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PENALIZED LIKELIHOOD REGRESSION:
A SIMPLE ASYMPTOTIC ANALYSIS
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Abstract: We conduct a simple asymptotic analysis of penalized likelihood regression
for the analysis of data from exponential families. The convergence rates in terms
of the integrated symmetrized Kullback-Leibler distance and a related mean square
error are obtained.
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1. Introduction

Consider independent observations (zi,¥;), i = 1,...,n, where y|z follows an
exponential family distribution with density exp{(yn(z) —b(n(z)))/a(¢) +c(y, ¢)}
and z has a density f(z) > 0 on a generic domain X. The a(¢), possibly known
or otherwise considered as a nuisance parameter, is assumed common to all the
observations, finite and positive. Of interest is the estimation of the function
n(z). The penalized likelihood method estimates n(z) by the minimizer of the
functional L

= =3 {wm(@s) — () } + (/2T (), (1)

1=1

in a Hilbert space H in which J(n) is a square (semi) norm. Evaluation [z](-) =
(-)(z) is assumed to be continuous so that the first term in (1) is continuous
in n, and the null space of J(n) should have dimension less than n so that the
unconstrained model space dimension does not exceed the number of data. The
first term in (1) is proportional to the minus log likelihood, which seeks a good fit
of n to the data, the second term penalizes the roughness of the fit measured by
J(n), and the smoothing parameter A controls the tradeoff. The minimizer of (1)
can be shown to exist whenever the maximum likelihood estimate of n uniquely
exists in the null space of J (cf. Gu and Qiu (1993, Theorem 4.1)).

A recent review of penalty smoothing, or smoothing splines, can be found
in Wahba (1990). The specific formulation (1) for the analysis of data from ex-
ponential families is proposed and studied by O’Sullivan, Yandell and Raynor
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(1986). See also Silverman (1978) and Green and Yandell (1985). A generic algo-
rithm with automatic smoothing parameter selection is proposed by Gu (1990).
Approximate Bayesian confidence intervals are illustrated in Gu (1992a). More
discussion concerning the empirical choices of A can be found in Gu (1992b). An
asymptotic analysis of penalized likelihood estimation, of which (1) is a special
case, is carried out by Cox and O’Sullivan (1990).

By standard exponential family theory (cf. McCullagh and Nelder (1989,
§2.2.2)), E(ylz) = b(n(z)) = p(z) and var(ylz) = b(n(z))a(¢) = v(z)a(s). We
shall denote the true functions 7, 4 and v by a subscript 0, and the estimates
by a hat (") on top. The symmetrized Kullback-Leibler distance between two
probability densities f and g is defined by Eflog(f/g) + E4log(g/f), which is
always positive for f # g. When a(¢) is known, it is easy to verify that the
symmetrized Kullback-Leibler distance between the true conditional distribution
and the estimate at z, parameterized by no(z) and #(z), is {(# — no)(z)(& —
wo)(z)}/a(@). The weighted average

/X (5 = m0) (@ — po)f /a(®) dz 2)

defines a natural measure for the precision of the estimation of 7y by 7, where the
weight function f(z) is the proportion of data allocated to the neighborhood of
z. When a(¢) is unknown, (2) is the average symmetrized Kullback-Leibler dis-
tance between the distributions parameterized by {7j(z), a(¢)} and {no(z), a(¢)}.
Since a(¢) is a nuisance parameter, (2) remains a reasonable measure for the
discrepancy between 7 and ng. Note that (7 — no)(& — uo) is approximately equal
to (& — po)?vy 1 the mean square error in the mean space of y adjusted by its
variance, and that this approximation is exact for a Gaussian likelihood. For
notational simplicity, we shall set a(¢) = 1 in (2) and elsewhere, and this will not
impair the generality of the convergence rate calculation.

The purpose of this article is to conduct a simpler asymptotic analysis of (1).
In contrast to the super generic theory of Cox and O’Sullivan (1990) which pro-
vides unified convergence rates in a class of functional space norms under several
different stochastic structures, we concentrate on the specific distance (2) derived
naturally from the specific stochastic structure in regression. To compensate for
the loss of generality, we are able to trim the lengthy intermediate analyses and
less comprehensible regularity conditions, hopefully making the structure of the
problem transparent and the theory accessible to a broader audience. The ap-
proach we follow parallels that in Gu and Qiu (1993) in an analysis of penalized
likelihood density estimation, and has its root in Silverman’s (1982) earlier work.

As a running example in our analysis we consider cubic spline logistic re-
gression on a domain X = [0,1]. Binary responses y; are observed with co-
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variates z;, where y|z is Bernoulli with P(y = 1|z) = u(z) = €7/(e" + 1),
n = log{u/(1 — )}, v = u(l — p) = e"/(e" +1)?, and a(¢) = 1. J(n) = [y i’ dz
and H = {n: J(n) < oo}. The null space of J is the space of linear polynomials,
of dimension 2. It can be shown that evaluation is continuous in H (cf. Wahba
(1990)). A penalized likelihood estimate exists whenever the maximum likelihood
estimate of the linear logistic model exists.

2. Asymptotic Analysis
2.1. Smoothness assumptions

The quadratic form V(n) = [y n*vofdz defines a normed distance V(7 — 70)
which approximates (2), noting that i(n) = v. V() is an ordinary quadratic
norm, and the smoothness defined by J will be characterized by an eigenvalue
analysis of J with respect to V. In what follows we shall use V(,-) and J(:,)
to indicate the (semi) inner products associated with the square (semi) norms V
and J. '

A bilinear form B is said to be completely continuous with respect to another
bilinear form A, if for any € > 0, there exist finite number of linear functionals
l1,...,l; such that lj(n) = 0, j = 1,...,k, implies that B(n) < €A(n); see
Weinberger (1974, §3.3).

Assumption A.l. V is completely continuous with respect to J.

Under A.1, using Theorem 3.1 of Weinberger (1974, p.52), it can be shown that
there exist ¢, = H and 0 < p, 1 00, v = 1,2,..., such that V(¢,,¢,) = bup
and J(¢y, du) = pubyu, where 6, is the Kronecker delta; see, e.g., Gu and Qiu
(1993, §5). The notion of smoothness is characterized by the rate of growth of
Py

Assumption A.2. p, = c,v", where r > 1, ¢, € (61,02), and 0 < By < B2 < o0.

Intuitively, A.1 implies that A\J in (1) restricts the estimate to an effectively
finite dimensional space in terms of the V norm, and A.2 specifies the rate at
which the effective model space dimension is expanded as A — 0.

For cubic spline logistic regression, A.1 and A.2 are satisfied when V' is equiv-
alent to the Ly norm fol n?dz, and r = 4 in A.2 (cf. Utreras (1981), Silverman
(1982)).

2.2. Linear approximation

Assume no € H. Let m be the minimizer of the quadratic functional

= L35 (e - molen(@n} + /DY (0 = m) + /DT). ()
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Write n = Y, nv¢» and mo = ., Mv,0¢y, where , = V(n,¢,) are the Fourier
coefficients of  with basis ¢,. Substituting these into (3) and solving for #;, one
obtains 7,1 = (B + 70)/(1+ Ap,), where B, = (1/n) Xy (i — po(wi))du(a:).
It is easy to verify that EB, = 0 and EB2 = n~!. The following theorem can
then be proved parallel to Theorem 5.1 of Gu and Qiu (1993); see also Silverman
(1982, §6).

Theorem 1. Under A1l and A2, asn — o0 and A\ — 0, V(g —mo) =
Op(n~ A" 4 X) and AJ(m1 — mo) = Op(n™IA7Y" + X)),

2.3. Approximation error and main result
We need two more assumptions in further analysis.

Assumption A.3. For 7 in a convex set By around 79 containing 7 and 7,
Jey, ¢z € (0,00) such that civg(z) < v(z) < covo(z) uniformly on X.

Since (7 — m)(& — p1) = (A — M)*Vai+(1-a)y Where a € [0,1], A.3 leads to the
equivalence of the V distance and the symmetrized Kullback-Leibler distance in
By. It is also worth noting that A.3 is trivial in penalized least squares regression
for Gaussian data where v = 1.

Assumption A.4. 3¢z < oo such that [, ¢2 zvgfd:z: <ecs, Yy

Note that [, ¢2vofdz = 1. A.4 will follow when (¢,,vé/2)(ac) have bounded

kurtosis under the density f, especially when qS,/vé/ 2

X.

are uniformly bounded on

Theorem 2. Under A.1-A 4, as A — 0 and nA?/™ — oo, V(fj—m) = Op(n_l)\“l/r
+A).

The proof of this theorem is given in §2.4.

Theorem 3. Under A.1-A.4, as A — 0 and nA?™ — oo, V(ij—mp) = Op(n_l)\_l/"
+2) and [y(i — po)(d — no)fdz = Op(n™IAH7 4+ )).

Proof. Use Theorems 1, 2, and Assumption A.3.

For cubic spline logistic regression, A.3 is satisfied when p(z) is uniformly
bounded away from 0 and 1 on z € [0, 1] for members of By. Direct verification
of A.4 is rather inconvenient if not impossible, since explicit formulas for ¢, are
in general not available. A suggestive special case does exist, however, when
vof o 1 and when H is reduced to the periodic restriction of { : J(n) < oo},
which has sin(27uz) and cos(2wuz) as the basis and hence satisfies A.4 when vg
is bounded. '
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2.4. Proof of Theorem 2

Write (1) as L(n)+(\/2)J(n) and define Ay n(@) = L(n+ah)+(A/2)J (n+ah).
It can be shown that

a0 = = 3 {wh(e) = a0z} + MG, )
Setting n = 1 and h = 7 — 11, one obtains
0 = Agj-n(0)
-2 ; {4 = (@) — @) (7 — ) (@)} + AT @A —m). (4)

Similarly, denote (3) by Li(n) + (A/2)J(n) and define B, n(a) = L1(n + ah) +
(A\/2)J(n + ah). It follows that

B, 1(0) = —% > {yih($i) - Mo(fvz’)h(-’ﬂi)} +V(n—mo, h) + AJ(n, h).
=1

Hence,

0 = Bp5-m(0)
= 13 {wlh - m)(@i) - mo(e)(h - m)(e0))
i=1
+V(m —n0,9—m)+ AJ(m, 19— m). (5)

On equating (4) and (5), and after some algebra, one obtains

~ S~ a0 = (@) + AT = m)

i=1
= Vi = m0,0 = m) = - 3 = 4)(@)( = m)(ai). ()
i=1
By A.3,
Gt S - mP (@) < = 3@ - m)E)i-mE). ()
i=1 i=1

From the Fourier expansion of % — 7,

_71;2(1“7 —m)*(z:)vo(zi) = V(A —m)
1=1
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= w1 )( nu,1){ quu (z:)pu(zi)vo(z:) — /¢U¢,,vofdz}

IA

[ZZ (14 Xpy)~ 1(1 + ’\p# { Z(bu xz)(»bu(xz)vo(-’l?z)

1/2

2-1/2
- / ¢V¢#v0fd$} jl [Z Z(l + /\pu)(l + /\pu)(ﬁu - nu,l)z(ﬁu - 77/1,1)2]
= Op(n 12X YTY(V + A)(5 — m)
= op(1)(V + AJ)(7 — m), (8)

where the Cauchy-Schwarz inequality, A.4, and the fact that 3, (1 4+ Av")"! =
O(A~Y/™) (cf. Gu and Qiu (1993, Lemma 5.2)) are used. Combining (7) and (8),
a lower bound for the left-hand-side of (6) is given by

(exV + A7) = m)(1+ 0p(1). ©)
On the right hand side of (6), A.3 leads to
L~ o) (@)~ () = €2 3o~ m) (@) = (e, (10)
z_l i=1

where ¢ € [e1, ¢p]. Similar to (8), it can be shown that

% ;(771 = 10)(2:)( — m)(z:)vo(z:) — V(m — no,§ — m)
= 0p()(V + A2 (m = o) (V + A2 (5 = my). (11)
Combining (10) and (11), an upper bound is given by
1=V (11 =m0) V2 (h—m1) 0, (1)(V +AT) 2 (1 = m0) (V +AT) 2 (—m1). (12)
Joining (9) and (12) and applying Theorem 1 yield the result of the theorem.

3. Discussion and Concluding Remarks

The essence penalty smoothing, bias-variance tradeoff through controlling
the effective model space dimension, is reflected in the smoothness assumptions
A.1 and A.2. These assumptions are intrinsic to practical penalty smoothing and
can usually be verified when V is equivalent to [, n’dz since the latter is usually
completely continous with respect to J. The Fourier analysis based on A.1 and
A.2 is the key to our analysis. Messy technicalities are effectively obviated by the
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regularity conditions A.3 and A.4, which, in general, may not be verifiable from
more primitive conditions. These assumptions, however, appear highly plausible.
When vy is uniformly bounded from below and above, A.3 will fail to hold only
when n; and 7 systematically move away from 79 as n — 00, S0 it appears mild.
Although the explicit forms of ¢, are, in general, not available, we do know that
V(¢,) = 1 and that ¢, represent more wiggliness or higher frequencies as v — o0;
thus the magnitude of ¢, is unlikely to grow indefinitely, and hence A.4 looks
reasonable.

In the foregoing development, the smoothness assumptions are made on the
canonical parameter 7 of the exponential family likelihood. Since smoothness
assumptions are much less restrictive than parametric assumptions, the choice
of modeling parameter, or link, as known in the generalized linear models litera-
ture, has much less impact on penalized likelihood regression than on parametric
regression. The choice of the canonical parameter as modeling parameter has sev-
eral advantages: First, there is, in general, no numerically awkward constraint on
the possible values that 7 can take; second, (1) is guaranteed to be convex; third,
a convenient and effective empirical choice of ) is available and theoretically justi-
fiable (cf. Gu (1990, 1992b)); and fourth, a simple asymptotic analysis is possible
as in this article. If circumstance demands a modeling parameter 6 other than
the canonical parameter 7, however, the techniques used in this article may still
be applicable in a similar analysis with a V(6) defined by [y 6%(dn/d6)}vo fdz,
but the conditions and proofs could become much messier.

Acknowledgements

Chong Gu’s research was supported by NSF grants DMS-9101730 and DMS-
9301511. Chunfu Qiu’s research was supported by a David Ross grant at Purdue
University. The authors thank a referee for comments which helped to improve
the presentation.

References
Cox, D.D. and O’Sullivan, F. (1990). Asymptotic analysis of penalized likelihood and related
estimators. Ann. Statist. 18, 1676-1695.

Green, P. and Yandell, B. (1985). Semi-parametric generalized linear models. In GLIM85:
Proceedings of the International Conference on Generalized Linear Models. Lecture Notes
in Statist. 32 (Edited by R. Gilchrist), 44-55, Springer-Verlag, New York.

Gu, C. (1990). Adaptive spline smoothing in non Gaussian regression models. J. Amer. Statist.
Assoc. 85, 801-807.

Gu, C. (1992a). Penalized likelihood regression: A Bayesian analysis. Statistica Sinica 2, 255-
264.

Gu, C (1992b). Cross-validating non Gaussian data. J. Comput. Graph. Statist. 1, 169-179.



304 CHONG GU AND CHUNFU QIU

Gu, C. and Qiu, C. (1993). Smoothing spline density estimation: Theory. Ann. Statist. 21,
217-234.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd edition. Chapman
and Hall, London.

O’Sullivan, F., Yandell, B. S. and Raynor, W. J. (1986). Automatic smoothing of regression
functions in generalized linear models. J. Amer. Statist. Assoc. 81, 96-103.

Silverman, B. W. (1978). Density ratios, empirical likelihood and cot death. Appl. Statist. 27,
26-33.

Silverman, B. W. (1982). On the estimation of a probability density function by the maximum
penalized likelihood method. Ann. Statist. 10, 795-810.

Utreras, F. D. (1981). Optimal smoothing of noisy data using spline functions. SIAM J. Sci.
Statist. Comput. 2, 349-362.

Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference
Series in Applied Mathematics, Vol. 59. SIAM, Philadelphia.

Weinberger, H. F. (1974). Variational Methods for Eigenvalue Approzimation. CBMS-NSF Re-
gional Conference Series in Applied Mathematics, Vol. 15. SIAM, Philadelphia.

Department of Statistics, Purdue University, West Lafayette, IN 47907, U.S.A.
Department of Statistics, University of Illinois, Champaign, IL 61820, U.S.A.

(Received June 1992; accepted August 1993)



