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Abstract: We develop analytical approximations to bootstrap distribution functions
of statistics that are smooth functions of vector means. In particular, our technique
is applicable in the case of bootstrap inference for a population mean, for a Studen-
tized mean, and for other more complex situations, such as inference for population
variances or correlation coefficients. The approximations are based on the application
of a tail probability approximation of DiCiccio and Martin (1991) to a saddlepoint
approximation for the joint density of several means. Our method extends the work
of Davison and Hinkley (1988), who proposed the use of saddlepoint methods to re-
place bootstrap resampling primarily in the case of linear statistics, and the work of
Daniels and Young (1991), who considered the problem of inference for a Studentized
mean. Our technique produces accurate approximations over the entire range of the
distribution function and is easy to implement. It has two critical advantages over
standard resampling techniques: it can yield significant computational savings; and
it is more accurate than standard resampling approaches based on 5,000 or 10,000
resamples. We illustrate these points by applying our technique to estimate the boot-
strap distribution of a bivariate correlation coefficient for both real and simulated
data; and the method performs well in each case. Finally, we illustrate the power and
flexibility of our technique in the very complex problem of estimating the bootstrap
distribution of a Studentized, transformed correlation coefficient.

Key words and phrases: Asymptotic approximations, correlation coefficient, cumulant
generating function, Fisher’s z transformation, iterated bootstrap, moment generating
function, normal approximation, pivotal statistic, resampling, simulation, Studentized
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1. Introduction

Although bootstrap procedures often provide accurate inference in complex
problems, they are typically very computationally intensive. Considerable at-
tention has been focused recently on the development of analytical methods for
approximating bootstrap distributions that do not require extensive and time-
consuming simulations. Davison and Hinkley (1988) proposed the idea that sad-
dlepoint approximations could be used to replace bootstrap resampling in the
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case of an unstudentized sample mean. They developed analytical approxima-
tions to bootstrap distribution functions that worked well when the statistic of
interest was linear, or if there was identification with a linear estimating equation.
However, their methods met with limited success when dealing with non-linear
statistics. Daniels and Young (1991) extended the work of Davison and Hinkley
to the problem of approximating the density and tail probabilities of a Studen-
tized mean. Their method involves, first, development of a bivariate saddlepoint
approximation, and then use of a non-linear transformation to derive the joint
density of the Studentized mean and another statistic. The marginal density and
tail probabilities of the Studentized mean are then approximated by successive
numerical integrations or Laplace approximations. In principle, their method
could be applied to more complicated statistics than the Studentized mean, but
in practice it is very cumbersome to use, even in the relatively simple case of a
correlation coefficient.

In this paper, we propose a general method of analytical approximation to
bootstrap distribution functions for statistics that are expressible as smooth func-
tions of vector means. The method is easy to apply and has two critical advan-
tages over standard bootstrap resampling algorithms. First, bootstrap calcula-
tions based on large numbers of resamples are computationally burdensome, but
our method can lead to substantial computational savings. Second, our method
provides highly accurate approximations to the entire distribution function, even
in the extreme tails. In particular, we demonstrate that our analytical approxi-
mation is closer (in either an L% or L sense) to an “exact” bootstrap distribu-
tion function evaluation than standard bootstrap distribution function estimates
based on 5,000 or 10,000 resamples. Moreover, our method is flexible in that it
can deal with problems ranging from the very simple (e.g. Studentized mean), to
a little harder (e.g. correlation coefficient), to the very difficult (e.g. Studentized
correlation coefficient).

The technique introduced here is useful whenever accurate approximations
to distribution functions are required. In particular, the approximation leads
to simple methods for constructing bootstrap and iterated bootstrap confidence
intervals. The latter confidence intervals are of particular interest, as iterated
bootstrap computations are often prohibitively expensive. DiCiccio, Martin and
Young (1992a,b) investigated the use of analytical approximations, similar to
those introduced here, to replace the inner level of resampling in an iterated
bootstrap computation. It should be stressed here that our aim in this paper is
quite distinct from that pursued in the problem of constructing accurate two-sided
confidence intervals. The accuracy of distribution function approximations in the
latter setting is judged solely by the extent to which they ultimately produce two-
sided confidence intervals with good coverage properties. Indeed, it turns out in
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DiCiccio, Martin and Young’s (1992a, b) development of that methodology that
cruder approximations than those discussed here suffice. Their approximations
are related to those given here in that they correspond essentially to the leading
term of our more accurate distribution function approximations, and they use
only approximate solutions to the system of saddlepoint equations that arise in
our development. In this paper, we present the full, accurate approximation to
the bootstrap distribution function.

In Section 2, we give a theoretical development of the technique. Section 3
contains the results of some numerical investigations of the technique in the case
of a correlation coefficient from two data sets: Efron’s (1982) Law School data
relating LSAT and GPA scores of students entering 15 American law schools,
and a data set simulated from a bivariate log normal distribution. A simulation
study was also conducted to assess the accuracy of our technique against that of
standard bootstrap resampling algorithms. The power of our technique is demon-
strated further in Section 4, by its application in the complex circumstance of a
Studentized, transformed correlation coefficient. Some conclusions and remarks
are presented in Section 5.

2. The Technique

Suppose we are interested in obtaining a bootstrap estimate of the sam-
pling distribution of an estimator of a parameter 6 that is expressible as a
smooth function of vector means. Assume that the data consists of n inde-
pendent and identically distributed observations of a d-dimensional random vec-
tor X = (X1,...,Xq) and denote the jth observation of X by (Xu;,.. Xd])
j=1...,n Let fi,..., fx be real-valued, measurable functions on IR and
define

ZJ = [fl(le)'"a-de)a"'7fk(X1j7~'-a-de)] = [Z1J,,Zk]], ] =1,...,n,

and

= [71, e ,_Zk] =n"! Z Z;.
Jj=1

Denote by p the mean vector [E(Z1), ..., E(Zx)] = [E{fi(X)},..., E{fi(X)}].
Let 8 = g(u), where g is a real-valued functlon having continuous gradlent that
is non-zero at Z, and suppose that 8 is estimated by 6 = g(Z). Note that 8 could
be a sample mean, a Studentized mean, or another more complex statistic, such
as a sample variance or correlation coefficient. For instance, 8 is the bivariate

correlation coefficient and @ is the bivariate sample correlation coefficient if one
takes d = 2, k = 5, f1(X1j, X25) = X1j, f2(X1j, Xo;) = X2j, fa(Xnj, X25) = X3;,
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f4(X13,X23) = X3, f5(X15, X25) = X15X25, and ¢(Z) = (Zs — Z:1Z2){(Zs -
Z1)(Zs - Z3)} 3.

Bootstrap inference for 6 can be made by resampling observations with re-
placement from the original n observations of (X;,...,Xy). Formally, n obser-
vations correspond to a d-dimensional random vector X* = (X7,..., X}), where
the jth observation of X™* is denoted by (X{j,...,X{’i*j), j =1,...,n, and the
resamples are chosen according to the rule

P{Xioo, X2) = (Xijy o, X)) (Ximy oo, Xam), m=1,...,n} =n~,
1

Put

Zi = [A(XGh o X3, Fe(Xi -, X)), I=1,...,n,

and .
7 =7, 7] =Y 7.
1=1

A common bootstrap argument for constructing inference about 4 is that
the sampling distribution of 6 = 9(Z) can be approximated by the distribution
of 6* = g(Z") conditional on Z. Here, we propose that bootstrap resampling
to approximate the sampling distribution of § can be avoided by applying a
tail probability approximation discussed by DiCiccio and Martin (1991) to a
saddlepoint approximation for the joint density of —Z_I, . ,7;.

We first review DiCiccio and Martin’s (1991) tail probability approximation.
Consider a continuous random vector Y = (Y7, ...,Y%) having probability density
function of the form

fr(y) < b(y) exp{l(y)}, v = (v1,-.., k) (1)

Suppose that the function £ is maximized at § = (91,...,9x) and that for j =

Lk, Y; —g; s Op(n™ 2) as n — oo. For each fixed y, assume that £(y) and
its partial derivatives are O(n) and that b(y) is O(1). Now consider a random
variable W = g(Y’), where the real-valued function g has continuous gradient
that is non-zero at . To calculate an approximation to the tail probability
P(W < w), let § = §(w) be the value of y that maximizes £(y) subject to the
constraint g(y) = w. Let

r(w) = sgnfw - 9(@)}(216) - i)
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and assume that 7 is an increasing function of w. Approximations to the distri-
bution function of W can be based on normal apprommatlons to the distribution
of R = r(W). More formally, provided w — g(§) is O(n”~ 2)

P(W < w) = &(r) + O(n"?), (2)

where r = r(w) and @ is the standard normal distribution function.

DiCiccio and Martin (1991) provide a more accurate approximation to the
distribution of R. Put £(y) = 8€(y)/dy:, Li;(y) = 8%*4(y)/0v:idy;, 9:(y) =
89(y)/By:, and gi;(y) = 8%9(y)/0y:dy;, 4,5 =1,...,k. Define

p{y( w)}
gp{9(w)}

where p is any index such that g,{j(w)} is non-zero. Such an index p always
exists by virtue of the assumptions about g. Denote the matrix {Ji; (w)} by J(w)
and its inverse J(w)~! by {J¥(w)}. Finally, let

Ji(w) =~ {gw)} + 2L gt} di=1,k,

-1
2

k k
Q) = 33 T (w)gdiw)}ei{iw)}, D(w) = {Qu)IwW)/II@)} *.

=1 j=1

Then, the improved tail probability approximation is

05w} B . o 3
POV < w) = 8() + ()3 + D) EELL TS| o h), @)

where r = r(w), ¢ is the standard normal density function, and j is any index
for which g;{§(w)} does not vanish.

Note that the random vector Y used in the above construction is assumed
to be continuous, whereas we have in mind a random vector 7" that is discrete;
indeed, the distribution of Z" given Z1,...,Zy, has (2" ) atoms. However, the
size of the largest atom of the dlstnbutlon of Z° given Zi,...,Z, shrinks ex-
ponentially qulckly to 0 as n — oo. Consequently, even for quite small n, the
distribution of Z" given Z,...,Z, can be regarded as continuous for practlcal
purposes. It is therefore convement to refer to the “joint density of Z3,.. A
given Z1,...,Z,” as the density corresponding to a continuous approx1mat10n to
the joint distribution of _Z—I, .. 2y, given Z1,..., Zn.

In order to apply tail probablhty approximation (3) in the bootstrap context,
an approximation of the form (1) is required to the joint density of VA A
given Z1,...,Zn. The approach of Daniels and Young (1991) suggests using a
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saddlepoint approximation to this joint density. The cumulant generating func-
tion of Z31,..., 2}, given Z1,...,2, is

K(Ti,...,Tx) = log [E{exp(TiZ}; + -+ TkZ3)| 21, .., Za}]

n
= log {n’lzexp(Tlle +---+Tkaj)}. (4)
Jj=1
The usual saddlepoint approximation to the density of 7{, e 7,; given Z1,...,2Zn

1S

k
i’fn(gla teey Ck) 158 |A(C17 cee )Ck)l_% exp l:n{K(Tlv B 7Tk) - Zﬁgl}:], (5)
=1

where

KTI(TI,---,Tk)=Cl, l=1,...,k, (6)
are the saddlepoint equations, K7, = 8K(Th,...,Tx)/0T;, and A = {KT,TM(Tl,
..., T%)} is the k x k matrix of second-order partial derivatives Kgy7, (11, ..., k)

= 8®K(Ty,...,T})/0Ti0T, I,m = 1,...,k, evaluated at Ty,...,Tx. The cu-
mulant generating function (4) has a very simple form, so its derivatives Kr,,
l=1,...,k, and Kqy1,,, [, m = 1,...,k, are easy to calculate algebraically and
also very easy to compute. General reviews of saddlepoint methods are given by
Barndorff-Nielsen and Cox (1979, 1989) and Reid (1988).

Approximations to P(§* < w|Zi,..., Zy) can be obtained by applying tail
probability approximation (3) to the approximate density (5) by putting ¥ =
Zy =C=(Q0) W =6 = g(Y), by) = |AQ)I", and £(y) =
n{K(T,... %) — Sk Ti¢i}. Tt is easily verified that the saddlepoint approxi-
mation provided by (5) satisfies the conditions assumed on the density (1).

3. A Simple Example: The Correlation Coefficient

We illustrate the methodology presented in Section 2 for the case of inference
for a bivariate correlation coefficient. The data consists of n pairs (X113, X21),.. .,
(X1n, X2n). In an obvious notation,

Z = [X1,X2, X2, X3, X1 X2| = |21, 22, Z3, 24, s
The bivariate sample correlation coefficient is given by
Zs — Z12,
{(Zs-71)(Z4 - 2,)}

(S
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In this case, the cumulant generating function of Z3y,..., Zx; given Zy,..., Ln 18
K(Ty, T2, T3, T4, T5)

= log {n—l Z exp (Tl.le -+ Tzij + T3X12j + T4X22j + TSleXZj)}-
Jj=1

The derivatives and second derivatives of K are simple to calculate.

We consider two examples. The first involves the correlation coefficient for
Efron’s (1982, p.10) Law School data where the two variates are average LSAT
and GPA scores for the 1973 entering classes of 15 American law schools. The
second example uses 50 data points simulated from a bivariate log normal distri-
bution with true correlation coefficient 0.378. For these examples, the estimated
correlation coefficients were 0.776 and 0.438, respectively. In each case, tail prob-
ability approximations (2) and (3) for ¢* given Z1, ..., Zn were computed, as well
as simulated true values. Most calculations involved in computing approximation
(3) in each case were straightforward, merely requiring knowledge of the deriva-
tives of K and g. As already mentioned, the derivatives of K are straightforward
to compute, even in settings much more complex than this; see Section 4. In
simple problems, such as this, the derivatives of g are also easy to compute alge-
braically, but this will generally not be feasible. In complex problems, there are
two possible solutions: use of numerical derivatives; or use of computer algebra
to automate the computations. We have used both of these ideas with success.
In this example, derivatives of g were computed algebraically. The solution of
the saddlepoint equations (6) as part of the constrained maximization of £(¢)
subject to g(¢) = w poses the only real numerical challenge in constructing our
approximations. The constrained maximization problem can be reduced alge-
braically to that of solving a system of 11 nonlinear equations in 11 unknowns.
The NAG subroutine CO5NCF was readily used to solve the system of equations,
with no significant problems. The solution of the saddlepoint equations in the
unconstrained maximization of £(¢) is known. In that case, = =T5=0.
Values close to these can be used as starting values in the constrained maximiza-
tion step. Finally, NAG subroutines FO1AAF and FO3AAF were used to find the
inverse and determinant of J({) respectively.

The results of our study are reported in Table 1. The simulated true values
in the case of the Law School data were each computed using 5,000,000 simula-
tions and the simulated values obtained in the case of simulated lognormal data
were each calculated using 100,000 simulations. In both cases, tail probability
approximation (3) performs very well, remaining close to the simulated true val-
ues even in the extreme tails of the distribution. Approximation (2), the naive
normal approximation to the distribution of R = r(6*), does not perform well
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in the tails, although it seems adequate in the center of the distribution. It was
apparent from our numerical investigation that larger sample sizes, say 30 to
90, are required for the approximation to be accurate when the data come from
heavy-tailed distributions such as the log normal. Notably, our approximation
did not perform well when the data comprised a sample of size 15 from a bivari-
ate log normal distribution, but improved substantially when the sample size was
increased to 30 and subsequently to 50. Unreported simulations suggest that for
lighter-tailed distributions, such as the bivariate normal, smaller sample sizes,
say 10 to 15, are sufficient to ensure that our approximation is highly accurate.

A significant practical advantage of our technique is its accuracy compared
to standard bootstrap algorithms. Table 1 suggests that our approximation is
consistently close to bootstrap distribution function estimates based on very large
numbers of resamples, which, for all practical purposes, can be regarded as ex-
act. How does our method compare with more common bootstrap approaches,
which employ 5,000 or 10,000 resamples? To address this question, we carried
out a large simulation study of distribution function estimates using our method
(denoted Fan), and bootstrap approximations based on 5,000 and 10,000 resam-
ples (denoted }7"5000 and F’loogo, respectively). In each case, accuracy is assessed
relative to an “exact” bootstrap distribution based on 1,000,000 resamples. For
each of four underlying bivariate populations, G, and each of three sample sizes
n = 20,30 and 50, the following simulation was carried out:

(1) Generate a data set of size n from G;

(2) By drawing 1,000,000 resamples, evaluate the “exact” bootstrap distribution
function, F', of the correlation coefficient, for each point in a grid of 201
equally-spaced points y1,...,y20 in [~1, 1];

(3) Evaluate'ﬁ’an, and, by resampling, bootstrap estimates 13"5000 based on 5000
resamples, and Flogoo based on 10,000 resamples;

(4) For each of F = ﬁ’an, ﬁ'5000, and Fwooo, compute the L? and L*® error mea-
sures

em(F) = Y {F(w) - Fy)}'s

erry(F) = Sip lﬁ‘(yi) - F(yi)l,

(5) Repeat steps (1) to (4) 100 times, summing the error measures err; and errs.

The results of the study are given in Table 2. The figures clearly indicate
that the analytical technique enjoys higher accuracy than the resampling tech-
niques based on 5,000 or 10,000 resamples in the majority of situations con-
sidered. Moreover, as the sample size increases, the accuracy of the analytical
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technique improves dramatically, while that of the resampling methods only im-
proves marginally. This phenomenon suggests that the analytical technique 1s
preferable to resampling when sample sizes are moderate, both in terms of ac-
curacy and computational expense, since the computational expense associated
with resampling techniques becomes quickly worse as sample size increases.

The major advantage of using our method to obtain accurate approximations
to bootstrap distribution functions is that it is typically much faster than direct
simulation. Moreover, the computational savings increase dramatically as sample
size increases. Use of our method was faster per distribution function evaluation
than direct simulation based on 100,000 simulations by a factor of about 50 for
the sample of size 15 and by a factor of about 100 for the sample of size 50. In
addition to its accuracy and efficiency, a further advantage of our methodology is
that it avoids the need for the number of resamples to be specified in bootstrap
applications.

4. A More Complicated Example: The Studentized Correlation Coef-
ficient

The bootstrap argument in Section 2 that the sampling distribution of 6
may be approximated by the bootstrap distribution of §* is only reasonable if the
statistic @ is either an exact pivot or pivotal to a high order of approximation.
For exarhple, in the case of inference for a population mean, more accurate re-
sults may be obtained if inference is based on the Studentized mean (X — u)/&,
where & is an estimate of the variance of X, rather than on X or X — p. Con-
sequently, it is important that the function g be chosen carefully, so that g(Z) is
approximately pivotal. Of course, choosing 6 to represent a Studentized statistic
both complicates the form of g and increases the dimension of Z, the vector of
means necessary for the computation of 6. The latter consideration has the most
important ramifications for our method because it implies also an increase in the
dimension of the system of equations arising in the constrained maximization
step.

Suppose inference for a correlation coefficient is to be based on a Studentized
correlation coefficient. A natural approach in this instance is to work with the
variance-stabilized, z-transformed correlation coefficient,

Z = tanh™1(p),

rather than with p itself, and base inference on the Studentized, transformed
1
coefficient. The variance of n2Z is

- - 1 _ - -1 -
p*(1 - p?) 2{#22#112 +3 (maomzg + Hoskoy + 2z oy )
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- (uswz?oluﬁl + ma#&luﬁl) }, (7)

provided the bivariate moments p;; = E[{X11 — B(X11)} {X21 — E(X21)}], for
t,j =0,...,4, exist; see Kendall and Stuart (1979, p.312). The nonparametric
delta method estimate of this variance is the obvious plug-in estimate of (7).
Let 0 represent the transformed correlation coefficient, Studentized using the
nonparametric delta method estimate of (7). Then, the function g is a function
of the vector of means

Z = [X1, X5, X7, X3, X1 Xp, X2 X2, X1 X3, X7 X3, X3, X3, X3 Xp, X1 X3, XF, X3]

= [Z1,-.., 2]
The cumulant generating function of 73, ..., Zi4, given Zy,..., 2, is
K(Ty,...,Tiyy) = log{ Zexp (ZTZU)}
i=1

Derivatives of K are easily computed algebraically. Derivatives of g necessary
for the computation of (3) are tedious to compute algebraically, so numerical
approximations are preferable in this instance. The primary hurdle to the use of
our technique in this example is the fact that the constrained maximization of
£(¢) subject to the constraint g(¢) = w reduces to the problem of solving a system
of 29 equations in 29 unknowns. Throughout our numerical investigations, the
NAG subroutine COSNCF was used to solve the system of equations without
any significant problems. Of course, the algorithm suffers some loss of efficiency
as the dimension of the system of equations grows, but we still find that it is
competitive with standard resampling schemes while still retaining an advantage
in terms of accuracy.

A numerical study was carried out to assess the accuracy of our technique
for estimating the distribution function of a Studentized, transformed correlation
coefficient. The data we used consisted of pairs of test scores on 31 individuals
reported by Ryan, Joiner and Ryan (1992, p.219). The results of our study are
reported in Table 3. True simulated values were computed using 5,000,000 boot-
strap replications. Despite the complexity of the problem, both the naive normal
approximation (2) and the full approximation (3) perform remarkably well. The
full approximation (3) tracks the simulated values very closely, suggesting that
our technique has considerable utility even in very complex problems.

5. Concluding Remarks

Remark 1. As Daniels and Young (1991) remark, some care should be taken
when using saddlepoint methods in the bootstrap context when the data set
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contains outlying observations. In those cases, our approximations to bootstrap
distribution functions can be inaccurate in the tails and occasionally exhibit local
non-monotonic behaviour. Efron’s Law School Data contains one mild outlier,
but this did not pose a significant problem for the technique.

Remark 2. Our approximations have a natural application in the construction
of approximate bootstrap percentile (or, in the light of Section 4, percentile-
t) confidence intervals. The resulting intervals typically share the properties of
bootstrap intervals formed using resampling. For instance, Efron (1982) notes
that bootstrap percentile intervals are equivariant under monotone transforma-
tions; intervals based on use of approximation (3) share this property because (3)
is equivariant under invertible transformations of W; see DiCiccio and Martin
(1991).

Remark 3. The iterated bootstrap (Hall (1986), Beran (1987), Hall and Mar-
tin (1988)) is a technique that produces highly accurate inferences. Unfortu-
nately, it is very computationally expensive, even in its simplest applications.
Iterated bootstrap computations are readily facilitated by an application of our
technique to replace the final level of resampling. DiCiccio, Martin and Young
(1992a, b) have investigated the use of approximations related to that given here
in the iterated bootstrap context, and report very significant savings over stan-
dard techniques based on nested levels of resampling. In the iterated bootstrap
setting, DiCiccio, Martin and Young, show that approximations based on the
leading term of approximation (3), and that use approximate solutions to the
saddlepoint equations (6), are sufficiently accurate to produce two-sided iterated
bootstrap confidence intervals with high coverage accuracy.
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Table 1. Simulated and Approximate values of P(é* Lw|Zy,...,2Z,)
for the correlation coefficient

Law School data, n = 15
w | Approximation (2) Approximation (3) Simulated (SE)

0.25 0.121 0.193 0.201 (.002)
0.30 0.249 0.367 0.377 (.003)
0.35 0.500 0.685 0.702 (.004)
0.40 0.984 1.250 1.269 (.005)
0.45 1.886 2.235 2.252 (.007)
0.50 3.509 3.907 3.906 (.009)
0.55 6.313 6.659 6.648 (.011)
0.60 10.920 11.014 10.967 (.014)
0.70 28.309 26.860 26.719 (.020)
0.80 57.728 53.568 53.091 (.022)
0.85 74.123 69.074 68.052 (.021)
0.90 88.258 83.585 82.633 (.017)
0.95 97.509 95.514 95.487 (.009)
0.99 99.959 99.904 99.901 (.001)

Lognormal data, n = 50
w | Approximation (2) Approximation (3) Simulated (SE)

-0.10 0.008 0.014 0.020 (.004)
-0.05 0.030 0.050 0.060 (.008)
0.0 0.091 0.149 0.142 (.012)
0.05 0.242 0.381 0.362 (.019)
0.10 0.577 0.859 0.863 (.029)
0.15 1.268 1.730 1.779 (.042)
0.20 2.649 3.253 3.483 (.058)
0.25 5.394 5.990 6.215 (.076)
0.30 10.740 11.001 11.267 (.100)
0.40 35.637 33.496 33.580 (.150)
0.50 72.839 68.570 68.104 (.147)
0.60 94.087 92.165 91.364 (.089)
0.65 97.799 97.030 96.468 (.058)
0.70 99.282 99.040 98.790 (.035)
0.75 99.794 99.724 99.605 (.020)
0.80 99.948 99.929 99.905 (.010)
0.85 99.990 99.984 99.983 (.004)

Note: All table entries and standard errors are percentages. Standard errors
of simulated values are given in parentheses.
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Table 2. Comparison of analytical and resampling approximations
to the bootstrap distribution of a correlation coefficient

Bivariate n Squared error (err;) Sup error (errz)
population, G Fan  Fsooo  Fioooo | Fan  Fsooo  Fioooo
1 20 | 0.0545 0.2277 0.1419 | 0.4260 1.1335 0.8427

30 | 0.0064 0.2174 0.1059 | 0.1546 1.1508 0.7865
50 | 0.0012 0.1586 0.0749 | 0.0878 1.1106 0.7594

2 20 | 0.1477 0.2582 0.1300 | 0.6553 1.1615 0.8259
30 | 0.0447 0.2093 0.0928 | 0.2983 1.1289 0.7747
50 | 0.0027 0.1640 0.0714 | 0.1106 1.1475 0.7407
3 20 | 0.1461 0.1955 0.1186 | 0.7343 1.1420 0.8368
30 | 0.0110 0.1753 0.0764 | 0.2378 1.1708 0.7790
50 | 0.0023 0.1147 0.0577 | 0.1309 1.0579 0.7631

1996 0.1846 0.0984 | 0.7750 1.0746 0.7971
30 | 0.0193 0.1624 0.0687 | 0.2857 1.1198 0.7238
50 | 0.0024 0.1241 0.0561 | 0.1183 1.0516 0.7686

Note:
Estimator with smallest error is underlined.

Bivariate population 1 denotes X ~ N(0,1), Y ~ N(0,1), p =0.

Population 2 denotes X ~ |[N(0,1)}, Y ~ |N(0,1)|, p=0.

Population 3 denotes X =U +V,Y =U + W, U,V,W independent N(0,1) (p = 3).
Population 4 denotes X = U +V,Y = U + W, U,V,W independent |N(0,1)| (p = 3).
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Table 3. Simulated and Approximate values of P(é* <w|Zy,...,Z,)
for the studentized correlation coefficient

Test Score Data, n = 31

w | Approximation (2) Approximation (3) Simulated (SE)
2.25 0.110 0.140 0.134 (0.002)
2.75 0.521 0.617 0.634 (0.004)
3.25 1.992 2.224 2.168 (0.007)
3.75 6.089 6.484 6.425 (0.011)
4.00 9.778 10.207 10.153 (0.014)
4.50 21.341 21.558 21.414 (0.018)
5.00 37.772 37.270 36.789 (0.022)
5.50 55.704 54.212 53.628 (0.022)
6.00 71.183 68.913 68.166 (0.021)
6.50 82.326 79.676 79.048 (0.018)
7.25 91.874 90.082 89.368 (0.014)
7.75 95.203 93.780 93.370 (0.011)
8.00 96.318 95.102 94.811 (0.010)
8.25 97.177 96.168 95.964 (0.009)
8.75 98.348 97.715 97.605 (0.007)
9.00 98.741 98.263 98.092 (0.006)
9.50 99.276 99.031 98.853 (0.004)
9.75 99.455 99.290 99.098 (0.003)

Note: All table entries and standard errors are percentages. Standard errors
of simulated values are given in parentheses.
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