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Abstract: Order estimation procedures for autoregressive moving average models such
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well as Pukkila, Koreisha & Kallinen’s (1990) procedure are compared on the basis
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1. Introduction

We compare a number of order estimation procedures for autoregressive mov-
ing average (ARMA) models on the basis of large and small sample results. The
procedures considered are minimum BIC, a procedure introduced in Potscher
(1990) and variants thereof, as well as a procedure put forward recently by
Pukkila, Koreisha & Kallinen (1990), henceforth referred to as PKK (1990).
PKK (1990) studied the sampling properties of their identification procedure by
means of a Monte Carlo study and concluded that ‘the proposed identification
procedure is powerful, and can accurately identify the model structure and the
order of mixed models’ (PKK (1990, p.547)). They also claim that their pro-
cedure compares favourably with minimum BIC. We show that their procedure
can be inconsistent. Furthermore, a simulation study shows that minimum BIC
and a variant of Pétscher’s (1990) procedure perform best among the procedures
compared, calling PKK’s (1990) conclusion into question. Section 2 discusses
the various order estimation procedures and their large sample properties. The
small sample properties based on a simulation study are presented in Section 3.
Section 4 contains some concluding remarks.

2. Order Determination Procedures

In this section we discuss standard minimum BIC-type procedures, the PKK
procedure, Potscher’s (1990) procedure and variants thereof, and present some
theoretical results concerning their sampling properties.
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An ARMA(p, q) model is of the form

a(L)y(t) = b(L)e(?) (2.1)

where t € Z and the polynomials a(z) and b(z) are given by a(z) = 1 — X¥_,a;2",
b(z) =1— Z;’:lbizi with a; € R, b; € R. The backward shift operator is denot-
ed by L and the disturbances £(t) are (real valued) white noise, i.e., satisfy
E(e(t)) = 0, E(e(s)e(t)) = 6(s,t)a?, 02 > 0, where §(s,t) denotes Kronecker’s
delta. We make the standard stability and miniphase assumption

a(z) #0 for |z| L1, (2.2a)
b(z) #0 for |z] < 1. (2.2b)

We assume throughout the paper that the data process y(t) is a weakly stationary
ARMA process, that is, y(t) is the weakly stationary solution of an equation of
the form (2.1) with a and b satisfying (2.2). Given (y(t)), there is then a minimal
ARMA model satisfying (2.2) such that y(t) is a solution of this model. We shall

denote this minimal true model by

a®(L)y(t) = b°(L)e(t). (2.3)

The polynomials a®(z) and b%(z) do not have common factors, and their actual
degrees pp and qq are called the orders of the ARMA process (y(t)).

The goal of any order estimation procedure is then to estimate (po,go) on
the basis of n successive observations from y(t).

2.1. Minimum BIC-type procedures

Minimum BIC-type procedures select the order (,§) which minimizes

¥(p, q) = log(62(p, q)) + (p + 9)C(n)/n (2.4)

over a set P specified by the user. Typically, P = {(p,¢) :0<p < P,0<¢<Q}
or {(p,q) : 0 < p+g < K} where P,Q, and K are selected by the user. The
penalty function C(n), for example, is equal to log(n) for BIC, and is equal to
2 for AIC. The estimator 2(p,q) in (2.4) is the (Gaussian pseudo) maximum
likelihood estimator for the residual variance when fitting ARMA(p, ¢) models.
(For a more formal definition of 62(p,g) see Potscher (1990, Section 6).) We
note that actual implementations of the various order determination procedures
discussed in this paper may use approzimations to G2(p,q) obtained from the
Hannan-Rissanen algorithm or similar algorithms, or may use estimators for
the residual variance different from the (Gaussian pseudo) mazimum likelihood
estimator. The theoretical results will typically also hold for such approximate
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procedures or for procedures that use alternative residual variance estimators,
although this needs to be verified on a case by case basis. Sometimes, in an
effort to reduce computational burden, the set P is chosen to be {(r,r) : 0 <
r < R}, ie., only ARMA(r,r) models are fitted, resulting in an estimator 7.
Of course, in this case one cannot expect to identify the true order (po, qo), but
only 7o = max(po, go). Estimation of 7g is nevertheless a useful exercise since the
parameters of the true model are identified in the ARMA(r¢, 7o) specification. If
estimators for (po, go) are desired, such estimators can be found in a second step
starting from the ARMA(7, 7) specification, e.g., by minimizing (2.4) over the set
{(p,q):p<F,g=rorp=7,q= 7}. (Cf. Remark 3.2 in Potscher (1990) and
the hybrid procedure defined below.)

Minimum BIC-type procedures require the user to specify the upper bounds
P and Q (or K). (Even if P, Q or K are allowed to increase with sample size,
as is the case in some of the theoretical results concerning such procedures, a
particular value for these upper bounds has to be chosen in any given application
of the procedure.) The bounds P, Q (or K) are not only an integral part of the
definition of the procedure, but also consistency of the method can obviously hold
only if P and Q satisfy po < P, qo < Q (or po+go < K holds), which of course is an
unverifiable assumption in general. Givenpg < P, go < Q (po+go < K) holds, the
estimator (p, ) that minimizes (2.4) over the set 0 < p < P,0<q¢g<QO0<p+
g < K) is weakly consistent for (po, go) if C(n)/n — 0 and C(n) — oo as n — 00,
and is strongly consistent if C(n)/n — 0 and lim inf,,—.0o[C(n)/ loglog(n)] > 2
as n — oo. (Apart from the condition po < P, g < Qorpy+g0 < K and
the conditions on the penalty term, some technical assumptions like a martingale
difference assumption on the &(t)’s and moment conditions are also required for
the consistency result to hold. For a recent account of consistency results for
minimum BIC-type procedures see Hannan (1980), Hannan & Deistler (1988,
Ch.5).) The consistency result also continues to hold for any estimator (5, q)
that is obtained from minimizing (2.4) over an arbitrary set P as long as P is
finite and satisfies (po, go) € P-

2.2. Sequential procedures

Calculation of a minimum BIC-type order estimator requires fitting of all
models with orders in the range 0 < p < P, 0 < ¢ < Q (or0<p+qg< K
or more generally with (p,g) € P). This will, in general, also include the esti-
mation of a number of unidentified models. Model selection procedures which
try to ameliorate some of these potentially computationally burdensome aspects
of minimum BIC-type procedures have been proposed in the literature. A com-
mon feature of these methods is to examine the adequacy or goodness-of-fit of
each candidate ARMA(p, ¢) model in a sequential manner proceeding from low
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order models to high order models. That is, starting with k = 0, at stage k all
ARMA(p, ¢) models with p + ¢ = k are fitted to the data and the adequacy of
each of these candidate models is determined according to some decision rule.
If none of the models at stage k is judged to be adequate, the models at stage
k + 1 are examined. If one of the ARMA(p, ¢) models with p + ¢ = k passes
the adequacy check, the corresponding order (p, q) is adopted as the order esti-
mate. (If more than one model at stage k passes the adequacy check, the tie is
broken by choosing the model with the smallest residual variance among the tied
models.) Clearly, variants where one may only fit candidate ARMA(p, ¢) models
with p = ¢ or with ¢ = 0 or, more generally, with (p, g) € M for some user
specified set M, are possible. Obviously, the crucial element in any sequential
procedure is the decision rule used to check adequacy of each ARMA model; and
the performance of the sequential procedure will be determined by the operating
characteristics of this decision rule. (It is important to keep in mind that the
adequacy check in a sequential procedure should be simple. Of course, minimum
BIC-type procedures (in fact any model selection procedure) can also be formally
recast as sequential procedures. However, the adequacy check then will involve
estimation of all models in P and comparison of the 1-values of these models.
Clearly, nothing is gained from such a reformulation of the procedure.)

For example, the procedure in Pétscher (1983) employing Lagrange multiplier
tests for the adequacy check of candidate models follows the above sequential
scheme. (This procedure is consistent if the significance levels of the Lagrange
multiplier tests tend to zero at an appropriate rate as sample size increases.
While this procedure has the advantage that it does not require the estimation of
unidentified models (in large samples), it requires, similar to minimum BIC-type
methods, however, the appropriate choice of upper bounds P and Q in order
to achieve consistency. For this reason we do not consider this procedure any
further.) Also, PKK’s procedure as well as the procedure introduced in P6tscher
(1990) have this sequential structure.

Procedures P1 and P2. The procedure in Potscher (1990) was originally
given for the case where only ARMA(r,r) models are fitted to the data, and
ro = max(po, go) is to be estimated. It amounts to fitting ARMA(r,r) models
and to selecting that order # which gives the first “local” minimum or Y(r,r).
More formally, # is characterized by

Y(r,r) > Y(r+1,r+1) for 0<r <7, (2.5)
P(7,F) < Y(F +1,7 + 1), (2.6)

where it is understood that # = 0 if (2.5) is impossible (i.e., if 1(0) < (1)) and
that 7 = oo if (2.6) does not hold. In other words, # is the right hand end point
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of the interval on which 1 is strictly decreasing. Of course, 7 is defined without
any reference to an upper bound for the order and also no such upper bound is
needed for the consistency result: The estimator 7 is weakly consistent for rq if
C(n)/n — 0 and C(n) — oo asn — oo, and 7 is strongly consistent if C(n)/n — 0
and liminfn_ [C(n)/ loglog(n)] > 2 as n — oo, (see Theorem 3.1 in Potscher
(1990)). (Again, the same technical assumptions as in the consistency result for
minimum BIC-type estimators have to be assumed here.) The consistency result
also shows that in large samples it is actually only necessary to estimate the
models in the range 0 < 7 < rg + 1 in order to calculate the estimator 7.

This procedure, called procedure P1 in the sequel, clearly can be viewed as a
sequential procedure, where M = {(p,p) : 0 < p < oo} and where the adequacy
check consists of a comparison of ¥(p,p) with ¢(p + 1,p + 1). From a testing
point of view this adequacy check amounts to a (pseudo) likelihood ratio test
of the ARMA(p, p) specification against the ARMA(p + 1,p + 1) specification at
an appropriate significance level determined implicitly by the penalty function
(cf., Potscher (1990, p.168), Potscher (1991a, Section 4, Remark 2)). (Since
log(62(p, q)) is only an approximation to the minimum of the negative (pseudo)
log-likelihood, the test is in fact only an approximation to the (pseudo) likelihood
ratio test.) ‘

Procedure P1 can easily be generalized to the case where ARMA(p, ¢) models
are fitted and (po, go) is to be estimated: Follow the general sequential scheme
~ while judging a candidate ARMA(p, ¢) specification to be adequate if ¥(p,q) <
¥(p + 1,q + 1). This generalization of procedure P1 will be called procedure P2.
More formally, starting at k = 0, check if ¥(p,q) < ¥(p + 1,¢ + 1) holds for
some (p,q) with p + ¢ = k. In this case set (§,q) equal to the current (p,q). (If
several pairs (p,q) with p + ¢ = k satisfy ¥(p,q) < ¥(p + 1,4 + 1) choose the
one that has the smallest residual variance.) Otherwise set k = k + 1 and repeat
the process. Procedure P2 can be shown to be consistent for (po, go) under the
same set of conditions which were used to prove consistency for procedure P1 in
Theorem 3.1 in P6tscher (1990). (The proof follows the same steps as the proof of
Theorem 3.1 in that reference and is therefore omitted.) In particular, C(n) has
to satisfy C(n)/n — 0 and C(n) — oo for weak consistency and C(n)/n — 0 and
lim inf,, oo [C(n)/ log log(n)] > 2 for strong consistency. Similar to procedure P1,
the calculations involved in procedure P2, as well as the corresponding consistency
result, do not require an upper bound on the ARMA order. Again the consistency
result also shows that at most all models with p+ ¢ < (po + 1) + (go + 1) will
have to be estimated in large samples. Furthermore, the asymptotic properties of
procedure P1 established in Potscher (1990, Section 4), for the case where (y(t))
is not an ARMA process carry over to procedure P2.

We note that the consistency result for procedure P2 continues to hold for
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versions of P2 in which only candidate ARMA(p, g) models with (p,q) € M are
fitted and M is a user specified subset of {(p,¢) : 0 < p < 00,0 < g < 0}, as
long as (po, go) € M holds. For example, if only candidate ARMA(p, 0) models
are fitted, i.e, M = {(p,0) : 0 < p < oo}, and if (y(¢)) is an autoregressive
process, l.e., go = 0, then this version of P2 is consistent if the penalty term
satisfies the conditions mentioned above. (It may be worth pointing out that
in this example the adequacy check consists in comparing ¥(p,0) to ¥(p + 1,1)
and hence this version of procedure P2 is not equivalent to a procedure which
searches for the first local minimum of 1 (p,0). In fact, this is what the MPKK
procedure with m* = 1 defined below does in this example, and MPKK can be
inconsistent. As discussed below in more detail, for the consistency of P1 and P2
it is crucial that both the AR and the MA order are increased in the adequacy
check of a candidate model. Only in the special case where exclusively candidate
ARMA(r, ) models are fitted, do procedures P1 and P2 reduce to a search for
the first local minimum of ¥(r,r).)

Hybrid Procedure. This procedure is a hybrid between P1 and a minimum
BIC-type procedure. Procedure HYB is defined as follows: Determine 7 according
to procedure P1; then estimate (po,go) by a minimizer of (p,q) over the set
{(p,g):0<p<Fg=F,orp=7F,0<qg<FU{(F+1,7), (f,#+1)}. From the
consistency result for P1 and for minimum BIC-type procedures, it is clear that
procedure HYB is consistent for (pg, go) under the same set of conditions as P2 is.
Similar to P2, procedure HYB does not involve an upper bound on the ARMA
order. We note that from an asymptotic point of view the inclusion of (7 + 1,#)
and (7,7 + 1) into the set over which v is minimized in the definition of HYB
is irrelevant. In finite samples, however, this inclusion provides some insurance
against estimates (7, 7) which are too small.

PKK Procedure. The procedure presented in PKK (1990) is — like procedure
P2 — a sequential procedure but where adequacy of each candidate ARMA(p, q)
model is checked as follows: Select a positive integer m*, and fit auxiliary au-
toregressive models of order 0 < m < m* to the residuals obtained from the
ARMA(p, g) model fitted to the data y(t). Calculate BIC(m,0) for the auxiliary
autoregressive models. (Recall BIC(m, 0) = ¢(m,0) with C(n) = log(n)). If BIC
is minimal at m = 0 then the ARMA (p, ¢) model is judged to be adequate (as the
residual series appears then to be white noise) and the estimated ARMA order is
(p, q); otherwise the sequential procedure is continued. (PKK (1990) do not give
their tie-breaking rule. In personal communications Pukkila informed us that
they broke ties by choosing the model with the smallest residual variance among
the tied models.) We note that similarly as with the other procedures discussed
in this paper clearly a penalty term different from log(n) could also be used in



ORDER ESTIMATION 35

the definition of the PKK procedure.

The PKK procedure is closely related to the following modified PKK pro-
cedure (MPKK procedure) which we introduce here only to make comparison
between procedures easier. For MPKK the adequacy check of each ARMA(p, q)
model in the PKK procedure is replaced by the following step: For each trial
ARMA (p, ¢) model the auxiliary nested set of ARMA models with orders (p, q),
...,(p+m*, q) is considered. The ARMA(p, ¢) model is judged to be adequate
if its BIC value, BIC(p, ¢), is minimal among the BIC values, BIC(p + m,q),
0 < m < m*, of the auxiliary ARMA(p + m, ¢) models. Of course, the adequacy
check of the ARMA(p, q) model in the MPKK procedure is equivalent to test-
ing the ARMA(p, q) specification against all the ARMA(p + m, q) specifications
using (pseudo) likelihood ratio tests (the significance levels being determined by
the penalty function of BIC). The ARMA(p, q) specification is rejected if at least
one (pseudo) likelihood ratio test rejects. Clearly, the PKK procedure has a
similar testing interpretation. (Indeed, whereas the MPKK procedure uses the
(pseudo) maximum likelihood estimators for the residual variances of the auxil-
iary ARMA(p + m, q) models, the PKK procedure can be viewed as using two-
step estimators for these quantities that are obtained as the residual variances
of auxiliary AR(m) models fitted to the residuals obtained from the ARMA(p, q)
model.) '

The PKK procedure as well as the MPKK procedure do not provide consis-
tent estimators for the ARMA order, in general, as shown below in the following
example. In particular, the choice of m* is crucial. The example also shows that
the claim on p.771 of Pukkila & Krishnaiah (1988) that their white noise test has
power approaching unity as sample size increases is incorrect.

Ezample. Assume that the data process y(t) is generated according to y(t) =
e(t)+ae(t—2), with || < 1, E(e(t)) = 0, E(e(t)*) < o0, e(t) i.i.d., and let m* = 1.
Note that (1) = 0, where (1) denotes the autocorrelation at lag one. Since
the residuals from the “fitted” ARMA(0,0) model are obviously the data y(t),
both the PKK and the MPKK procedure first compare BIC(0,0) and BIC(1,0)
for the AR(0) and AR(1) processes fitted to the data y(t). Now, BIC(1,0) =
BIC(0,0) + n~'log(n) + log(1 — 4(1)?) where 4(1) is the sample correlation at
lag one. Since (1) = 0 it follows that nl/24(1) is asymptotically normal with
mean zero, and hence n¥(1)? is asymptotically distributed as a (nonnegative)
multiple of a chi-square with one degree of freedom. Now, by the mean-value
theorem, log(1 — 4(1)%) = —%(1)?/(1 + &), where &, is a mean-value satisfying
—%(1)? € &, < 0 and hence converges to zero in probability. From this we see
that pr(BIC(1,0) > BIC(0,0)) = pr(log(n) — n¥(1)?/(1 + £») > 0) tends to one.
Hence the PKK as well as the MPKK procedure accept (p, ¢) = (0, 0) incorrectly
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as the true order even as the sample size increases to infinity. (We have used here
the Yule-Walker estimators for the parameters of the AR(1) model rather than
the maximum likelihood estimators for the sake of simplicity of the argument.
This is of course immaterial to the conclusion drawn.) This example in fact shows
that the PKK as well as the MPKK procedure with m* = 1 will stop at the order
(0,0) with probability approaching unity whenever the data generating process
has 7(1) = 0 (and is such that n%(1)? is asymptotically chi-square), and hence
these procedures are inconsistent for such data generating processes (except if
the process is white noise). Clearly, we also arrive at the same conclusion for
any alternative penalty term satisfying C(n) — oo. (If C(n) is constant (and
positive) as is, e.g., the case for AIC, then the probability of stopping at (0,0)
will still be positive although it does no longer approach unity.) Similar examples
can also be constructed for any other value of m*.

Although the calculations for the PKK and MPKK order estimator do not
depend on an upper bound for the ARMA order, the example clearly shows that
the choice of the auxiliary bound m* is crucial for consistency of these procedures.
It transpires from the example that the values of m* such that consistency is
possible are linked to the true model and hence to the true order (po, go) of the
data process. Therefore, a selection of m* implies a bound on the true orders
(po, go) for which the PKK or MPKK procedure with the given choice of m* can
possibly be a consistent procedure. It seems that there are no results available in
the literature establishing conditions (in particular on m*) under which the PKK
(or MPKK) procedure is consistent. While we expect that both procedures can
be shown to be consistent provided m* is chosen appropriately relative to the true
order (po,qo), the translation of this into precise conditions on m* is less than
obvious. (We can show that the MPKK procedure does not overestimate (po, o)
asymptotically regardless of the choice of m* (m* fixed), and we conjecture that
the same is true for the PKK procedure.)

Possible Extensions. (i) Procedures P1, P2 and HYB use only one alternative
model in the adequacy check of a candidate ARMA(p, ¢) model, while the PKK
and MPKK procedure use m* such models. Of course, one could also consider a
variant of procedure P1, say, that checks adequacy of an ARMA(r, ) model by
comparing ¥(r,r) not only with ¢(r+1,7+1) but with ¥(r+j7,7+75), 5 < m*. The
ARMA(p, ¢) model would be considered adequate if ¥(r + j,7 + j), 0 < 7 < m*,
is minimized at j = 0. Procedure P2 could be generalized similarly, and a gener-
alization of procedure HYB would simply use the generalized P1 procedure just
described instead of the original P1 procedure in the first stage. As discussed
above, procedures P1, P2 and HYB are consistent. The consistency proof also
shows that the generalizations of P1, P2 and HYB share this property under
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exactly the same conditions and regardless of the choice of m* (m* fixed). While
the choice of m* is an important factor for consistency or inconsistency of pro-
cedures PKK and MPKK, it is irrelevant for the consistency of the (generalized)
P1, P2 and HYB procedures. Of course, in finite samples the choice of m* may
have an effect on any of the procedures, (cf. Section 3).

(ii) We can also come up with a variant of procedure P2 which is related to P2
in a similar way that PKK is to MPKK. For this variant of procedure P2 the ad-
equacy check for the ARMA(p, ¢) model consists in fitting an ARMA(1,1) model
to the residuals from the ARMA(p,q) model. The y-values of the ARMA(0, 0)
and ARMA(1,1) model for the residual series are then compared. If the i)-value
at (0,0) does not exceed the value at (1,1), the residuals are considered to be
white and the ARMA(p, q) model is accepted. (Of course, this procedure corre-
sponds to m* = 1. Again it could be generalized to the case m* > 1.)

2.3. Theoretical comparison of procedures

Relationships Between Procedures. The MPKK procedure, and hence the
PKK procedure, are more closely related to the standard minimum BIC method
than might appear at first glance. For example, if only AR models are fitted
as candidate models, then the MPKK procedure corresponds to minimizing BIC
over moving windows {p,...,p + m*} and to choosing the smallest p for which
the minimum of BIC over the corresponding window {p,...,p+m"} occurs at p.
In particular, if m* = 1, MPKK reduces to a search for the first “local” minimum
of BIC in the pure AR case. If ARMA models are considered then the MPKK
procedure corresponds to minimizing BIC over moving sets of auxiliary ARMA
models corresponding to the set of orders {(p,q),(® +1,9),...,(p + m*, ¢)}, and
to estimating the order by the “first” (p, ¢) which is the minimizer of BIC in its
corresponding auxiliary set of models.

Clearly, the MPKK (and the PKK) procedure are also close relatives of pro-
cedures P1 and P2. Instead of using the auxiliary ARMA(p + m, ¢) models with
0 < m < m* to judge the adequacy of a candidate model, procedure P2 uses only
the ARMA(p + m,q + m) models with 0 < m < m* = 1 for that purpose. (As
mentioned in Section 2.2 procedures P1 and P2 could also be generalized to the
case m* > 1.) The important difference between the MPKK (PKK) procedure on
the one hand and procedures P1 and P2 on the other hand is that in the former
procedure only the AR order is increased in the adequacy check of an ARMA
model, while in the adequacy check in the latter procedures both the AR and
the MA order are increased simultaneously. One ramification of this difference is
that procedure P2 (and also P1) is consistent (if C(n) satisfies the appropriate
conditions) whereas the MPKK (and PKK) procedure is not. The central reason
for this different behaviour of the two kinds of procedures is the following prop-
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erty of o%(p, q), the limit of 62(p,q) as n — oo: Similar to Po6tscher (1990) for
the case p = g, it can be shown that o?(p+1,q+1) < o%(p, q) holds if p < py or if
g < qo- The point here is that this is a strict inequality. (It is not hard to see that
o2(p',q') < o*(p,q) always holds for p’ > p and ¢’ > ¢.) Hence, if C(n)/n — 0
holds, procedure P2 will not stop asymptotically before (po, go) is reached as is
now easily seen. (Furthermore, o?(p, q) = 0%(po, qo) if p > po and q > qo. Based
on this, procedure P2 can be shown to actually stop at (pg, go) in large samples
if the penalty term satisfies the conditions for the consistency result. This is
proved similarly to the corresponding result for minimum BIC-type estimators
in Hannan (1980), (cf. also Podtscher (1990)).) However, the strict inequality
o?(p+1,q) < o%(p, q) need not hold if p < py or if ¢ < go and this suggests that
in such a case the MPKK and PKK procedures (with m* = 1) will stop before
(po, go) is reached. The Example in Section 2.2 shows that this is indeed the case.
(Also o?(p + m,q) = o*(p,q) for 0 < m < m* and m* > 1 is possible and the
MPKK and PKK procedures will be inconsistent in such a case.)

The above discussion can be reformulated in terms of (pseudo) likelihood
ratio tests. Recall that the P2 and MPKK procedures test the adequacy of a given
candidate ARMA(p, q) model by a (pseudo) likelihood ratio test (with critical
value proportional to C(n)) against “artificial” alternatives, the alternatives being
ARMA(p + 1,¢ + 1) for the P2 procedure and ARMA(p + m,q), 1 < m < m*,
for the MPKK procedure. It follows that the error-probabilities of the first and
second kind of the (pseudo) likelihood ratio test (with critical value proportional
to C(n)) of an incorrect ARMA(p, ¢) model (i.e., p or ¢ too small) against an
ARMA(p+1,¢+1) alternative always approach zero as the sample size increases
as long as C(n) — oo and C(n)/n — 0, even if the ARMA(p+1, ¢g+1) alternative
itself is incorrect (i.e., p+1 or ¢+ 1 still too small). However, this is not so if only
the AR order is increased for the alternative, i.e., the (pseudo) likelihood ratio
test underlying the MPKK procedure does not necessarily detect misspecification
of the candidate model with probability approaching one as sample size increases.
(Indeed the probability of an error of the second kind can go to one in view of the
fact that the critical value goes to infinity, (cf. the Example in Section 2.2). Even
if the critical value were held fixed, the probability of an error of the second kind
would not vanish.) The consistency of the (pseudo) likelihood ratio test based
on the ARMA(p + 1, ¢ + 1) alternative is closely related to identifiability issues
in ARMA models. (See Pdtscher (1990, 1991b) for a discussion.)

Another implication of the above discussion is that procedures that search
for the first local minimum of 1) may or may not be consistent, depending on the
set of ARMA models considered. For example, procedure P1 searches for the first
local minimum over the set of all ARMA(r,r) models and is consistent (if C(n)
satisfies the appropriate conditions), while MPKK (with m* = 1) — in case only
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AR models are considered — searches for the first local minimum over the set of
all AR models, and is not consistent in general.

Upper Bounds and Consistency. On comparing minimum BIC-type proce-
dures, procedure P2 (and P1), procedure HYB, as well as the MPKK and PKK
procedures on the basis of the large sample results discussed above, it transpires
that procedure P2 (and P1) as well as procedure HYB have — in contrast to
the other procedures — the advantage of not making use of an upper bound on
the ARMA order at all, and of allowing consistency to be established without
any unverifiable upper bound condition on pg and go like pg < P and go < @,
or po + g < K. The MPKK and the PKK procedure also seem not to involve
an upper bound on the ARMA order at first glance. However, both procedures
require the choice of the upper bound m* on the order of the auxiliary autoregres-
sive models. As shown above, both procedures are inconsistent if this auxiliary
bound is set at too small a value. Since the minimal value which allows consis-
tency to be established is related to py and qo, it is seen that the MPKK as well as
the PKK procedure, like minimum BIC-type procedures, involve an unverifiable
upper bound assumption concerning pg and go.

In their paper PKK (1990) do not specify how m* was selected. In personal
communication Pukkila revealed that m* was set at n? and claimed that hence
the procedure does not involve an upper bound on the orders, and that this was
an advantage of the PKK procedure compared with minimum BIC which requires
the specification of upper bounds P and Q for the ARMA orders. However, this
does not seem to be a fair comparison since we can also allow the upper bounds
P and Q in minimum BIC-type procedures to increase with sample size. For
minimum BIC-type procedures with slowly increasing P and Q (essentially for P
and Q of order not larger than log(n)) consistency has been established, (see, e.g.,
Hanann & Deistler (1988, Ch.5), for an extensive discussion). The consistency of
the PKK or MPKK procedure may also hold if m* increases slowly, although we
are not aware of any proof and it may not be easy to obtain this result for the
faster rate nZ. In any case, in a finite sample situation a value of m* has to be
selected.

Computational Complezity. Minimum BIC-type procedures involve estima-
tion of all models in P, and hence are typically more computationally demanding
than the other procedures discussed. The computations for minimum BIC-type
model selection will typically also require estimation of unidentified models. Com-
putationally, procedures P1 and P2 (with m* = 1) seem to compare favorably
with their competitors, since for the adequacy check in these procedures only one
alternative model has to be estimated and this model will have to be estimated
at a later stage anyway (except when the procedures already stop before this lat-
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ter stage is reached). Also, procedure HYB has roughly the same computational
complexity as P2. The computational complexity of the PKK procedure is com-
parable with the complexity of P2, although contrarily. to P2, the computations
involved in the adequacy check can not be used at a later stage in the procedure.

The procedures P1, P2 and HYB (with m* = 1) require only the estimation
of one unidentified model in large samples if C(n) satisfies the conditions for
consistency. PKK'’s procedure was designed to avoid the necessity for estimating
unidentified models. If our conjecture in Section 2.2 that the PKK procedure is
consistent provided m* is chosen appropriately is true, PKK’s procedure, indeed,
avoids estimation of unidentified models. (We note, however, that the MPKK
procedure may require the estimation of unidentified ARMA models even if m*
has been chosen appropriately.) While estimation of unidentified models may
pose numerical problems (e.g., the search for the optimum may take many it-
erations or may fail to converge numerically), it does not pose a problem for
minimum BIC-type procedures and for procedures P1, P2, and HYB from a sta-
tistical point of view. In fact, if the algorithm employed does not locate the global
optimum of the likelihood function when an unidentified model is estimated, this
may even be helpful, as then the estimate of the residual variance and hence the
-value will tend to be larger, making it easier to recognize the model as over-
parameterized. (We note that for the algorithms employed we did not encounter
any numerical difficulties in estimating the residual variance or residual series of
unidentified models.)

Overestimation vs. Underestimation. It is rather obvious from the definitions
of the procedures P2, PKK and MPKK that they will tend to choose lower order
models in small samples than the minimum BIC-type procedure (if the upper
bound on the models considered by the minimum BIC-type procedure exceeds
the true orders, and if the same penalty term is used in all the procedures).
This observation is also confirmed by the simulation study. Hence, for a fair
comparison of all these procedures it seems that one also has to consider higher
order models such that the tendency of these procedures to choose lower orders
and not only the proneness of minimum BIC-type procedures to overestimate can
be evaluated. In their simulation study, PKK (1990) considered only low order
models, hence their results give too favourable an impression of the performance of
the PKK procedure. Also, PKK (1990) compare their procedure with a minimum
BIC-type procedure (i.e., the procedure of Hannan & Kavalieris (1984)) only for
a few low order moving average processes and when only ARMA(r,r) models
are estimated, (cf. Table 5 in PKK (1990)). Given the tendency of the PKK
procedure to underestimate, the choice is then effectively between (0, 0) and (1, 1).
Since the moving average processes considered there show strong correlation, it
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is not surprising that (0,0) is not selected frequently by the PKK procedure.
(Furthermore, in that comparison, the ARMA models are estimated by different
methods for the minimum BIC procedure and the PKK procedure, respectively.
Hence, differences in the performances of the order selection procedures may to
some extent result from the different estimators used for the ARMA parameters.)

3. Small Sample Properties

The small sample properties of minimum BIC, PKK, P2, HYB, and HYB4
were investigated by means of a simulation study. Here HYB refers to the hybrid
procedure (with m* = 1), while HYB4 refers to the variant of this procedure
with m* = 4 discussed at the end of Section 2.2. For all procedures consid-
ered the penalty term C(n) was set equal to log(n). All calculations were done
in RATS386, Version 3.11. Using the random number generator available in
RATS386, 100 replications of an independent identically N(0,1) distributed se-
quence (g(t)) of length 150 were generated. Various ARMA(p, g) processes were
generated from the sequence (e(t)) by solving a(L)y(t) = b(L)e(t) for y(t) (for
t > max(p, q) and setting all presample values of y(t) equal to zero, i.e., y(t) =0
for t < max(p,q)). The last 100 observations of the resulting series were then
used as the realization of the ARMA(p, q) process in the simulation study. The
same ARMA structures as in PKK (1990) were used. These structures are low
order ARMA processes. To evaluate the performance of the various procedures
for higher order models, a few higher order processes were also included into our
study. (See the Appendix for a list of the ARMA processes used.)

Each of the model selection procedures described above involves fitting of
ARMA(p, ¢) models and calculation of the residual series from the fitted model.
For the former purpose we used the linear procedure described in Koreisha and
Pukkila (1990) as do PKK (1990) in their simulation study. (The main reason
for choosing this estimation procedure was to keep our results comparable with
the results in PKK (1990).) The residuals from an estimated ARMA(p, ¢) model
were obtained as follows: First the (y;) series, 1 < t < n, was transformed by the
estimated autoregressive operator leading to a series (v;), say, with p+1 <t < n.
Next the Choleski decomposition of the variance covariance matrix of dimension
n — p of a MA(q) process with unit error variance and parameters equal to the
estimated parameters in the moving average part of the ARMA(p, ¢) model was
calculated. Finally, the inverse of the Choleski factor was multiplied with the
vector (Up41,...,Un) In order to obtain the residual series. The sample vari-
ance of the residuals was then used as an estimator for o2(p,q). (PKK (1990)
do not describe in their paper how the residuals were obtained. From personal
communication with T. Pukkila we gathered that they followed the procedure
just described.) The estimation procedure of Koreisha and Pukkila (1990) some-
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times produces noninvertible models (especially when underfitting the model).
Therefore, for the minimum BIC, P2, HYB and HYB4 procedures, whenever the
estimated model was noninvertible, Wilson’s (1969) factorization algorithm was
used to obtain an equivalent invertible ARMA(p, ¢) model before the residuals
were obtained by the Choleski factorization just described. (We ignore here the
possibility of obtaining roots exactly on the unit circle.) For the PKK procedure
it is not necessary to replace noninvertible models with the equivalent invertible
ones for the following reason: In case the estimated model is noninvertible, the
variance of the corresponding residuals will be proportional to the variance of
the (estimated) innovations where the proportionality factor is unknown. Now,
since the PKK procedure does not compare the BIC-values over different ARMA
models but only compares the BIC-values of different AR models fitted to the
residual series of an estimated ARMA model, the proportionality factor does not
matter. The procedure of Koreisha and Pukkila (1990) used to fit ARMA models
involves estimating an initial long autoregression followed by a generalized least
squares estimation step. As in PKK (1990), the long autoregression was fitted by
Burg’s algorithm, (cf. Andersen (1974)), and its order was set equal to the square
root of sample size, i.e., equal to 10. We used one iteration in the generalized
least squares step.

Ties in the PKK and P2 procedures were broken by choosing the model
with the smallest residual variance among the tied models. For minimum BIC
we searched over all ARMA(p, ¢) models with p+ ¢ < K, K = 5 for low order
processes (cf. Table 1) and K = 10 for high order processes (cf. Table 2). The
value of m* in the PKK procedure, i.e., the highest order of autoregressive models
fitted to the residuals from the ARMA models, was set equal to the square root
of the sample size i.e., equal to 10, the same value as used by PKK (1990) in
their study (personal communication). As in PKK (1990), these autoregressions
were estimated by the Yule-Walker method.

We want to stress that all conclusions concerning the model selection proce-
dures drawn in the following pertain to the variants of these procedures where
o2(p, q) is estimated by the linear procedure described above. If 0%(p, g) is esti-
mated, e.g., by maximum likelihood, this may lead to improved performance of
the procedures. This point deserves further investigation.

The number of correct order selections for each of the procedures and for low
order models are shown in Table 1. (In Tables 1, 2 and 3 the numbers reported in
parenthesis are the numbers of correct order selections if &%(p, q) is alternatively
calculated only from the last 100 —u elements in the residual series obtained from
the estimated ARMA(p, ¢) model in order to avoid end-effects in the calculation
of the residuals. The value of u is specified in the tables.) The Monte Carlo
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standard error for these numbers can easily be estimated by [j(n — 7)/ n]% where
7 is the Monte Carlo estimate for the number of correct classifications reported in
the tables and 7 is sample size. Comparing with Table 2 in PKK (1990) we find
that the percentages of correct classification of the PKK procedure are almost
always lower than the values reported in PKK (1990), and frequently differ by
more than one, sometimes even by more than two, estimated standard errors.
(The ARMAZ2,1/3 process in Table 1 is not included in Table 2 of PKK (1990),
but discussed on p.544 of that paper. Results for processes MA1/4, MA1/6 and
MAZ2/3 are given in PKK (1990), Table 5, only for sample size 200 and only
for the case where ARMA(r,r) models are fitted.) These discrepancies seem
to indicate that the results of PKK (1990) give too optimistic an impression of
the small sample performance of the PKK procedure even for low order models.
From Table 1 we also see that the sequential procedures PKK and P2 are “very
good if they are good, and very bad if they are bad.” The minimum BIC as
well as both HYB procedures are less likely to break down than are the PKK
and P2 procedure, the HYB procedures generally giving better results than the
minimum BIC procedure, (cf. the results for models ARMAL,1/1 and ARMA2,
1/3 in Table 1 for example). Also, both procedures HYB and HYB4 are almost as
good as PKK and P2 in most of the cases favourable to the latter procedures. For
the low order models considered, HYB and HYB4 show almost identical results
except for the ARMAZ2, 1/3 model.

The frequency distributions of selected orders obtained from the Monte Carlo
experiment also confirm the remark in Section 2.3 that the PKK and P2 proce-
dures tend to choose smaller orders than minimum BIC. (For lack of space these
frequency distributions are not presented here, but are available on request.) In
particular, the frequency distribution of the orders selected by PKK (P2) is con-
centrated almost exclusively on orders (p,q) with p < po or ¢ < go, whereas
minimum BIC, HYB and HYB4 also selected models with p > po and ¢ > go. In
the majority of these cases p = po,q 2> go Or P 2 Po,q = qo holds, i.e., the true
structure is still identified in the chosen model.

Next we discuss some results for low order models (cf. Table 1) in more detail.
The AR1/1 process shows relatively little correlation and hence all procedures
not infrequently identified the process as white noise (PKK: 18%, BIC: 12%,
P2: 44%, HYB: 12%, HYB4: 12%). Also the incorrect order (0,1) was chosen
frequently (PKK: 31%, BIC: 33%, P2: 16%, HYB: 33%, HYB4: 33%). A similar
remark applies to the MA1/1 process. The ARMAL, 1/1 process can be reason-
ably well approximated by an autoregressive process of low order as can be seen
from calculating the corresponding transfer function; not surprisingly, all proce-
dures select the order (1,0) with relatively high frequency (PKK: 82%, BIC: 44%,
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P2: 68%, HYB: 52%, HYB4: 52%). Minimum BIC also selects the order (2, 0) in
23% of the replications from this process. The number of correct classifications
for this process varies enormously over all procedures: the worst case is the PKK
procedure which selects the true order only 5% of the time, whereas the best pro-
cedures (HYB, HYB4) find the true order 33% of the time. Also the results for
the ARMAZ2,1/3 process show similar features. The smallest number of correct
classifications, 56, occurs for procedure PKK, whereas the highest number is 93
for procedure HYB4 followed by 74 for HYB and 70 for minimum BIC.

While in both cases discussed above the worst procedure, i.e., PKK, chooses
a misspecified model in most of the cases where it does not detect the true order,
the situation is different for the worst procedures, i.e., HYB and HYB4, in case
the data follow an MA2/1 or MA2/2 process. Here, in cases where the true order
(0,2) is not found by HYB or HYB4, these procedures most frequently choose
the (1,2) or (0,3) model, which are correctly specified models although they each
contain one superfluous parameter. (Also minimun BIC selects (1, 2) or (0, 3) not
infrequently.) For the MA2/1 process the frequencies for selecting the true order
(0,2) or the orders (1,2) or (0,3) are 97 for PKK, 92 for minimum BIC, 99 for
P2, 88 for HYB, and 86 for HYB4. The corresponding numbers for the MA2/2
process are similar. Comparing these figures with the frequencies of correctly
selected orders for these processes given in Table 1, one sees that the figures
in Table 1 give too pessimistic an impression about the actual performance of
HYB and HYB4 for these processes. The same phenomenon also occurs for other
processes: Procedures minimum BIC, HYB and HYB4 often select the orders
(Po, g0 + 1) or (po + 1,90) when they miss the true order (pg, qp), whereas PKK
and P2 almost exclusively select misspecified models in such a case. (Note that
the true structure is identified in the ARMA(po, go + 1) and ARMA(py + 1, qo)
model.) Hence, if one also counts it as a success if a (true) model with one excess
parameter is chosen, procedures minimum BIC, HYB and HYB4 look even better
relative to procedures PKK and P2. As another example consider the ARMAL,
2/1 process: The numbers of correct selection are 69 for PKK, 71 for minimum
BIC, 80 for HYB, and 77 for HYB4. The frequencies for selecting the true order
(1,2) or one of the orders (2,2) and (1,3), however, are 69 for PKK, 76 for
minimum BIC, 89 for HYB, and 87 for HYB4.

Another interesting case is the ARMA1,2/2 process. Here all procedures
do more or less well, except for P2, which selects the incorrect order (1,0) in
69% of the cases. Inspection of the array of BIC-values shows, that — although
there is a marked decrease in residual variance when comparing the (0, 1) with
the (1,2) model — frequently the decrease in residual variance from the (1,0) to
the (2,1) model is not sufficient to offset the increase in the penalty term in the
corresponding BIC-values. Hence procedure P2 stops at (1,0). Inspection of the
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BIC-array also shows that procedure P1 (which only estimates o) does not suffer
from the same problem as procedure P2. This is also documented by the good
performance of procedures HYB and HYB4 which are built upon procedure P1.
Similar remarks apply also to the MA2/3 process.

We next turn to the results for higher order models given in Table 2. The
overall conclusion is that no procedure does very well at the given sample size
n = 100. We first discuss, in more detail, the results for the seasonal processes,
ie., for the AR4/1, AR4/2, MA4/1, MA4/2 and ARMA4,4/1 processes. The
safest bet seems to be the minimum BIC procedure, followed by procedures HYB4
and PKK. Procedures P2 and HYB break down completely. This is largely due
to the choice of m* = 1. Although the choice of m* is irrelevant for these
procedures from an asymptotic point of view as remarked earlier, we see that it
may matter in finite samples. This is also borne out by the much better results
for procedure HYB4. Due to the gaps in the autocorrelation function of the
seasonal processes procedures P2 and HYB using m* = 1 are not able to pick up
the correlation with the given sample size 100, and hence frequently select the
order (0,0). Setting m* = 4 in the HYB4 procedure considerably improves the
performance, cf. Table 2. Also the PKK procedure has a hard time selecting the
correct order for seasonal processes, except for the AR4/2 and MA4/2 processes
which exhibit strong correlation. Despite the fact that m* = 10 for the PKK
procedure, the performance of this procedure is inferior to the performance of
minimum BIC. (Recall also that — contrary to the case of procedures P2 and
HYB — an appropriate choice of m* is relevant for the consistency of the PKK
procedure.) The PKK procedure also shows a tendency towards choosing orders
lower than the true one.

For the nonseasonal processes, i.e., for the ARMA4,4/2 and ARMA4,4/3
processes, all procedures fare poorly. (This does not come as a surprise, however,
as these two processes are difficult to identify: the ARMA4,4/2 process has an
AR and a MA root each of order 4, whereas the AR and MA polynomials of the
ARMA4, 4/3 process have each a dominant root while the other roots are closer
to zero.) Procedures PKK, P2, HYB and HYB4 almost always decide on lower
order structures, while minimum BIC also selects ARMA models with 8 or more
parameters in a considerable number of cases. (Again this only confirms remarks
made in Section 2.3.)

In order to get more insight into the performance of the various order estima-
tion procedures for higher order models the Monte Carlo experiment was repeated
also for sample size n = 200. (The various ARMA processes were obtained from
the residual series (g(t)) in the same manner as before except that now the length
of the (e(t)) series was 250. The order of the initial long autoregression was set
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at 14 (= n%) Also, for the PKK procedure a vilue of m* = 14 was used.) The
numbers of correct classifications are shown in Table 3. Not surprisingly there is
improvement in the performance of the procedures, although procedures P2 and
HYB still do not work at this sample size. Considering only the seasonal models
minimum BIC seems to be the most consistent overall performer, followed by
HYB4 and PKK. For the nonseasonal models there is almost no improvement
compared with the result for sample size 100, except for procedures HYB and
HYB4 in case of the ARMA4, 4/2 process. Nevertheless the performance (31 and
32 correct classifications, respectively) is not impressive. However, if we look at
the frequencies of selecting one of the orders (4,4),(4,5) or (5,4) things look a
bit brighter. These numbers are 46% for procedure HYB and 48% for procedure
HYB4. (The corresponding numbers for the other procedures are PKK 1%, BIC
4%, P2 2%.) Hence the overall winner of this contest at sample size 200 seems
to be procedure HYBA4.

From the frequency distributions one also gathers that in some cases mini-
mum BIC shows considerable variability. This seems to be mainly due to the fact
that a large number of alternative models are compared. The sequential struc-
ture of the other procedures considered helps in bringing down this variability.
The price to be paid for this is a stronger tendency towards underestimation.
However, the hybrid procedures seem to be a good compromise.

PKK (1990) emphasize that their procedure frequently selects plausible al-
ternative structures if it fails to identify the correct order. (As discussed above,
‘their procedure then selects a misspecified alternative structure almost exclu-
sively.) As they note, this clearly happens most often if the true process can be
closely approximated by a lower order one. Of course, in case a model selection
procedure fails to select an order (p, q) with p > po, ¢ > ¢o (i-e., if the procedure
selects a misspecified model), it is desirable that the procedure selects at least a
structure that closely approximates the true process. Such a feature of a model
selection procedure is only natural and will be shared by most reasonable model
selection procedures (since processes which have similar covariance structures will
be difficult to distinguish by any procedure). Clearly, the relative performance of
model] selection procedures taking into account the quality of approximation to
the true model in case a misspecified model is selected is of interest, but would
require evaluation of, e.g., the prediction performance of the selected models.

4. Conclusion

From the large sample as well as small sample results discussed above pro-
cedure HYB4 as well as minimum BIC seem to emerge as the best among the
model selection procedures compared. The PKK and P2 procedure, while do-
ing well in many cases, produce disastrous results in others. We also observed
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smaller numbers of correct selection for the PKK procedure in our simulations
than reported in PKK (1990). Furthermore, the PKK procedure is shown to be
an inconsistent procedure in general. On the basis of the above evidence PKK’s
(1990) conclusion that the PKK procedure is superior to minimum BIC type
criteria seems questionable. The Monte Carlo results also show that procedures
PKK and P2 most frequently choose a misspecified model (i.e., p < pg or ¢ < ¢o)
whenever they miss the true order (py, ¢p), while procedures minimum BIC, HYB
and HYB4 often select a true, albeit, slightly overparameterized model (typically
with one superfluous parameter) in such a case. Hence if one counts it a success
if a model selection procedure selects the true order (pg, qo), or (po + 1,qo) or
(po, qo + 1), then the performance of minimum BIC, HYB and HYB4 relative to
PKK and P2 is even better than one might think from looking at Tables 1-3.

It seems that in cases where different model selection procedures disagree
on the order selected, inspecting the array of BIC(p, g)-values for interesting fea-
tures — apart from calculating the various model selection procedures — is good
practice. Also, examining the sensitivity of the order estimator obtained from
procedure HYBm* with respect to the value of m* will provide useful informa-
tion. The question whether the performance of any of the procedures will improve
substantially if the residual variance is estimated by maximum likelihood remains
to be investigated.

Appendix

The following ARMA processes were used in the simulation study.
AR1/1: p=1,¢=0,a; =03, AR1/2:p=1,¢=0,a; =0.5,
AR1/3: p=1,¢=0,a;, =09, ARl/4:p=1,¢=0,a =-0.9,
ARMA1,1/1: p=1,¢=1, a; = 0.8, by = 0.5,

ARMA1,1/2: p=1,9=1,a; =08, by = -0.7,

ARMA1,1/3: p=1,g=1,a; = —0.8, by = 0.7,

AR2/1: p=2,¢=0, a1 = 1.42, a; = —0.73,

AR2/2: p=2,¢g=0,0a1 =18, as = -0.9,

MA1/1: p=0,¢=1,5 =03, MA1/2:p=0,¢=1, b =05,
MA1/3: p=0,¢g=1,b1 =09, MAl/4 p=0,g=1, b =-0.38,
MA1/5: p=0,¢g=1, by = -0.9, MA1/6: p=10,g=1, by = —0.95,
MA2/1: p=0, ¢ =2, by = 1.42, by = —0.73,

MA2/2: p=0,q=2, by = 1.8, by = —0.9,

MA2/3: p=0,qg=2, by = -1, by = —0.89,

ARMA2,1/1: p=2,9=1, a1 =14, ap = —-0.6, by = —0.8,
ARMAZ, 1/22 P = 2, q = 1, ai = —0.5, ags = —0.9, b1 = 0.6,
ARMA2, 1/31 p= 2, q= 1, a; = —0.95, as = —0.9, b1 = —0.5,
ARMAL1,2/1: p=1,9g=2,a; = —0.8, by = 1.4, b = —0.6,
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ARMAL1,2/2: p=1,9g=2,a1 = 0.6, by = —0.5, by = —0.9,
AR4/1: p=4,9g=0,a1=0,a2 =0, a3 =0, ag = 0.5,
AR4/2: p=4,q=0,a1=0,a2=0,a3 =0, ag = 0.9,
MA4/12 p=0, q=4, b1 =O, b2=0, b3=0, b4=0.5,
MA4/2: p=0,g=4,b; =0, by =0, by =0, by = 0.9,
ARMA4,4/1: p=4,9g=4,a, =0,a3 =0,a3 =0, a4 =09, by =0, bs =0,
by =0, by = —0.9,
ARMA4,4/2: a(z) = (1 - 0.92)%, b(z) = (1 + 0.92)*,
ARMA4,4/3: a(z) = (1 —0.92)(1 — 0.72)(1 — 0.52)(1 — 0.3z),
b(z) = (1+0.92)(1 +0.72)(1 + 0.5z)(1 + 0.32).

Table 1. Low Order Models: Number of correctly estimated orders

sample size: 100, number of replications: 100

PKK MINIMUM BIC P2 HYB HYB4
MA1/1 44 43 (51) 24 (29) 45 (37) 45 (37)
MA1/2 82 76 (81) 79 (82) 80 (80) 80 (80)
MA1/3 95 88 (93) 100 (100) 90 (94) 90 (94)
MA1/4 98 89 (91) 99 (98) 92 (92) 92 (92)
MA1/5 97 88 (91) 100 (99) 90 (93) 90 (93)
MA1/6 90 91 (92) 99 (99) 92 (93) 92 (93)
AR1/1 51 51 (50) 40 (36) 53 (49) 53 (49)
AR1/2 85 77 (80) 84 (84) 85 (84) 85 (84)
AR1/3 99 96 (96) 100 (100) 97 (92) 97 (92)
AR1/4 98 92 (94) 100 (99) 98 (93) 98 (93)
MA2/1 94 76 (87) 99 (99) 58 (66) 58 (66)
MA2/2 94 87 (87) 86 (84) 64 (62) 63 (62)
MA2/3 82 85 (92) 22 (24) 82 (86) 82 (86)
ARMAL,1/1| 5 18 (17) 11 (11) 33 (33) 33 (33)
ARMAL,1/2 | 98 86 (90) 97 (97) 92 (91) 92 (91)
ARMA1,1/3 | 93 78 (86) 94 (96) 88 (89) 88 (89)
AR2/1 100 90 (95) 100 (100) 93 (92) 92 (91)
AR2/2 100 90 (92) 99 (99) 93 (89) 93 (89)
ARMAL1,2/1 | 69 71 (77) 86 (90) 80 (83) 77 (82)
ARMAL,2/2 | 85 82 (85) 20 (19) 91 (90) 91 (90)
ARMA2,1/1 | 93 84 (89) 94 (97) 93 (90) 93 (90)
ARMA2,1/2 | 71 80 (85) 52 (49) 89 (90) 89 (90)
ARMA2,1/3 | 56 70 (76) 57 (55) 74 (72) 93 (95)

Figures in parentheses are number of correctly identified models using only the last 100—u
elements in the residual series for estimation of the residual variance. Note u = 5 for the
BIC and P2 columns and u = 14 for the HYB and HYB4 columns.
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Table 2. High Order Models: Number of correctly estimated orders

sample size: 100, number of replications: 100

PKK MINIMUM BIC P2 HYB HYB4
AR4/1 52 67 (66) 0(0) 0(0)  25(21)
AR4/2 92 88 (92) 5(4) 4 (11) 92 (90)
MA4/1 20 52 (54) 0(0) 0(0)* 5(7)*
MA4/2 75 82 (87) 0(0) 0(0)  75(72)
ARMA4, 4/1 | 15 62 (71) 0(0) 7(18)* 89 (88)*
ARMA4, 4/2 | 0o 1 (0) 0(0) 7(8) 9 (8)
ARMA4,4/3 | 0 1 (0) 0(0) 1 (0) 1 (0)

Figures in parentheses are number of correctly identified models using only the last 100—u
elements in the residual series for estimation of the residual variance. Note v = 10 for
the BIC and P2 columns and u = 18 for the HYB and HYB4 columns.

*:. For 1 replication the program was stopped due to non-invertibility of a matrix.

**. For 2 replications the program was stopped due to non-invertibility of a matrix.

Table 3. High Order Models: Number of correctly estimated orders

sample size: 200, number of replications: 100

PKK MINIMUM BIC P2 HYB HYB4
AR4/1 88 88 (92) 2(1) 0(0) 82(75)
AR4/2 99 94 (96) 4(4) 3(9) 96 (96)
MA4/1 74 90 (90) 0(0) 0(0) 61 (60)
MA4/2 100 94 (95) 0(0) 0(0) 96 (97)
ARMAA4, 4/1 | 66 97 (96) 0(0) 7(12) 97 (96)
ARMA4, 4/2 | 1 4(2) 2 (0) 31(28) 32(28)
ARMA4, 4/3| 0 0 (0) 0(0) 2(2) 2(2)

Figures in parentheses are number of correctly identified models using only the last 100—u
elements in the residual series for estimation of the residual variance. Note © = 10 for
the BIC and P2 columns and u = 18 for the HYB and HYB4 columns.
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