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Abstract: Two kinds of measures are proposed to represent the degree of departure
from symmetry about the main diagonal of square contingency tables having the
same nominal row and column classifications. One measure is expressed by using
the Kullback-Leibler information (or the average of conditional Shannon entropy),
and the other is expressed by using the Pearson’s chi-squared type discrepancy (or
the average of conditional Gauss discrepancy). These measures would be useful for
comparing the degree of departure from symmetry in several tables.
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1. Introduction

For an R x C contingency table, many coefficients have been proposed to
measure the association between the row and column variables. Examples include
Yule’s coefficients Q of association and Y of colligation, Pearson’s coefficients ®2
of mean square contingency and P of contingency, Tschuprow’s coefficient T, and
Cramér’s coefficient V. For details, e.g., see Bishop et al. (1975, Ch.11). These
measures represent, in some sense, the degree of departure from independence,
i.e., no association. These measures may be useful for comparing several tables.

Next, consider an R x R square contingency table having the same nominal
row and column classifications. For the analysis of such tables, interest would
be in the symmetry about the main diagonal of the table rather than the inde-
pendence between the row and column variables (see Bishop et al. (1975, Ch.8),
Agresti (1984, Ch.11)). Let p;; denote the probability that an observation will
fall in the ith row and jth column of the table (: =1,2,...,R; j =1,2,..., R).
The usual symmetry model is defined as

Dij = Pji for 2=1,2,,R,]=1,2,,R,25&]
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See Bowker (1948), Bishop et al. (1975, p.282) and Agresti (1984, p. 202). (Al
though the details are omitted, we note that the general topic of symmetry
and related work have been considered by many statisticians; see, for example,
Tomizawa (1984, 1985, 1987, 1989, 1990, 1992), Havrinek and Lienert (1986),
Rosenstein (1989), Chino (1990) and Becker (1990).)

The purpose of this paper is to propose measures which represent the degree
of departure from symmetry in an R x R table. The proposed measures would
be useful for comparing the degree of departure from symmetry in several tables
to which the symmetry model has been fitted.

2. Measures of Departure from Symmetry

Assuming that {p;; + pji} for ¢ # j are all positive, consider two kinds of
measures defined in the population form by

9s = 6logzzzp” og
Wy = ZZ (pij — Pﬂ)’

1<y ng+p31

‘l] + p]l

where 6§ =323 ;,;pi; and Olog 0 = 0. Let p; = p;;/6 and p;; = (p}; +p};)/2 for
1=1,2,...,R; j=1,2,...,R; i # j. Then ¢, and ¥, may be also expressed as

I(p*; p* . s
M) ¢S=D(p ;p)a

9s = log 2

where

ZZPW log ZZ (pz] ng

i#] i#] p; &
Note that I(p*;p®) and D(p*; ps) are the Kullback-Leibler information and the
Pearson’s chi-squared type discrepancy, respectively, between {p}; }:«; and {p{;}ix;.
Let p¢; = pij/(pij + pj) for i = 1,2,...,R; j = 1,2,...,R; i # j. (Note that
pi; +p5; = 1.) Then these measures may be further expressed as

¢s = 10g ; ZZ(pu + p}:) Hij(p°),
Ys = 2 ZZ(IH;‘ +pji)Aij(p ,1/2),
1<J
where
Hij(p®) = —pijlogp;; — pj;log pj;,

Aij(p°,1/2) = (p§; —1/2) + (5 — 1/2)°.
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Given the condition that an observation falls in one of the off-diagonal cells of
square table, (i) ¢s would represent, essentially, the average of Shannon entropy
H;:(p®) on condition that the observation falls in cell (4,5) or (j,7), 1 # j; and
(ii) 15 represents the average of Gauss discrepancy A;;(p¢,1/2) between {5, p5%:}
and {1/2,1/2} on the condition that the observation falls in cell (1,7) or (4,1),
i # j; (see Linhart and Zucchini (1986, p.18) for Gauss discrepancy).

Now it is easily seen that I(p*;p®) must lie between 0 and log 2, and therefore
¢s must lie between 0 and 1, and also s must lie between 0 and 1. Also, (i)
there is a structure of symmetry in the R x R table, ie., p;; = pj; for 1+ =
1,2,...,R; j = 1,2,...,R; i # j; if and only if ¢ (1s) equals zero, and (ii)
there is such a structure that the degree of departure from symmetry is the
largest in a sense (say, complete asymmetry), i.e., either p;; = 0 or p;; = 0 for ¢ =
1,2,...,R;j=1,2,...,R; i # j; if and only if ¢, (1) equals 1. According to the
Kullback-Leibler information (Pearson’s chi-squared type discrepancy) metric, ¢s
(1) represents the degree of departure from symmetry, and the degree increases
as the value of ¢, (¢5) increases.

Let n;; denote the.observed frequency in the ith row and jth column of the
square table (: = 1,2,...,R; j = 1,2,...,R). Assuming that the {n;;} result
from full multinomial sampling, we consider an approximate standard error and
large-sample confidence interval for ¢ (1), using the delta method, descriptions
of which are given by Bishop et al. (1975, Sec. 14.6) and Agresti (1984, p.185,
Appendix C). The sample version of ¢ (¥s), ie., és (s), is given by ¢s (¥s)
with {p;;} replaced by {#;;}, where p;; = ni;/n and n = 33 n,;. Using the delta
method, v/n(¢s — ¢s) and /A, — ¥,) have asymptotically (as n — oo) normal
distributions with mean zero and variances

= (S Trotd - 06t) /5
i
and
2 2 2
= (S Sy -s62) /2
i#
respectively, where
ij i; — pji)(pi; + 3pji
Q= 1 1 2p;; rij_—'(pJ Pji)(Pij PJ).

0 b
log 2 8 pij + Pji (pij + pji)?

Let &2 denote o with {pi;} replaced by {pi;}. Then &4/+/n is an estimated

standard error for ¢,, and b, £ zp/204/ /n is an approximate 100(1 — p) percent
confidence interval for ¢, where z,/5 is the percentage point from the standard
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normal distribution corresponding to a two-tail probability equal to p. In a similar
way, an approximate confidence interval for Y5 is given.

Let G2 (X2) denote the likelihood ratio (Pearson’s) chi-squared statistic for
testing goodness of fit of the symmetry model, i.e., G2 = 2% 2 izj g log(2n,; /

(nij + nﬁ)) and st = ZZK;’("U - nji)2/(nz-j -+ nji). Note that (is (’(,Zs) may
then be expressed as ¢, = G2 /n* (s = X2/n**), where n* = (2log2) T 2istj Mij

3. Examples

Tables 1a and 1b present data which were earlier analyzed by Andersen (1980,
p.328). As reported in Andersen, these data are the results of three consecutive
opinion polls held in August 1971, October 1971 and December 1973, which were
held in connection with the Danish referendum on whether to join the Common
Market or not.

Since the confidence interval for ¢, (¥s) applied to the data in Table 1a
includes zero (see Table 2), this would indicate that there is a structure of sym-
metry in Table 1a, or if it is not so, that the degree of departure from symmetry is
slight. On the other hand, the confidence interval for ¢s (¥s) applied to the data
in Table 1b (see Table 2) would indicate that there is not a structure of symmetry
in Table 1b. (See Table 2 for the values of G? and X? applied to Table 1.)

4. Note

Consider the artificial data in Table 3. From the values of G2 (X 2) in Table 4,
the hypothesis of symmetry is accepted for the data in Table 3a (at the 0.05
significance level) but it is rejected for the other data. The value of G2 (X 2) for
Table 3b is ten times as large as it for Table 3a, but the value of és (5) for Table
3b is equal to it for Table 3a. It is easily seen that {pi;} for Table 3a is equal to
{#:;} for Table 3b. So, it seems natural to consider that the degree of departure
from symmetry for Table 3a is the same as for Table 3b. Hence, ¢, (vf)s) would be
preferable to G2 (X2) for representing the degree of departure from symmetry.
(This also would be concluded from the comparison between Tables 3¢ and 3d
and the comparison between Tables 3e and 3f.) 4

From the value of G? (X2), the symmetry model fits the data in Table 3¢
worse than the data in Table 3a, and also it fits the data in Table 3e worse than the
data in Table 3c; but it fits the data in Table 3e better than the data in Table 3d.
In terms of {§f;}, it seems natural to consider that the degree of departure from
symmetry for Table 3e is greater than for Table 3c, and the departure for Table
3c is the same as for Table 3d. So, ¢, (1),) would be preferable to G2 (X?2) for
comparing the degree of departure from symmetry.
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If {pi;} for two tables are same, the estimated standard error for table with
larger sample size is less than that for the other table. In fact, {;;} for Tables
3a and 3b are the same; and the estimated standard error for Table 3b is less
than that for Table 3a (see Table 4). (A similar result is also obtained from the

comparison between Tables 3c and 3d and the comparison between Tables 3e and
3f.)

5. Comments

The symmetry model imposes no restriction on the diagonal cell probabilities
{pii}. So it seems natural that the measures of degree of departure from symmetry
and their ranges do not depend on the diagonal probabilities.

The structure of symmetry based on the probabilities {p;;}, i.e., pi; = pj;
for ¢ # j, may be also expressed as pj; = pj; for ¢ # j, using the conditional
probabilities {p;‘j}#j. In the sample version, G2/n (X2/n) is a measure based on
{ps;}, and bs (z[)s) (i.e., G*/n* (X2/n**)) is essentially the corresponding measure
based on {pf;}i#;. It may seem, to many readers, that both are reasonable
measures for representing the degree of departure from symmetry. However,
és (1) rather than G?/n (X2/n) would be useful for comparing the degree of
departure from symmetry in several tables. Because the ranges of G2/n and X2 /n
depend on the diagonal proportions, i.e., 0 < (G%/n) < (n*/n)[= (2log2)(1 —
Y nii/n)] and 0 < (X2/n) < (n**/n) [= 1= ny/n}; but és and 1, always range
between 0 and 1 without depending on the diagonal proportions.

It is known that the symmetry model holds if and only if the quasi-symmetry
model and the marginal homogeneity model hold (see Bishop et al. (1975, p.287)).
Therefore, for example, when there is marginal homogeneity, the degree of depar-
ture from symmetry should be considered by a measure which takes the minimum
value when there is symmetry and the maximum value when the degree of de-
parture from symmetry is the largest but there is marginal homogeneity. So, if
one wants to see the degree of departure from symmetry under the assumption
that there is marginal homogeneity (or quasi-symmetry), the measures ¢, and s
would not be suitable. The measures ¢ and s should be used when one wants
to see the degree of departure from symmetry under no assumption that there is
an extended symmetry (as quasi-symmetry and marginal homogeneity).

The ¢, (1s) would be useful when one wants to see the degree of departure
from symmetry, using the Kullback-Leibler information (Pearson’s chi-squared
type discrepancy) or the average of conditional Shannon entropy (the average of
conditional Gauss discrepancy), on condition that an observation will fall in one
of the off-diagonal cells of square table.

The reader may be interested in which of two measures, ¢; and 1, is preferred
for a given table; however, it seems difficult to discuss it. ‘It seems to be important
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that for given tables, the analyst calculates both values of $s and ¥, and discusses
the degree of departure from symmetry in terms of both values.

Finally, we observe that (i) ¢, (15) should be applied to square contingency
tables having nominal categories because it is invariant under the same arbi-
trary permutations of row and column categories, (ii) the estimate of the degree
of departure from symmetry should be considered in terms of an approximate
confidence interval for ¢; (1) and not in terms of bs (1,!35) itself, and (iii) the
asymptotic normal distributions of /n(¢, — ¢s) and /n(y, — ¥s), which are
described in Section 2, are applicable only when 0 < ¢; < 1and 0 < ¢, < 1,
respectively; because o3 = 0 (¢ = 0) when ¢, = 0 (¢, = 0) and ¢, = 1 (¢, = 1),
anda§>0(ai>0)when0<¢s<1(0<¢s<1).
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Table 1. The results from two consecutive polls on the question:
Do you think Denmark should join the Common Market?

(a) The results of the first and second polls.

Poll II
Poll 1 Yes No Undecided Total
Yes 176 33 40 249
No 21 94 32 147
Undecided 21 33 43 97
Total 218 160 115 493

(b) The results of the second and third polls.

Poll III
Poll 1T Yes No Undecided Total
Yes 167 36 15 218
No 19 131 10 160
Undecided 45 50 20 115
Total 231 217 45 493

Source: Andersen (1980, p.328).



MEASURES FROM SYMMETRY IN SQUARE CONTINGENCY TABLES 331

Table 2. Estimate of ¢, (1,), estimated approximate standard error for ¢, (12),), approx-
imate 95% confidence interval for ¢, (¢5) and chi-squared values G? and X2, applied to
Tables 1a and 1b.

(a) Case of ¢;:

Applied Estimated Standard Confidence
‘data measure error interval

b5 Gg/v/n ¢s £ 20.0256 /v
Table 1a 0.035 0.023 (-0.011,0.081)
Table 1b 0.207 0.053 ( 0.103,0.311)

(b) Case of ,:

Applied Estimated Standard Confidence
data measure error interval

Ps Gy/Vn P £ 20,0055y /V/T
Table 1a 0.048 0.031 (-0.014,0.109)
Table 1b 0.268 0.064 ( 0.142,0.394)

(c) Chi-squared values:

Applied Degrees of Likelihood ratio Pearson’s

data freedom chi-squared chi-squared
G? X2
Table 1a 3 8.7 8.6

Table 1b 3 50.1 46.9
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Table 3. Artificial data

(a) n = 53 (sample size) (b) n =530
2 7 4 2 20 70 40 20
5 3 3 3 50 30 30 30
2 4 4 3 20 40 40 30
1 3 2 5 10 30 20 50
(c) n = 108 (d) n = 1080
2 15 10 2 20 150 100 20
5 3 3 50 30 30 40
2 12 4 14 20 120 40 140
8 16 3 5 80 160 30 50
(e) n =243 (f) n = 2430
45 22 2 20 450 220 20
5 3 3 4 50 30 30 40
33 4 36 20 330 40 360
26 48 3 5 260 480 30 50
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Table 4. Estimate of ¢, (1, ), estimated approximate standard error for ¢, (1/;8), approx-
imate 95% confidence interval for ¢, (1,) and chi-squared values G? and X2, applied to

Table 3.

(a) Case of ¢;:

Applied Estimated Standard Confidence
data measure error interval

¢s G/ bs £ 20,0256 6/ /P
Table 32  0.031 0.047 (—0.062,0.124)
Table 3b 0.031 0.015 ( 0.002,0.061)
Table 3c 0.277 0.082 ( 0.116,0.438)
Table 3d 0.277 0.026 ( 0.226,0.328)
Table 3e 0.588 0.063 ( 0.465,0.712)
Table 3f 0.588 0.020 ( 0.549,0.627)
(b) Case of 7;:
Applied Estimated Standard Confidence
data measure error interval

Vs Gy /v Ds £ 20.0255% /1
Table 3a 0.043 0.064 (—0.083,0.169)
Table 3b 0.043 0.020 ( 0.003,0.083)
Table 3¢ 0.358 0.098 ( 0.165,0.551)
Table 3d 0.358 0.031 ( 0.297,0.419)
Table 3e 0.696 0.061 ( 0.577,0.815)
Table 3f 0.696 0.019 ( 0.658,0.734)

(c) Chi-squared values:

Applied  Degrees of Likelihood ratio Pearson’s
data freedom chi-squared chi-squared
G? X2
Table 3a 6 1.7 1.7
Table 3b 6 17.0 16.8
Table 3c 6 36.1 33.7
Table 3d 6 361.2 336.5
Table 3e 6 186.8 159.4
Table 3f 6 1867.7 1593.9
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