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CHOOSING A DESIGN FOR STRAIGHT LINE
FITS TO TWO CORRELATED RESPONSES

Whasoo B. Kim and Norman R. Draper

Rusan, Korea and University of Wisconsin

Abstract: Variance and bias methods, used previously to choose response surface
designs in the single response situation are explored for the two response case with no
common parameters. The effect of correlation between the responses on the choice of
a design for fitting two straight lines is evaluated.
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1. Introduction

Experiments are to be performed at levels of a single predictor variable =,
with a region of interest R, coded to (—1,1). The experimental runs need not be
within R in order best to explore R but could lie in a larger region of operability,
O. Two responses will be fitted to the data by least squares using straight lines
with no common parameters. A modest amount of quadratic bias is anticipated
in each response, and the design must be chosen to balance off variance and
bias errors appropriately. The responses are correlated to an extent that can be
roughly specified. How does this additional knowledge affect the choice of design,
compared to the zero correlation case? Weight functions could be used to give
varying importance to various parts of O. Here, only a weight function which is
uniform within R and zero outside it is considered.

Two types of discrepancies, variance error and bias error, can occur. The
variance error occurs because of sampling error and the bias error because the
graduating function is inadequate. A detailed discussion of these two types of
errors is given by Box and Draper (1959, pp. 624-625) in their examination of
the single response case. The choice of a suitable design is made by taking both
these errors into account. Suppose that the model to be fitted is represented by

the first order polynomials
Y=XB+¢e€ (1.1)

and the true or feared relationships are second order polynomials

E(Y)=n=XB+ 2T. (1.2)
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Thus, in these equations, Y = (y,y,), with y; = (y1i,y2i,...,yn:), i = 1,2,
is the N x 2 matrix of the observed values of the response variables; X =
(Z1,x2,...,xzN), with z, = (1,z,), for u = 1,2,..., N, is the N x 2 matrix of
the input levels; 8 = (84, 8;), with 8, = (Bo,i, P1,:), i = 1,2, is the 2 x 2 matrix of
the parameters; € = (€1, €2), with €; = (€1, €2i,...,€n5), fori = 1,2, is the N x 2
matrix of errors. Also n = (n,,7m,), with ;, = (m15,...,nn3), for i = 1,2, is the
N x 2 matrix of true values; Z = (21, 2z2,...,2n), with z, = (22, 22,; Tu1Z42)’,
foru=1,2,..., N, is the N x 3 matrix of input variables shown only in the feared
model; and T’ = (‘71,‘72), with Y= (ﬁll,z’, ,622’2'; ,312,.5)’, 1= 1, 2, is the 3 x 2 matrix
of parameters shown only in the feared model. Let the 2 x 2 variance-covariance
matrix of the ¢th row vector of the error matrix, ¢;, be

no| 9 pOo (1.3)
pPO102 0’% . -

Let Y (z) and n(z) be defined, respectively, as fitted values of Y under the least
squares estimation method and the corresponding true mean values at the point
x = (1,z)'. Then the design will be chosen to minimize

J=Ng! /o w(@)E{¥ (=) - n(=)} {¥(z) - n(x)} dz, (1.4)

where w(z) is a weight function and de = dz;dzs. In (1.4), the premultiplication
factor NX~! is the natural extension of the N/o? factor for the univariate case.
This movement of the correlation structure to the bias term is sensible because
it converts the unknown parameters in I' to sizes made relative to the variance
structure. It is possible to introduce an additional weight function if it were
thought desirable to weight the responses unequally. Using the uniform weight
function within R, w(z) = Q = 1/ [pdx in R, and 0 elsewhere, (1.4) becomes

J = NQ / z' (X' X) ledzl,
R
+ N3 / Mo (X'X)"'X'Z - 2/} {/(X'X)7'X'Z - # )T de
R
-V +B, (1.5)

say. The criterion J, which is a 2 x 2 matrix, can be represented by the sum of
the contributions from the two types of errors, where V explains the contribution
from the variance error and B from the bias error. How can one “minimize J”,
which is a matrix 7 Here, the trace of J, i.e., tr(J) is minimized. (Computations
on the determinant of J, and on the maximum eigen value of J, showed very
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similar results.) Let us assume that the design points are centrally located in the
region R, i.e.,

> 2y =0. (1.6)

2. Design Behavior

In our specific case,

tr(J) = tr(V)+tr(B)=V + B

= 2u(c) + b(c)m + {d*/(3¢)}m, (2.1)
N N :
where ¢ = Z 2 /N, d = Z 23 /N, v(c) = 1+ 1/(3¢), b(c) = (c — 1/3)* + 4/45,
u=1 u=1
where
1
m= trace(NZ—lrII‘) = 1——_7{0%1,1 + a%l,z - 2p0111,10111’2}, (2.2)

with p the correlation coefficient between the two responses, and where a11; =
P o= 1,2, are the normalized quadratic coefficients for the two models.

oi/ VN’
Because ¥~ 'I'T is nonnegative definite, minimization of tr(J) implies that d = 0.
Thus the function to be minimized becomes

(14 8) + {(e= 1) + £)m »

The optimum c is a function of m. Table 1 shows the best ¢!/? values for some

selected m, together with corresponding values of V', B, and the ratio V/B.

Table 1. Optimum values of ¢!/2 given m

m 2V B V/B
000 oo 200 000 oo
025 1.10 255 021 119
1.00 0.91 2.81 033 84
400 0.76 3.15 059 5.3
16.00 066 3.53 159 2.2
oo  0.58 4.00 o0 0.0

Note that when V and B are roughly equal, i.e. V/B = 1, a situation one
might think “typical” if one has chosen the correct models, a design close in size
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to the all-bias value of c!/2 = 0.58 is called for. Even if V is several times B , not
much increase in design size is indicated. To see how variations in the components
of m in (2.2) affect the design, consider the cases 111 = @, @112 = /g, 0 <
g <1,and 0.9 < p < 0.9. It can be shown that this includes all cases, due
to the essential interchangeability of a11; and @112 and the fact that changes of
sign in the a’s can be replaced by changes of sign in p. Table 2 shows optimum
c'/? values for & = 1. (As « rises above 1, m increases, leading to decreases in
c'/? values (see Table 1) and a slightly changed pattern. As « falls below 1, m
decreases and the c!/? values increase, with a slightly changed pattern. Larger
a’s are unlikely to be considered, in practice. If it were known that there was
much bias, fitting the straight lines would no longer make sense.)

Note from Table 2, that, as g goes to 0, for —.9 < p < .9 approximately, the
design gets smaller and the changes in ¢!/2 with respect to changing p diminish,
i.e. the pattern flattens out in the east-west direction. Also, the changes in the
/2 values in the p < 0 part are larger than those in the p > 0 portion, being
larger for larger g.

The effect of p can be observed by considering g fixed (and recall o = 1).
Then ‘

m = (1+g° - 29p)/{(1 - p*)g*}.

When g = 1, m « (1+ p)~!, which changes more for negative p than for positive
p. As g — 0, m becomes extremely large for any p, indicating a design close to
the all bias design.

The practical consequences of this are as follows. If one response is biased
and the other is (relatively) not, i.e., g is small, then the correlation p between
the responses does not matter. (It has only a slight effect on the design when p
is close to £1.) As the biases become “more equal” (g rises), a known negative
correlation would cause us to shrink the design compared with the p = 0 case. A
positive correlation would need no shrinkage for most of the p range and a little
shrinkage for large values of p. A useful general assessment, therefore, is not to
worry much about changing the design (from the p = 0 design) if p is positive,
. but to make it smaller if p is negative. Thus picking an incorrect positive p does
not matter. Picking p positive when it is really negative will lead to a design that
is too widely spread.

Ezample. Consider the five point design (—2a, —a,0,a,2a). This has first and
third moments zero and ¢ = 2a%. Suppose it was thought that ¢ = o = 1.
Entering Table 2 with p = 0 (no correlation) gives c!/? = 0.83, implying a =
0.59. Thus the design is (—1.18,—-0.59,0,0.59,1.18). (We recall that, in our
formulation, design points can lie both inside and outside the region of interest.)
Suppose, however, that the two responses were actually negatively correlated
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with p = —0.8. Table 2 indicates that, cl/? = 0.69, whence a = 0.49. Thus a
reduction in the design to (—0.98, —0.49, 0, 0.49, 0.98) is called for here.

A similar exploration of the two responses, two predictors case provides a
similar overall conclusion, that negative correlation would call for a slight reduc-
tion in the size of the design compared with the no-correlation design. Cases
with three responses have three correlations and thus are more difficult to study.
Numerical calculations carried out for three responses and one or two predictors
show that negative correlations increase bias and thus call for smaller designs.
(Technical Report 883 gives details. It is available from the second author.)
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