, suppose that v = (r,m) € B* can
be reached from a. Thenr >z and m>y. Let n=z +y, s=r +m, and

Ba(7) = {b = (Yn+1,- - - a7s) D Yn41 18 ((E + 1ay) or (z,y + 1)7 Vs = (Ta m)a
and ¢(v;)=1,n+1<i< s}.
Note that any b € B,(7) has exactly (r — ) steps to the right and (r —z+1) runs
of vertical steps, some of which may be of length zero. For any given b € Ba(7),

let by, . .., b, be the lengths of the successive runs. Then, similar to the derivation
of (2.2),ifv >,

pole = (2)7(455) (22)" o () (2)"

Let Lo(7) be 0 if v cannot be reached from o and otherwise let

La(Y)= ) (sz) (4.3)

Then, if v > r,

pi(vle) = Y. pi(bla)
bEBa('Y)

_ (u—:c)(u——a:'— 1)---(V—r+1)La(7). (4.4)

VS—'TL

Combining (2.3), (4.2), and (4.4), we get for all » > 1 and vy = (r,m) € B*,
P (v) = gu(M{E ) + K(@)La(m)}, (4.5)
where g,(v) = (v)/v""™. Since both B and B* are closed,

Sp(y)y=1= Y pi(v) forall v>1,

y€B yeB*
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which implies, in view of (4.5), that

g.(a) = Z Lo(v)gu(v) forall v 2> 1. (4.6)
vyEB*

Now, for v € B, let

-1, if v=aq;

F =1 K(@La()

ORE if v# .

Then, by (4.6),

E,(f)= > K(a)La(7)g.,(7) — K(a)gu(a) =0
yeB*

for all v > 1. However, P,(f # 0) > 0 for all » > z and hence B is not complete.

Proposition 4.2. A closed sampling plan ¢ with boundary B is complete only if
it 1s simple.

Proof. Suppose B is not simple and for somea > 2,b > 1,and k > 0, (a—1,b+1)
and (a+k+1,b—k—1) are two continuation points of index n = a+b separated by
the boundary points A = {v; = (a+14,b—1),2=0,1,...,k}. Then &/ = (a,b+1)
and o’ = (a + k + 1,b — k) are accessible points. We shall construct a nonzero
function on B with expected value 0 for all v > 1. To do that first note that the
quantity Ls(7) in (4.3) is defined for any continuation point o and all v € B.
Since o/, o” may be either continuation or boundary points, if a € B, further
define Lo(a) =1 and L,(v) =0, v € B. Let p,(a) denote the probability that a
path passes through (or reaches) a. Since B is closed we have

pu(@) =Y p(an), (4.7)

Y€B

where p,(a N 7) is the probability under B that a path passes through a and
reaches . Then, (4.7) and arguments similar to those given in Section 2 and in
the proof of Proposition 4.1 give us

gow(@) = Y La)g() (4.8)

vyeB—-A

forallv > 1and o =o', a".
Now, for v; € A, let

(=1

mm, 'I:=O,...,k, (49)

flw) =
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and for v € B — A, let

~Le(y) , (=D*Lar(y)

IO =GR T @ PEG) (410)
Then, using (4.8)-(4.10),
Ef]= > fME()g()
~yEB

(Vg 1 (—1)k+1
B \‘;, @+l (a- 1) 7€§;AL“'(7)9”(7) MCET] ye\é:_ALa ()9, ()

k 1 ! k+1 "
S (Vi) (@) (DT gul(e )
- ; (a + ) (a—l)!+ (a + k)

- Ben( )G e

for all v > 1. If v < a, (4.11) is clearly 0. For v 2 a, (4.11) can be seen to
be zero by replacing (,;;) with (i) + (*7:)- This completes the proof of the
proposition.

To prove the converses of Propositions 4.1 and 4.2, we shall consider infi-
nite and finite boundaries separately and in that process explain some unique
properties of the two types of boundaries.

Proposition 4.3. A closed infinite boundary is simple and minimal if and only
if for all v > 1, B(r) contains ezactly one point.

Proof. Since B is infinite and closed, Proposition 3.2 implies that for all » > 1,
B(r) and C(r) must be non-empty but finite and m, > m:_;. Further, if B(r)
contains exactly one point for all r > 1, we must have m, > m,_1 — 1 for all
r > 2, in which case it is geometrically clear that B is minimal and simple.

To prove the “omly if” part, let B be closed, infinite, simple and minimal,
and if possible, for some a > 2, let B(a) contain more than one point. Let
mo = min{m : (a,m) € B(a)}. Then, (a,mg) and (a,mo) are in B(a) and
mo < mg. Further, (a,mq) is a LBP, otherwise (a,m,) is not accessible. So
(a,mp) cannot be an UBP as B is simple. This implies that for all 7 2> a, the
m-coordinates of the points in B(r) and C(r) are greater than meo. So, if we
delete the point (a,mo), the values of m, and m* remain unchanged for all 7 > 1
and hence the plan remains closed. This implies that B is not minimal, which is
a contradiction and the proposition is proved.
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Proposition 4.4. An infinite closed boundary B is complete if it is simple and
minimal.

Proof. In view of Proposition 4.3, B = {(r,m,) : r > 1}. Let f(r,m,) be a
function on B such that
- (V)T
E,(f) = Zlf('r, M) K(ryme) =0 forall v>1. (4.12)
Clearly, (4.12) is true for v = 1 if and only if f(1,m;) = 0. Now the proposition
can be proved using induction on v.

From Propositions 4.1-4.4 and Corollary 3.2, an infinite boundary is closed
and complete if and only if for all » > 1, B(r) contains exactly one point, say
(r,m,), and my4; > m, —1. It is shown in the next section that such plans admit
best unbiased estimators of v. Clearly, Goodman’s (1953) stopping rule (Example
2.2) satisfies these conditions. Two other stopping rules falling into this category
use, respectively, m, = inf{m : m > rC} and m, = inf{m : m > max(1,rIlnr +
rD)}, where C > 0 and —oco < D < oo are fixed numbers. Motivation and some
properties of these rules are discussed in Darling and Robbins (1967) and Samuel
(1968, 1969).

Proposition 4.5. A necessary condition for a closed finite boundary to be simple
18 that it be minimal.

Proof. Let B be closed, finite and simple and let r, = max{r : (r,m) € B}.
If possible, suppose B is not minimal and remains closed if o = (z,y) € B is
deleted. Let B* = B — . Then there exists m > y such that v, = (z,m) € B;
otherwise for v = z, the sampling will not stop under B* whenever « is reached.
Also, there must exist 7 > x such that vy, = (r, y) € B; otherwise, when v > r,,
the probability under B* of not stopping sampling is greater than

Pu(a)Pu({')’z+y+i = (1: + z;:’/))z = 19 cey T — T+ 1},0)

However, accessibility of v, and 7, implies that « is both LBP and UBP. Hence,
B is not simple. This contradiction proves the result.

Proposition 4.6. If a closed finite boundary is simple then it is complete.

Proof. If possible, suppose B is a closed, finite and simple boundary but it is
not complete. Let f be a function on B such that f # 0 for some v € B and (4.1)
1s satisfied. First we show that f must be 0 for every LBP in B. If not, let n be
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the smallest index for which a LBP with f # 0 exists and let a = (z,y) be the
lowest LBP of index n for which f # 0, ie.,y = min{m : (n—m,m) is a LBP and
f(n—m,m) # 0} and z = n—y. Then f(r,m)=0if (r,m) € B and (r+m) < n.
To see this, suppose A = {(r,m) : f(r,m) # 0, (r, m) € B, and (r + m) < n}
is non-empty and let a = min{r : (r,m) € A}. Within A there can exist only
one point with R = a because, from the definition of o, the points in A are not
LBPs, and there can exist at most one point with R = a which is not a LBP. Let
that point be 1 = (a,b). Since 71 is not a LBP, {(r,m):r <a,r+m=>a+ b}
and {(a,m) : m > b} are inaccessible. So, the definitions of @ and 71 imply that,
in Uy<qB(r), f is nonzero only at 71. Then, for v = a, (4.12) can be true only if
f(11) = 0. So, f(r,m) =0if (r +m) < n.

Since B is simple, o is not an UBP and the m-coordinates of the boundary
points of index > n are greater than y. Further, since f(r,m) = 0 whenever
(r + m) < n, f(r,m) can be non-zero only if (r +m) > n and m > y. So, (4.1)
implies that

(¥)z ®)r

—f(x')y) V:z:-i—yK(x’y) = Z f('ra m)’;,:;;K(r’m)v
(r;m)€B
m>y, r+m2n
or
- f(xa y)7K(m7 y) - ; Z f('f', m) { T } Vm—y—lK('r’ m)7 (413)
(r,m)eB
m>y,r+m>n

for all » > 1. The right side of (4.13) converges to 0 as v — 00 and the left
side converges to —f(z,y)K(z,y). So, (4.13) can be true for all v > 1 only if
f(z,y) = 0. This contradiction in the definition of n shows that f is 0 for all
LBPs. ,

Since, for each r > 1, B(r) can contain at most one point which is not a LBP,
now the fact that f must be 0 also for all boundary points which are not LBPs
can be established by induction on v as in Proposition 4.4.

Remark. The boundary of a fixed sample size experiment (Example 2.1) is
clearly simple and satisfies the conditions of Proposition 3.2. So, it is closed and
complete.

5. Unbiased Estimation

In view of sufficiency, given any closed sampling plan, its boundary B can
be taken as the sample space for estimation purposes. Then, an estimator is
a function f defined on B. Given a boundary B and a function g(v) of v, we
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address the question: Is g(v) unbiasedly estimable from B, i.e. does there exist
a function f defined on B such that E,[f(7y)] = g(v) for all v > 17

Proposition 5.1. If B is finite, an unbiased estimator of v does not exist.

Proof. Let S be the index of B, ie., let § = max{r +m : (r,m) € B}. If
possible, let f() be an unbiased estimator of v. Then,

Bl = Y frm) 2 K (rym) =

(r,m)eB

or
| z fr,m)@) 5T ™K (r,m) =5t forall v > 1. (5.1)
(r,m)€eB

However, (5.1) cannot be true because the left side is a polynomial in v of degree
at most S. So, v cannot be estimated unbiasedly.

Proposition 5.1 also follows from Engen (1978, Theorem 2.2, p-28). More
generally, if B is finite, any unbounded function of v is not unbiasedly estimable.

Proposition 5.2. If B is infinite, all functions of v are unbiasedly estimable.
Further, if B is complete (implying that B = {(r,m,) : r > 1}), the unbiased
estimator of any given function g(v) is unique and can be calculated recursively
by f(1,m1) =g(1) and

-1
f(r, mr) ol . )(g(r) Zf(i, m;)pr (4, mi)>, T2 (5.2)
=1

Proof. Since B is closed and infinite, for all r > 1, B(r) is non-empty and finite
and m, = max{m : (r,m) € B(r)} exists. For estimating g(v) let f(r,m) = 0 if
m # m, and define f(r,m,), r > 1, recursively by f(1,m;) =1 and (5.2). Then
it can be seen that f(v) is an unbiased estimator of g(v).

Further, if B is complete, from Section 4, B(r) contains exactly one point
(r,m,) for all » > 1 and hence f(v) as defined in . the proposition is the unique
unbiased estimator of g(v).

In the following, we show that the recursive formulas reduce to ratios of some
K(r,m) values for certain powers of v.

Proposition 5.3. Let B be an infinite, closed, complete boundary and let m =
min{m, : r > 1}. Then for all integers p > —mn, the minimum variance unbiased

estimator of VP 1is
K*(Ta my + p)

>1 .3
K(r,m,) ’ T (5.3)

f(r,m,) =
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where K* is the K function for the boundary B* = {(r,m, +p) : r > 1} obtained

by shifting up all the points in B by p units.
Proof. Let p*(7), 7 € B*, denote the probability distribution for B*, so that

()

pi(r,m, +p) = mK*(r m,+p), rT2>1
From Corollary 3.2 it follows that B* is closed. Hence,

B,lf(r,m,)] = Z rme 22 L) K(rm)

v ), .
= VPZ r—(}-'ﬂz +pK (r, mr +p)

= Vp
for all v > 1. The rest follows from the Lehmann-Scheffe theorem (Bickel and
Doksum (1977, p.122)).

Remarks. 1. By Proposition 5.3, an unbiased estimate of the variance of the
best unbiased estimator of v is given by

<K*(r,mr + 1))2 _ K*(r,m, +2)
K(r,m,) K(r,m,)

2. For p = —rm the boundary of the shifted plan is not really {(r,m, —
/) : r > 1} as some of these points are inaccessible. The true boundary is
{(r,m, — ™) : r < ro} where 7y = min{r : m, = 7n}. Proposition 5.3 remains
valid for p = —7m if (5.3) is replaced by f = 0 for r > 7o.

3. When B is closed and infinite but not complete the approach in Proposi-
tion 5.3 yields an unbiased estimator of v if p > — min{m : (r,m) € B for some
r > 1}. There, we define the ratio (5.3) for all (r,m) € B after shifting all the
points in B up by p units.

4. For Goodman’s (1953) stopping rule, given in Example 2.2, not only v
but all functions of v are unbiasedly estimable by Proposition 5.2. Further, for
all integers p > —m, the best unbiased estimator of v, by Proposition 5.3, is
S(r+m+p—1,7r)/S(r +m —1,7); and an unbiased estimate of the variance of
the best unbiased estimator of v is given by

S(r +m,r) ( S(r +m,r) _S(’r+m+1,r))
S(r+m-—1,7)\S(r+m-1,r7) S(r+m,r) /

Berg (1975) gives recursive formulas for calculating these ratios.
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5. Propositions 5.1 and 5.2 show that for unbiased estimation the boundary
needs to be infinite. That is also true for maximum likelihood estimation. The
MLE of v is oo if and only if the observed value of M is 0 (e.g., Samuel (1969)).
So, the MLE of v is finite with probability 1 for all v > 1 only if M is nonzero for
all boundary points in which case the boundary must be infinite if it is closed.

Throughout this paper we have assumed that all the classes are equally likely.
This assumption is made not only for simplicity but also for some necessity,
as discussed in the following. In the unequal case, for any given v > 1, let
P1,P2,---,Pv be the probabilities of the v classes. We shall show that v cannot
be estimated unbiasedly without any restrictions on pi,ps,...,p,. Now, for a
fixed number of selections, R is not sufficient and hence we shall consider a more
general setup. As in Nayak (1992), the outcome of a sequence of selections can be
described using G1, Ga, . . ., where G; = 7 if the 1th observation is a member of the
jth discovered class. We shall consider all closed non-randomized stopping rules
where, at the nth stage, the stopping probability is a function of (G1, Ga, ..., G,).
Thus, the stopping rules may be path dependent. The sample space S is the
collection of all observable sequences, possibly of different lengths. We shall use
R to denote the number of discovered classes in an observable sequence. Now we
state our main result.

Proposition 5.4. Without any assumption about the class probabilities, v cannot
be estimated unbiasedly.

Proof. If possible, let f be a function on S such that
E[fl=v forallv>1andp,...,p,. (5.4)

Let S;, r > 1, be the set of all observable sequences for which R = r. Considering
v = 1 the closure of the plan implies that S; contains a unique element, say §;.
Let the sample size for 6; be N;, i.e., if the first N; selections result in the same
class type, the experiment stops. Again considering » = 1, (5.4) implies that
f(61) must be 1.

Now consider the case v = 2. Let p and ¢ = (1 — p), 0 < p < 1, denote the
probabilities of the two classes and let p(6), § € S; U Sz, be the corresponding
probability distribution. Note that the points outside §; US, cannot be observed
when v = 2. Since p(6;) = p™* + (1 — p)1, (5.4) implies that

P+ -p)M+ S f(6)p(5) =2
, 6€Ss

Ny
3 (T )0+ T e =1 (5.5)
i=1 !

6€S2
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for all 0 < p < 1. The probability of observing any given 6 € Sz is p%q® + pbes,
where a (b) is the number of 1s (2s) in 6. Since a, b > 1, the probability is
a polynomial in p without a constant term. Thus, the left side of (5.5) is a
polynomial (or a power series) in p with the constant term being equal to 0. So,
(5.5) cannot be true for all 0 < p < 1 and hence v cannot be estimated unbiasedly.
It is clear from the proof that the proposition remains true even when v has an
upper bound vy > 2.

6. Discussion

A continuous analogue of our discrete model, discussed in Nayak (1991), is
a superposition of an unknown number (v) of independent homogeneous Poisson
processes with unknown rates A1, Az, ..., Ay where, for each event, the component
process in which it occurred can be identified. The observable process can be
described as a marked point process {W;, G;} where {W;} are the event times
and the marks {G;} are as defined in Section 5, i.e., G; = j if the ith event
occurs in the jth detected process. It follows that {W;} is a homogeneous Poisson
process with rate A = 3 X; and {W,} and {G;} are independent. In the discrete
case only the mark process {G;} is relevant (see Section 5) and its distribution
is the same for both the discrete and the continuous models, with p; = A; /A,
i =1,...,v. The equiprobability case corresponds to the case of \y =---= A
If the total number of events N is determined only by the {G;}, Nayak and
Christman (1992) showed that the inference problems about v coincide in the
two cases. Thus, the results of this paper apply also to the continuous model if
the experiment is stopped at the epoch of an event determined only by the {G;}
and the decision to stop depends only on the sufficient statistics (R,M). An
example of such an experiment is the likelihood-based stopping rule suggested
by Goudie (1990). The boundary of Goudie’s rule is given by B = {(r,m,) :
r > 1,m, = integer value of min(m : m > 1 -7+ In(rA)/In(1 + r~1))} where
A is a given constant. Since B contains one point for each R = r and m, is a
nondecreasing function of 7, by Corollary 3.2 and Propositions 4.3 and 4.4, B is
closed and complete. Hence, although originally derived for a different purpose,
Goudie’s stopping rule does admit best unbiased estimators of functions of v.

In this paper we consider the set of stopping rules which depend only on the
sufficient statistics, R and N. Some existing stopping rules, although designed
to achieve some sense of optimality, do not belong to this set. For example, the
‘step-wise minimal’ rule of Darling and Robbins (1967) and Nayak’s (1988) rule,
derived for detecting all classes with a prespecified probability, depend on R and
the lengths of runs of vertical movements (or waiting times for discovering a new
class). Specifically, if the rth (r > 1) discovery is followed by a certain number,
k., of selections representing already discovered classes, the experiment stops.
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The values of k., 7 > 1, are calculated differently in these two rules. For these
plans, the concept of a boundary does not apply because any fixed point (r,m)
may or may not be a stopping point depending on how that point is reached.
Investigation of such path dependent plans is a topic of future research. The
adaptive stopping rule of Rasmussen and Starr (1979) depends on R and the
number of classes observed exactly once. This plan utilizes some information
(viz. number of classes observed exactly once) not contained in the path (as de-
fined in this paper). For a formal discussion of such plans, the general framework
that preceeds our Proposition 5.4 is needed.

Our results are derived without imposing any restrictions on v. In some appli-
cations, however, v may have natural upper and/or lower bounds. In restricted
problems where the range of v is a proper subset of the positive integers, the
definitions of closure, completeness and unbiasedness will naturally be modified.
Some restricted problems are currently under investigation. Comparison of vari-
ous sampling plans is also an important topic for future research. The variance of
estimators and the average sample size both should be taken into consideration
when evaluating a stopping rule. In view of Samuel’s (1969) work we anticipate
that to increase the accuracy of the estimators it will be necessary to increase
the average sample size. So, some criteria of combining these two performance
measures will be necessary if one wants to select an optimum stopping rule.

The unbiased estimators of v derived under the equiprobability assumption
are usually negatively biased when that assumption fails (Nayak and Christman
(1992)). So, it is important to derive more robust estimators with smaller bias
in non-equiprobable cases. Chao (1984, 1987), Chao and Lee (1992), and others
have made some significant contributions in that direction. But, as Proposition
5.4 shows, an unbiased estimator of v for the general case cannot be obtained.
As an alternative to unbiased estimation, estimators from any given sampling
plan may be compared by their mean square errors. Interestingly, Bai and Chow
(1991) have proved recently that, for Goodman’s plan, the maximum likelihood
estimator of v is inadmissible.
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