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Abstract: In this paper we study the asymptotic properties of the sequential risk-
efficient rule developed for the estimation of the mean of the logistic response function
based on the quantal responses observed at equally spaced dose levels. The Spearman-
Karber (S-K) and Spearman-type variance (S-T-V) estimator are used for the mean
and variance, respectively, in the sequential estimation.
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1. Introduction and Notation

Spearman (1908), Karber (1931), Finney (1952), Berkson (1955), Brown
(1961), Miller (1973) and Church and Cobb (1973) have investigated the theoret-
ical merits of the Spearman mean estimator. Miller (1973) also showed that the
Spearman-Karber estimator is in terms of efficiency, the best estimator among all
nonparametric estimators (see also Govindarajulu and Lindgvist (1986)). Church
and Cobb (1973) showed that, asymptotically, for small dose span, the Spearman-
Karber estimator is equivalent to the maximum likelihood estimator. Epstein
and Churchman (1944), Cornfield and Mantel (1950) and Chmiel (1976) have
investigated the theoretical merits of the Spearman-type variance estimator. For
some other details the reader is referred to Govindarajulu (1988). The sequential
methods for estimation of parameters were first proposed by Wald. The methods
commonly in use are fixed-width method, fixed-precision method and risk-efficient
plus sampling cost method. Anscombe (1953), Ray (1957), Robbins (1959), Starr
(1966) have extensively studied the theoretical merits of these sequential proce-
dures. Robbins (1959) estimates the mean of the iid random variables using the
quadratic loss function. Starr (1966) considers a more general loss function, in
the risk-efficient estimation. For some details on these contributions see Govin-
darajulu (1987, §5.1). Here we are concerned with the risk-efficient estimation of
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the mean of a logistic regression model within the context of a quantal bioassay
model. We describe our approach as follows.

- In the usual quantal bioassay model, the mean (or median) of a distribution
function F(z) is estimated by selecting 2k + 1 doses on the z-scale Tk, Togyl,
T—k+2,--+,%0,...,Tk-1, Tr and then observing n experimental units at each dose
level. The positive responses are recorded as 1’s and the negative responses as
0’s. We consider the probability of positive response to be the logistic distribution
function given by

F(z) = [1 + e_(m"g)/ﬂ] -

The location and scale parameters § and f are estimated respectively by the
Spearman-Karber (S-K) estimator given by

A dy d d &
0, = (:L‘o + —) - — Z'I‘i + - Z(n - ri), (1.1)
2 n = n

and the Spearman-type variance (S-T-V) estimator given by

a3 d\? 2d 2d & ;
2_ . . 2
ﬁk—;,s{(”””a) RN } .

k
where
zp = the initial dose level,
z; = zo+id, 1 =0,£1,£2,..., %k,
r; = number of positive responses at z;,
d = dose span,
n = number of experimental units at each dose level.

We study the almost sure convergence of the S-K estimator, the sequential
S-K estimator, S-T-V estimator and the sequential S-T-V estimator. Using the
asymptotic properties of these estimators we establish the “asymptotic efficiency”
of the sequential procedure given by (2.5), as the dose span d(= ;inﬂ) tends to zero
(analogously as m — o).

Later on we show that if the cost of sampling per unit ¢ is of the form
¢ = O(d'*") where n > 1 and a certain regularity condition holds, then the
sequential procedure given by (2.5) is risk-efficient.

2. The Sequential Procedure

First, the initial dose level zg is chosen at random (uniformly) between 0 and
d, where d is a specified small positive number. The other dose levels are selected



RISK-EFFICIENT SPEARMAN-KARBER ESTIMATOR 307

according to the formula z; = zg +id, ¢t = 0, £1,£2,..., k. At each dose level,
n experimental units are placed and the individual responses are recorded as 1
or 0 according as the unit gives a positive or negative response. The experiment
begins by placing n experimental units at each of the dose levels z_; and z; at
the (7 + 1)th stage until the experiment is stopped according to a risk-efficient
rule (z =m*,m*+1,...).

The risk-efficient rule is derived in such a way that at the stopping stage, the
mean squared error of the estimator plus the sampling cost is at the minimum.
Assume that the cost per experimental unit is ¢, where ¢ may be a function of
the dose span d. Let

R = Risk + Cost
n ~ 2
= Var(d) + (bias(6k)) " + (2k + L)en. (2.1)

Note that

Var(ék) = = E(Var(éklxo)) + Var (E(éﬂmo))

o2
- %{G(ﬂ%—ﬁ) + G(kd; 9) - 1} + o(d?), (2.2)

where G(z) = (1 + e~ )7L
The bias of 6 is

B = E(y)-6= E(E(ék|mo)) .y

0 k
= E{(wo—i—g) - %ZnF(mJ—i—%Zn(l—F(w,))} -6
—k 1
/(kd+d—9)/ﬁ
(

kd+6)/8
o~ (kd+6)/B _ o—((k+1)d—6)/8

15 e—((k+1)d—6)/p

(1 - G(u))du

Q

(2.3)

This leads to the objective function R (after ignoring o(d?)) as

R = (ﬁ) { [1 + e-(kd—<9)/ﬁ]_1 + [1 + e“("‘“”")/ﬁ]—l - 1}
n
4 el _ t.;—((k+1>al—9>/ﬂ}2 {1+ e'((’““l)‘*“’)/"}_2 + (2k + L)en.

In order to find the value of k that minimizes R, we set the partial derivative of
R with respect to k equal to zero and then solve for k. In order to show that
the optimum value of k thus obtained will in fact minimize R, we show that the
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second (partial) derivative of R with respect to k is positive when evaluated at
the optimizing value of k (see Nanthakumar (1989)).
Now to derive the rule, let o = ee/ﬁ =e 4B A= and T = (4+ 2 +

2/Byy + A ). If terms of order e~3%4/8 and hlgher can be neglected
the stopping value of k that minimizes the cost plus the risk is: stop taking dose
levels when

d
% > log, J(6, 8, ¢, d,n), (2.4)

where
1A+ E) 7 {(ar + 1) - T(ay + )71}
1+ {14+ 2588 + %)72[1 - Pay + 1))}

J(6,8,¢,d,n) = .

However, since 6 and § are unknown, we use the following adaptive rule. That
is, stop taking observations at the (K + 1)th stage, where K is given by

K = inf{k; k> m*, —g—d > log, J(6k, Bk, c, d, n)}, (2.5)
k

where Gk and [ denote the S-K estimator and S-T-V estimator, respectively,
and J(0x, B, ¢, d, n) is the quantity corresponding to J(4, 8, ¢, d,n) when 6§ and Jéj
are replaced by 6 and B, respectively. These estimators are strongly consistent
under some regularity assumptions and are easily computable.

If § and B are known then the stopping value of k is given by

= (B/d)log. J(8,8,c,d,n). (2.6)

3. Finite Termination of the Stopping Rule

In this section, the finite termination of the stopping rule is considered. We
show that the experiment terminates with probability one when the dose span d

is bounded away from zero.
Note that from (2.5),

{K >k} € {BeJ(Bx, i, c,d) > kd}
—1 - - ..
C {,Bk log, [zmk( + %‘f) (=6 +e-0k/ﬂk)J > kd}. (3.1)
This implies that

-1 N . PO
P(K > k) < P{Bk log, [4Bk (—q + %) (e("k-d)/ﬂk + e—gk/ﬂk)} > kd} (3.2)
n
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and by applying Markov’s inequality, we get

P{K > k} < <k1d> {ﬂk log, [4,3k(d 430) (e(ék—d)/ﬁk +e—ék/ﬁk)] } (3.3)

This inequality can be further reduced to

P{K >k} < (%)E{Bk log, [8Bk <% + ilg-f)-leék/ﬁk]}
< (%)E{Bk [IOge By + log, (8(% + %—9)_1)] + ék}

< (k_ld.) {E(B,f) + log, [s(g + %‘f)'l]wk) + E@)}. (3.4)

Note that E(8?) < oo, E(6:) < oo (see Lemma 8 of the Appendix). Hence,
P{K >k} — 0 as k — oco. This shows the finite termination of the risk-efficient
stopping rule for fixed values of ¢, d and n.

4. Asymptotic Results

In this section, the asymptotic properties of the S-K estimator, S-T-V estima-
tor and the stopping rule will be stated and the proofs deferred to the appendix.
In order to assert the almost sure convergence of the estimators, we take the initial
number of stages to be m* + 1 where m* = m*(d) = O(d™"log.(d™')) as d — 0,
where d is the dose span such that d = % for some dy (> 0) and positive integer
m. For convenience, we choose the initial number of stages m* = mlog, m

Theorem 4.1 deals with the asymptotic properties of the stopping rule, se-
quential S-K estimator and the sequential S-T-V estimator while Theorem 4.2
focuses on the risk-efficiency of the stopping rule.

Theorem 4.1. For the stopping rule given by (2.5), we have
(i) K(d) — o0 asd — 0.

(ii) E(K(d)) — oo as d — 0.

(iii) éK(d) —fas asd—0,d=%.

(iv) Bk — B a.s. asd — 0, dz%nﬁ.

(v) 15(51) —1lasd—0,d= ;n‘l and k*(d) is the value of k satisfying (2.4).

(vi) E{k*(d)} —1asd—0.
Note: Property (vi) is known as asymptotic efficiency.

Theorem 4.2. For the stopping rule given by (2.5), if ¢ = O(d'*") for some n
(>1) and e~ (K(@)-k*(d)d js yniformly integrable, then the rule is risk-efficient as
d tends to zero.
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5. Numerical Results

Consider the following dose response problem. Suppose that the response
is quantal (or binary) and its occurrence or non-occurrence depends upon the
intensity of the stimulus administered. Let us assume that at each dose level,
n = 3 experimental units are placed and the responses are measured at each
dose level. Here the number of positive responses follow a binomial distribution
with n = 3 and the probability of success is the distribution function of the
intensity levels. Letting z denote the dose level and P(z) = [1 + e~ (==6)/8)-1
the probability of success at z, we estimate 6 sequentially using the risk-efficient
stopping rule. :

In the case that ¢ = O(A'*7) where A = % and n > 1, the stopping rule
given by equations (2.4) and (2.5) can be approximated respectively by

o B 12 (T ovss _ o-toys

k* = B—loge{Zﬂ (;l- (e —€ ) ) (5.1)
3 . =-n/2, . - 50

K = inf{k; k > %k—loge [2,311/2 <g) (elﬁki/ﬁk - e—Ile/ﬂk)} } (5.2)

To simplify the numerical computation, we use equations (5.1) and (5.2) in the
place of (2.4) and (2.5), respectively. In the computations ¢ = (€)1 with
n = 1.98. _

As we see, when the dose span d goes up in value, K and k* go down in
value, and as d goes to zero, EK/k* tends to one.

An example

In order to demonstrate the application of the risk-efficient procedure, we
generate a random sample from the logistic distribution with § = 0.625, 3 = 0.5
and n =198, d = 0.2 and n = 3. When ¢ = (1/15)d**" = 0.00055, the rule is to
stop according to (5.2). We obtain the following results.

Hence K = 8 and the data is (0, 0,0,0,0,0,0,0,0,1,1,2,1,2,2, 2, 3). We also
compute k* using (5.1) as k* = 10.48 = 11.
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Table 5.1. Risk-efficient procedure results

¢ 8 d E(K) k* E(K/k*) Rk/Ri
2 1 02 268 27 0.992 0.996
2 1 015 405 38 1.060 1.033
2 1 01 616 61 1.010 1.018
-2 1 02 291 27 1.078 1.081
—2 1 015 401 38 1.056 1.074
-2 1 01 57 61 0.934 0.972
2 2 0.2 403 43 0.937 1.053
2 2 015 632 64 0.987 0.972
2 2 01 105 106  0.991 0.997
-2 2 0.2 456 43 1.066 1.066
-2 2 015 642 64 1.003 0.923
-2 2 01 106 106  1.000 1.000
1 1 02 174 22 0.791 1.043
1 1 015 268 31 0.865 0.919
1 1 01 446 50 0.892 1.043
-1 1 02 216 22 0.982 1.094
-1 1 015 287 31 0.926 0.944
-1 1 01 478 50 0.956 1.058
3 05 020 215 23 0.935 0.958
3 05 015 296 31 0.955 1.021
3 05 0.10 472 49 0.963 0.999
-3 05 020 212 23 0.922 0.906
-3 05 015 302 31 0.974 1.045
-3 05 010 49 49 1.00 1.007
k6 B R.HS of (5.1) with 8 = Bx and 8 = 6
1 0216 0.103 2.241
2 0.283 0.137 3.043
3 0.416 0.207 4.756
4 0483 0.243 5.646
5 0.550 0.284 6.628
6 0.616 0.328 7.676
7 0.616 0.328 7.676
8 0.616 0.328 7.676
9 0.616 0.328 7.676
10 0.616 0.328 7.676

311
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Appendix

Here certain mathematical details of the proofs of Theorems 4.1 and 4.2 are
presented. Note that d = %‘}, where dy > 0 and m is a positive integer. In
order to prove Theorem 4.1, we need the following lemmas. In the proofs of the
lemmas, for simplicity K is used (since K (d) = K(m) = K) in place of K (d) or
K(m). We use uniform probability bounds in several places in the proofs. Note
that (A.6) and similar inequalities are very useful in this regard.

Lemma 1. Let X be a continuous random variable with distribution function
F(-) and E(X) = 0. Then for any zy € (0,4d)

d 0 ) cO ) d
’6 - (:z:o + 5) + d;oF(cco +id) — dzlz(l — F(zy +id))| < 7"
Proof. One can write
o) o zo+(i+1)d
6 = / 2dF(z) =3 / zdF(z)
—00 —oo YTo+id
o0
= me{F(ziH) — F(z;)} for some z} (A.1)
such that z; < 2} < z;,;. Note that (A.1) can be written as
=/ . d s d
g = Z (a:z —-I; — 5) {F(:L'i_,_l) - F(x,)} + Z (:L'i + 5) {F(:lti+1) — F(x,)}

From the identity 3% i{F(zi11) — F(z;)} = - % F(z:) +3°(1 - F(z;)) we
have ,

oo 0 foe)
> (x,- + g) (F(zis1) — F(2:)} = 20 + g ~dY Fa)+ 430 - Flzy).

Since | 3% (z} — z; — g)(F(ziH) - F(z;))| < %, the proof readily follows.

Lemma 2. Let ym = supys;m™| % (p; — B;)| where p;’s are independent
(for a given o) binomial proportions with E(p;|lze) = P, = [1 4 e~ (@=0)/8)-1
and zo 1s uniformly distributed on (0,d). Then Yn =3 0 as m — oo, where
P = P(m)=[1+ e (@=0/8-1 gng d = do/m for some dy > 0.

Proof. Note that
1. E(p,‘ — R,.’Bo) = 0.
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2. E((p; — P,)%z0) = n~3P;(1 — B){3nP(1 - P;) — 6P;(1 — P;) + 1} < co.

So we have, after using the inequality for sub-martingales, (see, for instance,

Woodroofe (1982, p.8) or Hall and Heyde (1980, p.14))

4

g S -n]o1m) < a{Snle) o
It is easy to show the identity
(Ta)' = Tat+43 Y ada; +33 afe]
i#] i£]
+6 ZZZ alajar + ZZZZ aia;ara; (A.3)
itk i j Akl
since P;(1 — B;) < %, we have

3nPi(1 - P)—6P(1—F;)+1<2n. (A.4)

Also P,(1 — P,) = Bf(zo + id) where f(-) is the logistic density function. Using
the Euler-MacLaurin integral sum formula we can write

> fleo +id) = H{f@o+ N+ flzo - N} + [ flzo+zd)de

- d/N Hy(z)f'(zo + zd)dz, (A.5)
-N

where

1 .
[x] — £ + =, if z is a non-integer;
Hl(:v) = 2

0, if z is an integer,

and f'(z) = M Note that |H1(z)| < 3. From (A.5), it follows that
dZP(l—P)<ﬁ(1+3d> | (A.6)
20
By combining (A.2), (A.3), (A.4), (A.5), (A.6) we obtain

su d(p; >el|lx
{P E (p: - | }
3d 3d

< 6'4{2n-2m_3ﬁd3 (1 + 55) + 3n~"2m™2p%d} (1 + 55)2}. (A7)
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Now by integrating over zy and then taking the limit as N — oo we get

k
su > €
Plan| -] > ]
- _ 3d 3d\?
< 4 I ~2m 3 d3(1 __) -2, -27n2 2< __) }
_e{nmﬂ +2,3 +3nm,8d01+2,3 (A.8)
and hence 3°°°_, P{supy> | Sk d(ps — F;) > €} < 0.
Lemma 3.

0 25 0 as m — 0o, and k — oo, such that km™! — co.

Proof. One can write

ék—0=<zo+d> de,-I—le p,)-—(xo+ )+dZP~dZ(1—
(mo+ ) dZP—!—dZ(l—

So,

k
dZ(Pi—P + (xo+ ) dZP+dZ(1— - ’
—k-1

+d }: P+dZ(1-—

k+1

6, — 6] <

Since d "0 . P; and d °8°(1~ F;) are converging sums, d 3" _*~! P, and d Doha1(1—
P;) tend to zero as d = fn — 0 and k — oo, such that kd — oo. This result
together with lemmas 1 and 2 prove the lemma.

Corollory 1. For any stopping time K(m) such that K(m)m=! — 0o as m —
00, Ox(m) — 0 as m — oo.

Lemma 4. If F(z) denotes a logistic distribution function with location and scale
parameters 6 and B respectively then for some positive constant Ch,

7T2ﬂ2 d\ 2 0 a
L e (zo + 5) +2d Y @iF(z:) - 2d S z:(1 - F(z:))| < Cud,
— 00 1

where zo € (0,d) and C; is free of z;.
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Proof. It is well known that

22 0o X rz
————”f +6? = / z:zdF(:c)=§:/ " G2dF (z)
oo —o0 VT

e}

- Z(:c;-*)z{F(xHﬂ — F(z;)}

— 00

for some z} such that z; < z7 < 4.
So, one can write

7r2 2 oo 2
_3'6_ +6% = };o (a:,- + —g) {F(zis1) — F(z:)}

+ i {33?2 - <-’Bi + g>2} AF(zit1) - Fzi)}-

It can be shown that

ad d 2 d 2 0 oo
> (mi+§) {F(zit1)—F(zi)} = (xo—i--z—) ~2d Y z;F(2:)+2d Y zi(1-F(z:)).
o ~ -
Also z¥ = z; + Ad for some X such that 0 < A <1 and therefore
2 d )
x;& - (mi + é) = (zi+ )\d)2 — (Cﬂi + —)
2 2
d 1
= m(2A—1)d+ (/\2 - %)d‘?.
So,
S ot = (204 5) [(Fles) - Fl)
—O0
— 1
< 2x- 1|d§|$i|{F(ﬁﬂi+1) ~ F(z)} + |3 - 1 d

= 0(d).

Hence the lemma.

Lemma 5. Let Z;, = supg>; m™}| E’ik z;(p; — P;)| where p;, P; and z; are as
defined 1n Lemma 2.
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Then Zm 23 0 as m — oo.
Proof. Similar to the proof of Lemma 2, except for changing p; — P; to z;(p; -F;).
Lemma 6. §; 23 B as m — 00, k — 0o such that km™! — co.

Proof. From (1.2) and Lemma 4, we have

k —k-1 o0
—Cid—2d) zi(pi - P)+2d Y z;P—2d> z:(1 - B)
-k —00 k+1
7r_2 32 _ 2 g2 — g2
< 3 (Bk = B°) + 6
k —k-1 o
< Cid-2d) zi(pi— P)+2d Y zP—2dY zi(1-F).
—k -00 k+1

Note that 2d Z:’;o"l z;F; and 2d 7%, z:(1 — P;) tend to zero as m — oo, k — oo
such that km~! — co. Also by Lemma 3, 65 — 6 and by Lemma 5, dzlik z;(p; —
P;) tend to zero. Hence the lemma.

Corollory 2. For any stopping time K(m) such that K(m)m™! — 0o as m —
00, Br(m) — B as m — oo.
Proof. The proof can be given along the same lines as the proof of Lemma 6.
Lemma 7. If P, = [1 + e~ @~0/F]-1 with z; = x4 + id where zo € (0,d) then
for any stopping time K
(i) for the S-K estimator 0k, E(6%) < oo
" . . 2 2 5 ,
(ii) for the Spearman type variance estimator % 8%, E(B%) < cc.
Proof. For the sequential Spearman-Karber estimator given by 6y = (zo + g) -
A5 gpi + AT (1~ pi), let Xx = d-0xpi + dTF (1 - pi). Then |fx| <
zo + § + Xk.

To show that E(8%) < oo, it suffices to show that E(X%) < co. Now consider

0 K
E(Xg) = E(d Zpi) + E(dZ(l —p,-)).
-K 1

Now the p;’s are conditionally independent with respect to zo and thus by Wald’s
generalized equation

E(Xg) = E(E(dépilm())) +E<E(d§1{:(l—m)|zg>>
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<

<

0 K
E(dZH) + E(dZu - R-)) where P; = E(p;|zo)
~-K 1

E(dipi-i-di(l ——H))
—00 1

Q.

0 K
Var{dei +d> (1 —pi)}
-K 1
0 K
Var (E{dZPi +dy (1 “‘Pi)l%})

K 1

0 K
+E(Var{d2pi+d2(l —pi)|$0}>
-K 1
0 (o) 00
E{ [dZP,- +dy (1- R)r} + (d2/n)E{ > B(1- R-)}

—o0
Q.

That is, E(X%) < oo and this implies E(6%) < oo.
To prove (ii), use the fact that

-1
w2 By /3 < (17/4)d* —2d (i + 1)d{1 4 e~ ((i+1)d-8)/8 }—1

+2d i(i +1)df{1- 1+ e((i+1)d—9)/ﬁ}"1} + 6%
1 ‘

and this implies E(8%) < oo.

Lemma 8. For any finite k
(i) E(6?) < oo.
(i) B(8}) < oo.

Proof. It is similar to the proof of Lemma 7.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. (i) and (ii) are obvious. (iii) follows from Corollory 1.
(iv) follows from Corollory 2. To prove (v) and (vi),
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let
a=¢eP y=e P, A=d/n, y=avy+1/a
p=4+20/B+4c/DB, T =py+(c/AB)(a?y* +1/a?),
G = /P gy = e UP gy = & + 1/ b

pr = 4+ 2A/[§k +4c/ABk, Tk = bk + (C/AB)GEAE + &%)
u = (16¢/AB)(A + 4c/A)"2(1 -~ Ty™?) and
up = (16¢/AG)(A + 4¢/A)72(1 - Ty ?).

From (2.5), we have

(K/Bx) — (k*/B) > 1o {ﬁx(yK — Tryx )1 + u%{]

(k*/B) By — Ty=1)[1 + u?] }/IOge(J(o,ﬁ, ¢,d,n))

(A.9)
and
(K = 1)/Bx-1) — (k*/B)
(k*/B)
< log, {BK—1(yK—1 - TK—lyf{l_l)[l1 +u?_4]
By — Ty~ 1)1 + u?]

where J(6,8,¢,d,n) 1s as defined i in (2.4).
Note that 9K(m) 22, ﬁK(m) =% B as m — oo. This implies that yg(m) 2y,

} [ log.(J(6,8,c,d,n)) (A.10)

Tk (m) pe=y o UK (m) 2% u as m — oo, and this in turn implies (v), since the cost
¢ = O(d**") for some n > 1.
To prove (vi), use the facts that

(K -1)8 < log, {4BK 1(A + é{2)_1:‘11{"1}
k*Br—1 BA+X)Y -1
{——‘L—%—H(H ) (v - Ty}

and loge([S’K_l) < Bx_1, and obtain

K1 07 {Brslog. [4(A+ f)71] + By + 216k}

d log, [4(A + %)—1] + log, [ﬂy;lir_‘l]

14+u2

(A.11)

However, E(8%_,) < oo and E(|6x-1]) < oo (see Lemma 7 for the proof).
Therefore the expected value of the right hand side of (A.11) is finite. So, by
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the dommated convergence theorem and part (v) of Theorem 4.1, we obtain
E{k,( )}—>1asm—>oo

Risk Efficiency

Let Rx and Ri~ denote the mean squared error plus the sampling cost as-
sociated with K and k* respectively. We assume that the sampling cost per unit
¢ = O(d'*") where d is the dose span and 7 > 1. In this section we show that
Bk _, 1 as ¢ — 0. Towards this we need the following lemmas.

R+
Lemma 9. sup;>;{(k*d)(d Tk (pi—P)} S 0asd= ;nQ — 0.
Proof. By the sub-martingale inequality

4
> € xo} < 6-4(k*d)4d4 {[Z(pi ] |x0}

k

Z(Pi -

—k

P{ sup (k*d)d
1<k<N

and it is easy to show that

[{ S (i - }41%}

= ZE{(p, Iwo}—i-BZZE{ > (pi — P)? |x0} {i:r(pj_pj)qxo}

i#j -
§2n‘ZZP(1— ) +3n” {ZP(l—P)}

Also from (A.6) Ny Pi(1 — P;) < B(1 + 2%). Therefore

P{Z sup k*d)d

1<k<N

e 4k d)4{2n—25d3 (1 + gg) +3n"24%d? (1 + g%) }

Now by letting N — oo and then integrating over zo we obtain

{Z dfj(pz > 6}

k>1

3d 3d
< —4 /1% 4{ -2 3( __) 3n -2 2d2 (1 ) }
< etk d)t{2nTpd 1+ 55 ) + 8 3 +35
However from (2.4) it follows that when ¢ = O(d'*7) for some 7 > 1, k™d =
O(log, d~!) and therefore as d = % — 0, the result follows.

Pi)) > €| mo}
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Lemma 10. For K and k* given by (2.5) and (2.6)
() K*d(S X (i — P) =50 as d = 0, 0,
(11) Kd(dZ (pz R)) 220 as d = % — 0.

Proof (i) follows from Lemma 9 and (ii) follows from (i) and the fact that
k—. X lasd= 2 —0.

Lemma 11. For K and k* given by (2.5) and (2.6)
() k*d(d XXy zi(pi — P)) 250 as d = =0
(i) Kd(dXF zi(pi — P)) 2 0 as d = & — 0.

Proof. The proof is analogous to the proof of Lemma 9 except for changing
— P; to zi(p; — P)).

Lemma 12. (K - k*)d*5 0 as d = 2 0.

Proof. From (2.5) and (2.6) we have

IBK 1Oge (J(éKa BKa c, da n)) - ,H loge ('](aa /B, c, d7 n))
< (K = k")d < d+ fg_1log, (J(8k-1,Bx-1,¢,d,n)) — Blog,(J(8, B, c, d,n))

and both the right hand side and left hand side tend to zero almost surely as
d= gnﬂ — 0. Hence the lemma.

The following lemmas are used to show the risk-efficiency of the stopping
rule.

Lemma 13. According to the set-up of the ezperimentation, we have the risk plus
the sampling cost of estimation for 6y and Ox denoted by Ry and Ry respectively
are as follows.

1. Ry = E(fx — 6)% + (2k + 1)en

= A{ 1~ ae~kd/P 4 o2e~2kd/B _ o=1g—kd/B(] _ a—le—kd/ﬂ)}

) 1\2  g—2kd/B
+p(a-2) T aeRaTEyE * (2 Dne

for any finite k.
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9. Rg = E(6k — 0)* + E((2K + 1)cn)

_e_
(81

= ﬁAE{l — e~ KB . (2o 2Kd/B _ (1= Kd/B (1 1 Kd/ﬂ)}
_ 1\2
s (a _ __) E{e'”{d/ﬁ[l + ae—-Kd/ﬁ]—z}
«

~ 2ﬁE{ [d é(pi _ Pi)} [/(—(mo+(K+1)d——0)/ﬁ(1 ~ G(u))du} }

zo+(K+1)d—0)/8

(zo+Kd—8)/8 —(Kd+8)/8
+ BAE / g(u)du + g(u)du
(Kd-6)/8 —(zo+Kd+6)/8

K
+ E{[T*(mo)]z} - ZE{ l:dT*(J)o) Z(Pz - Pz)] }
K

(—zo+Kd+6)/8

+ 2ﬂE{T*(zo) (z0+(K+1)d—0)/ﬁ(1 - G(u))du} +E((2K + 1)cn) + o(d)

where

T (z0) = 3{1 — F(zo + (K +1)d) — F(zo — (K + l)d)}

o0 -K-1
+ d? / Hy(z)f(zo + zd)dz + d? /
K+1

—Q0

Hy(z)f(zo + zd)dz + Ad

for some A = A(zq) such that -3 <AL 3. Also A = %, F(-) is the logistic
cdf, f= %, G is the logistic c.d.f. in the standard form, g = %g and Hi(z) is
defined as

z| — z + 0.5, = 1is a non-integer;

0, T 15 an integer.

Proof. The proof of 1 is straightforward. The proof of 2 is as follows.
Note that

) K (—zo+(K+1)d+6)/B
Ok —0=-d> (pi— P)+B (1 — G(u))du + T*(zo). (A.12)
e (zo+(K+1)d—8)/8

Equation (A.12) follows from Equation (A.1) and the random version of the Euler-

MacLaurin formula. Now by squaring both sides and then taking expectations,
we obtain

K 2
E(fx —0)* = E{dz:(pi—Pi)}
~-K
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+E{ﬁ/(—mo+(K+1)d+0)/ﬁ o 2 ,
1 - G(u))d *
oy =G +B{( e

X (—zo+(K+1)d+6)/8
—28E{d i~ P, -
s { [_ZK(p )} [/(zo+(K+1)d—0)/ﬁ (1 G(u))duJ }

K
- ZE{T*((EQ) {d > (pi — -Pz):, }

~-K

/(—zo+(K+1)d+6) /B
(

+ 2ﬁE{T*(zo) [ (1- G(u))du} } (A.13)

zo+(K+1)d—6)/8

However, by the generalized Wald’s equation (see Wolfowitz (1947)), we have
K 2 K 2
E{d2 [Z(Pi - Pz’)J } = dzE{E[Z(Pi - Pi):l l%}
-K -K

_ (%)E{E(éﬂ(l - R-)) |x0}

= ﬂ(g—>E{ /((_z0+Kd+6)/ﬁ g(u)du} + o(d). (A.14)

n zo+(K+1)d—8)/8

The last step of (A.14) follows from the random version of the Euler-MacLaurin
formula. Next, using simple algebra, one can complete the proof.

Lemma 14. If ¢ = O(AM") with A = 2 for some n > 1 and e AEEG 4
uniformly integrable then
d

(i) A'E(e™*)5) 5 0 as A — 0.

. —20+Kd+6

(i) B{(SEk(pi = PO Goiiteintn s = Gw)du)} — 0 as A — 0 where p;,
P; are as defined in Lemma 2 and G(u) = (14 e~ %)L,

(iii) E{T*(z0)(ZEx(pi = P))} = 0 as A — 0.

(iv) B{ATIT (20) [ i st 5(1 = G(w))du} — 0 as A — 0 where T* (o) is
as defined in Lemma 12.

Proof. To prove (i), note that
A~1e=2Kd/B _ A~1,-2k"d/B —2(K~k*)d/
If c = O(A*7) then A~le™2*'5 = o(A7-1),

From Lemma 12, we have (K — k*)d *3 0 as A — 0 and this implies
—-2(K—k*)% as. . -1 —2K% aus. .
e # — 1as A — 0. This shows that A~e™*" 8 23 0 as A — 0. Since
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o~ 2UK- 2K

k*)4 . . . —2K4 . . .
)5 is uniformly integrable, A=le™“® 5 is uniformly integrable and there-

fore J
A—lE(e““{E) —~0as A —0.

Parts (ii), (iii) and (iv) can be shown by using Cauchy-Schwarz inequality, noting
2
the fact that E(\/a S Ek(pi - Pi)) < oo0.

Proof of Theorem 4.2. From lemmas 12 and 13, we obtain that A™'Rg — 1
as A — 0 and A7 1Ry« — 1 as A — 0. These results establish that %}f{- — 1 as
A — 0.

Acknowledgement
We thank the referees for some helpful comments.

References

Anscombe, F. J. (1953). Sequential estimation. J. Roy. Statist. Soc. Ser.B 15, 1-29.

Berkson, J. (1955). Maximum likelihood and minimum chi-square estimates of the logistic func-
tion. J. Amer. Statist. Assoc. 50, 130-162.

Brown, B. W. (1961). Some properties of the Spearman estimator in bioassay. Biometrika 48,
293-302.

Chmiel, J. J. (1976). Some properties of Spearman-type estimators of the variance and per-
centiles in bioassay. Biometrika 63, 621-626.

Cornfield, J. and Mantel, N. (1950). Some new aspects of the application of maximum likelihood
to the calculation of the dosage response curve. J. Amer. Statist. Assoc. 45, 181-210.

Church, J. D. and Cobb, E. B. (1973). On the equivalence of Spearman-Karber and maximum
likelihood estimates of the mean. J. Amer. Statist. Assoc. 68, 201-202.

Epstein, B. and Churchman, C. W. (1944). On the statistics of sensitivity data. Ann. Math.
Statist. 15, 90-96.

Finney, D. J. (1952). Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve,
2nd edition. Cambridge University Press, London.

Govindarajulu, Z.and Lindqvist, B. H. (1986). Asymptotic efficiency of the Spearman estimator
and characterizations of distributions. Ann. Inst. Statist. Math. 39, 349-361.

Govindarajulu, Z. (1987). The Sequential Statistical Analysis of Hypothesis Testing, Point and
Interval Estimation, and Decision Theory. American Sciences Press, Columbus, Ohio.

Govindarajulu, Z. (1988). Statistical Analysis of Bioassay. Karger Publishing Co., New York.

Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and its Application. Academic
Press, New York.

Kirber, G. (1931). Beitrag zur kollaktiven Behandlung pharmakologischer Reihenversuche.
Arch. Ezxp. Path. Pharmak. 162, 480-487.

Miller, R. G. (1973). Nonparametric estimators of the mean tolerance in bioassay. Biometrike
60, 535-542.



324 A. NANTHAKUMAR AND Z. GOVINDARAJULU

Nanthakumar, A. (1989). On sequential Spearman-Karber estimator for logistic tolerance dis-
tribution. Ph.D. thesis, University of Kentucky.

Ray, W. D. (1957). Sequential confidence intervals for the mean of a normal population with
unknown variance. J. Roy. Statist. Soc. Ser.B 19, 133-143.

Robbins, H. (1959). Sequential estimation of the mean of the normal population. In Probability
and Statistics (Harold Cramer volume), 235-245. Almquist and Wilesall, Uppsala, Sweden.

Shiryayev, A. N. (1984). Probability. Springer-Verlag.

Spearman, C. (1908). The method of ‘right and wrong cases’ (‘constant stimuli’) without Gauss
formulae. Br. J. Psychol. 2, 227-242.

Starr, N. (1966). The performance of a sequential procedure for the fixed-width estimation of
the mean. Ann. Math. Statist. 37, 36-50.

Wolfowitz, J. (1947). The efficiency of sequential estimates and Wald’s equation for sequential
processes. Ann. Math. Statist. 18, 215-230.

Woodroofe, M. (1982). Nonlinear Renewal Theory in Sequential Analysis. CBMS-NSF Regional
Conference Series in Applied Mathematics, Vol. 29.

Department of Statistics, University of Tennessee at Martin, Martin, TN 38238, U.S.A.
Department of Statistics, University of Kentucky, Lexington, KY 40506, U.S.A.

(Received March 1991; accepted July 1993)



