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SOME OPTIMAL NESTED ROW-COLUMN DESIGNS
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Abstract: We consider experiments run in blocks with two way heterogeneity in each
block. The goal is to find “optimal” designs for estimating treatment effects. In
this paper, a general method for constructing universally optimal nested row-column
designs within the class of treatment connected designs is given. Also, a class of nested
row-column designs, which has a completely symmetric information matrix but does
not have maximum trace among all possible designs, is shown to have P, -optimality
for some a.
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1. Introduction

We consider a particular case of a 4-factor additive linear model. The four
factors are a treatment factor and three blocking factors in which two of the three
blocking factors (row and column factors) are nested in the third (block factor).
Since rows and columns are nested within blocks, these designs are called nested
row-column designs (NRC). An NRC has v treatments and b blocks with p x ¢
experimental units in each. The units in each block are arranged in two directions,
i.e., two ‘nested’ blocking factors are used; one factor consists of p levels, and the
other consists of ¢ levels. When b = 1, a block design with nested rows and
columns is an ordinary row-column design.

NRC’s are important for controlling heterogeneity in two directions. Many
designs have been used to control two sources of extraneous variation by the
experimenter, such as Latin squares, Youden squares, generalized Youden de-
signs, and row-column designs. However, Latin squares, Youden squares, and
generalized Youden designs exist only for a limited number of parameter combi-
nations, and, therefore, have limited practical use. Also, row-column designs may
have row-column interaction problems when many rows and columns are used.
Compared to row-column designs, NRC’s are more general. Given the number
of experimental units, NRC’s have fewer rows and columns within each block.



250 JANE Y. CHANG AND WILLIAM 1. NOTZ

Row-column interactions in NRC’s are likely not as severe as in row-column de-
signs. Therefore, NRC’s are especially useful for eliminating heterogeneity in two
directions when row-column interactions are present.

Nested designs in the general set-up were first studied by Srivastava (1978).
Since then, a number of authors have studied various aspects of constructing
these designs in the row-column design setting. For constructing balanced in-
complete NRC’s, Singh & Dey (1979), and Agrawal & Prasad (1982a, 1983) uti-
lize the method of differences. Later, Cheng (1986) obtains a balanced incom-
plete NRC by combining a balanced incomplete block design with a balanced
NRC. For partially balanced incomplete NRC’s, Agrawal & Prasad (1982c) show
that the method of differences can also be applied to construct partially bal-
anced incomplete NRC’s. Various product techniques are also used by Agrawal
& Prasad (1982b, 1984) for constructing partially balanced incomplete NRC'’s.
Other NRC’s based on cyclic and generalized cyclic methods of construction have
been obtained by Jarrett & Hall (1982) and Ipinyomi & John (1985).

The optimality of nested row-column designs has been studied recently. In-
dependently, Chang (1989) and Bagchi, Mukhopadhyay and Sinha (1990) have
obtained some general results and construction methods for optimal NRC’s in the
fixed effects models. One may expect that binary designs would perform well;
however, the optimal designs they found are all non-binary. In addition, Bagchi,
Mukhopadhyay and Sinha (1990) have also developed methods of constructing
optimal NRC’s and studied optimality results for mixed effects models.

In this paper, after introducing the model and notation in Section 2, we
propose a general method for constructing universally optimal NRC’s within the
class of treatment connected designs. This is discussed in Section 3. In Section 4,
we show that designs which do not have maximum trace of their information
matrix can be ®,-optimal (defined later), for some a, under certain conditions.

Throughout this paper, without loss of generality, we assume that the number
of rows is less than or equal to the number of column. That is p < gq.

' 2. Model and Notation

The model we consider is a fixed effects model. Let Y;:up be the observation
obtained from the ith treatment in the kth row and the hAth column in the tth
block. Then the model for NRC’s is

Yitkh = p + 7 + Bt + pr(r) + Ynet) T Eitkh,
i=12,...,v; t=1,2,...,b; k=1,2,...,p; h=1,2,...,q)

where p is the overall mean, 7; is the effect of the ith treatment, 3; is the effect of
the tth block, px(s) is the effect of the kth row in the tth block, () is the effect
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of the hth column in the tth block, and the £’s are uncorrelated random errors
with zero expectation and a common variance o?.

For a specified design d, let Ng = ((rait)) be the v x b matrix of elements
rgit, where r4;; is the number of times the ith treatment appears in the tth block.
Let 4 be the number of replications of the ith treatment and 7% be the diagonal
matrix with diagonal entries rg1,...,7dy- Also, let N41: be the v x p incidence
matrix of treatments versus rows in the tth block, Ngp; be the v X ¢ incidence

matrix of treatments versus columns in the ¢th block, and define
Ng = (Na1 : N1z o - Naip),  Naz = (Naz1 : Nazz -+ + Naz)-

Then, the coefficient matrix of the reduced normal equation for the treatment
effects is
Ca=r— lNle‘; - lNdzN,'l + —1—NdN,'1
— 2 .
q top pq

The matrix Cy is also called the information matrix or the C-matrix of the design
d. To simplify notation, the subscript d will be dropped whenever it is clear which
design is being referred to.

Let Z,, 45 denote the collection of all treatment connected NRC’s with v
treatments, p rows, and ¢ columns in each of the b blocks. Also let Q,x be
the collection of all treatment connected block designs with v treatments and b
blocks of sizes k. For each d € Ey 5 g5, the two associated block designs, dg and
d., where in dg one views the bp rows of d as bp blocks of size ¢ and in d. one
views the bg columns of d as bg blocks of size p, belong to Qy bp,g and §2y g p,
respectively. Note that N; and N, defined above are the corresponding incidence
matrices of dg and d.. Finally we define CF and Cj§ as the coefficient matrices
of the reduced normal equations for estimating treatment effects in dg and d..

3. Optimality of NRC’s with Maximum Trace of the Information Ma-
trix

In this section, we develop a general procedure for constructing universally
optimal NRC’s. This procedure is based on an initial row-column design which
has maximum trace of the information matrix (Cy). Methods of constructing the
initial design are also given. ' .

Because an NRC consists of b row-column designs, if each of the row-column
design has maximum trace of the information matrix, then the NRC has max-
imum trace of Cy. Let ngx(R) be the number of times treatment ¢ occurs in
the kth row and ng;z(C) be the number of times treatment 1 occurs in the Ath
column. A sufficient condition (see, for example, Kiefer (1975)) for a row-column
design to have maximum trace of the information matrix is that: ng;n(C)’s are as
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nearly equal as possible and ngx(R) = %rd,-, for all 7, k. Based on this condition,
we derive the following theorem.

Theorem 3.1. Let d* = {d1,d3,...,dp} be a design in E, ;, 4 which satisfies:
(a) lniﬁc(R) - %| <1 and |nith(C) - gl <1, Vi,k,h,t,

where
nik(R) = the number of times treatment © appears in the kth row of the
tth block.
nin(C) = the number of times treatment i appears in the hth column of

the tth block.
(b) rie = p(1 + 1) or pIh, V i,t,

where
ri¢ = the number of times treatment ¢ appears in the tth block,
. q
I = int{-).
1= int()

Then, (1) trCg» = max_trCy,
{d:de=}
(2) C4o = CG..

Proof. The proof is straightforword.

Note that condition (a) in Theorem 3.1 is a sufficient condition for maximal
trace, in light of the comment preceding the statement of the Theorem.

We say @ is a nonincreasing criterion if ®(C) < ®(D) when C — D is a
nonnegative definite matrix. If a design d satisfies the conditions in Theorem
3.1 and 1ts corresponding column design, and d., is an optimal block design with
respect to a nonincreasing criterion, then d itself is an optimal nested row-column
design under the same criterion. This result can be found in Bagchi, et al. (1990)
as well as in Chang (1989). Methods for constructing optimal nested row-column
designs using this condition, can also be found in Bagchi, et al. (1990).

Optimal nested row-column designs obtained by using the above results exist
only for certain parameter combinations. In fact, one can always construct a
universally optimal NRC with v! blocks if a row-column design with maximum
trace is given.

Theorem 3.2. Let d € Ev,p,q1 be a design such that trCj; is the marimum over
Evpgl- Suppose we permute the treatment labels and lezz d* = {Jl,dg, .. .,ng},
t.e. d* is the NRC with block i as the row-column design d; € Ey,p,q,1 which is the
design resulting from d by one of the v! permutations of the v treatment labels.
Then d* is universally optimal in the class Ey p g 0!.
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Proof. Let P denote a permutation matrix. Since

Co = Z% = Y PC; P,
i=1

all P

it follows that Cg« is completely symmetric.
If d € Eypqy, then there exist di,da,...,dyt € Zupg,1, such that d =
{dl, dz, ceey dv!}. Then

trCy = tr Z Cq, = E trCq, < ZtrC’ = trCyg-

=1 1=1

which implies d* maximizes trCq over Z, p 4,!. Thus, by the first proposition in
Kiefer (1975), d* is universally optimal in E, 5 g v!-

It can be shown that if we repeat d* n times, the resulting design 1s also
universally optimal in the class of Z, p g no!-

In Theorem 3.2, an initial row-column design w1th maximum trace of Cy is
required for obtaining a universally optimal NRC. We next show how one can
construct such a design. Let p = ¢ — int(q/v)v. Designating the v treatments in
d by the integers 1,2, ..., v, the procedures for constructing d for different cases
are given below:

Case 1. Ifp=g¢

Step 1. For row 1, assign treatment 7 to the ith element. If ¢ > v, repeat the
assignment until all of the cells in row 1 are assigned.

Step 2. For row k, copy row k — 1, and then move the last entry of the row to
the head and shift the rest of the entries to the right by 1 position.

Step 3. If k < p, go to Step 2.

Otherwise, stop.
The design d will look like the following:

o 0 b,
p 1 p—1
| 2 3 1 ]
It can be seen that treatment 1, treatment 2, ..., treatment p have I; + 1 replica-
tions and treatment p + 1, treatment p + 2, ..., treatment v have I replications

in each row. Also, each treatment occurs as equally as possible in each row and
in each column.
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Case 2. If p# ¢

(a)p<p
The same procedure used in Case 1 can also be used here. Design d will look
like the following:

lp=p+2 p—p+3 - 1 - p—p+1

Obviously, treatment 1, treatment 2, ..., and treatment p have I; +1 replications,
and treatment p+ 1, treatment p+ 2, ..., and treatment v have I; replications in
each row. Thus, each treatment occurs as equally as possible in each row and at
most once in each column.
(b) g<w

Randomly choosing p rows from a ¢ x ¢ Latin square gives the design d. We
can see that this design has maximum trace of the information matrix.

However, when p # ¢q, p > p, and ¢ > v, the procedures above do not apply
and other procedures are needed.

By examining the proof of Theorem 3.2, the reason one needs v! permutations
(blocks) is to guarantee that one has a completely symmetric information matrix
for the resulting design. However, without requiring all v! permutations, one can
still obtain a completely symmetric information matrix for the resulting design
in many cases. If we choose a good initial row-column design, the number of
permutations can be significantly reduced and yet the design whose blocks consist
of these permutations of the initial row-column will be completely symmetric. It
is very possible that there are many row-column designs which have maximum
trace. Among these designs, if there exists a design d such that C; has the
following form

[ (Al)'ul XUy _)\

(AZ)v2><v2 , (3.1)

—A (An)vnxvn J

where each A; is a completely symmetric matrix with constant —A; in all off-
diagonal entries, then instead of v! blocks, the minimal number of blocks s ; (say)
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yielding a completely symmetric design satisfies

n
v!
sj < ——, where }:vi = v.

H 'U'i! =1
1=1

It is easy to find a design which has maximum trace, but it is a more complex
combinatorial problem to find such a design with its information matrix of the
same form as in (3.1). For certain row-column designs with information matrices
of the form (3.1), an upper bound for sq4 can be explicitly given. For example,
some well-known row-column designs such as Latin square, and regular general-
ized Youden have a completely symmetric information matrix. If such a design
is used as the initial row-column design, any number of blocks consisting of this
design will be universally optimal. In the above notation, this implies sq4 = 1.

In the case where a Latin Square or regular Generalized Youden Design
(GYD) do not exist, we have found the upper bound for s4 for a particular class
of Partially Balanced Block Designs (PBBD). The simplest class of PBBD’s is
the group divisible designs (GD PBBD). These are PBBD’s where the treatments
can be divided into several groups, each group containing the same number of
treatments. Two treatments are called first associates if they belong to the same
group and second associates otherwise (see Cheng (1978)). If GD(v = mn) PBBD
denotes a group divisible design in which the v = mn treatments are divided into
m groups with n treatments in each group, then we have the following two results.

Corollary 3.3. Given v,p and g, if

(a) vlp (vlg), and

(b) @ GD(v = mn) PBBD ezists with the p rows (g columns) considered as the
blocks, then, there ezists a d € Eyp g1, such that

v!
Sq = m!(nh)™

Proof. Straightforward.

Corollary 3.4. If a design de Zvpq1 has parameters p =q =s (say) where s
is not an integral multiple of v, and satisfies conditions (a) and (b) in Theorem
3.1, then

v!

S . §
Sd*s 'p—!('v—':—p)—!, where p = (;-—mt(;))v.

Proof. Without loss of generality, we assign the treatment replications of d,r;,
as
s(Iy +1), for 1 <1< p;
r;, =
' sIh, for p+1<i<uw.
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Then by the construction in case 1 discussed earlier, C; has the form

{Al cJ

’ where A; and Aj are completely symmetric,
cJ A2 yXv

and A1 is p X p, Jis p x (v — p), Az is (v — p) x (v — p).
Hence, by (3.1), the result follows.

4. Optimality of NRC’s without Maximum Trace of the Information
Matrix

In this section, we show that some NRC’s, which have completely symmetric
information matrices but not maximum traces, are ®,-optimal for some a. A
design is said to be $,-optimal if it minimizes

( 1 v—1 %
( Zz\;f’) , 0<a < oo;
v_1i=1

v—1
Pa(Aa) = 9 H(Adz’)_vila a=0;
=1

max A;il, a = oo,
[ 1<i<v—1

where Ag1, Ag2, . .., and Ad(v—1) are the nonzero eigenvalues of C;. Let d = d* Ud#
be an NRC where d* € Z, 5 ¢3—1 has a completely symmetric information matrix
with maximum trace among all possible designs, and d* € =, , ,; is a nonregular
GYD (see Kiefer (1975)). Then d has a completely symmetric information matrix
but does not have maximum trace. We shall consider the ®,-optimality of d.
The method used is similar to the one used by Kiefer (1975) for proving the
A-optimality of nonregular GYD’s. Although we cannot guarantee A-optimality,
we can always prove the E-optimality of d. When P = q, P,-optimality can also
be obtained if a is greater than a constant which depends on the values of v, p and
b. Let H={d € E,, 45 : nita(C)’s are as equal as possible}. For each treatment
¢ and s = p or ¢, we define

b s
h(riys) = {dzzglfg:ﬂ}zz nZ,,

t=1a=1

- (rmmem(@) 1 m(2)’
(b = o bo s ime (1)) (i (2))

= —bsI?+ (2r; — bs)I, +r;, where I, = int(l%) (4.1)
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and
b

2
m(r;) = max ) T;
) = mp Yk

7 — I . i_b I

= nt(z—-—qb—q—q> {q(I,+ 1)} + (b -1- mt(r——z-g—q>>(q1q)2
i — bl \ )2
+{qu+ri—-quq—qxint(r———q—q——g>} , (4.2)

where the maximum is over all d € H with treatment 7 replicated r; times. Also,
let

1 1 1
c(ri) = ri = =h(ri,p) — —h(ri,q) + —m(r:).
(i) . (ri,p) p (ri;q) p (i)
By the definitions of h(r;, q) and m(r;),
m(rz) - Qh(’f'i, Q) = Oa (43)

if r; is an integral multiple of g.
We start with the following lemma.

Lemma 4.1. maxg Cgi(r;) < c(ri), where Cai(rs) is the (i,7)-th entry in Cq
and the mazimum is over all designs in E, 5 g with the ith treatment replicated
r; times.

Proof. Let d’ be any design in Z, p 45 with the ith treatment replicated r; times;
then

. 1 b 4 q 1 b
Cau(ri) = E Z Z d’ztk(R) - - Z Z ng’ith(c) + - Z thi’it
t=1 k=1 h=1 t:l

1

<r h(n,p) Z Z nd’zth(C) + s Z Tarit
q Pisih=1
1

= r;— —h(ri,p) — Z Z (nd’zth(c) - “"'d’-:.t) .
q PiSih=1

If &' is a design in which r; is an integral multiple of g, then, by Equation (4.3),
we have Cgy;(r;) < ¢(r;). Otherwise, ra; = cq + u for some integers ¢ and u,
0 < u < q. In this case, by a straightforward calculation,

u?

1
h(r;,q) — —m(r;) =u— —.
(ri, q) : (ri) 2
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" Therefore it is sufficient to prove that
2

b ¢ 2
1 U
E E (nd’zth(c - —Td'zt> >u— —.
t=1 h=1 q

q

If d’ has b* (> 1) blocks in which rg;; is not an integral multiple of ¢, then

E
M)

1 2
(nd’ith(c) - E"'d’it)

Q"“

x|l
—
>
H
-

Y%
M)

1 2
(nd’ith(c) - ‘q""d’it)

0"“
*
—
>
i
—

Il
M-e

1 2
(nd/ith(C) - E(th + ft)) for some c;and f;, 1< f; <g-1

(7 5)

Case 1. 1<u<{
(i) If there exists a t* such that fi« € [u,q — u], then

v
o~ 3 d
II S
[y
Pl
I
[

b* 2 2
_fE ey
;(ft q)th q‘u .

i) I fre[l,u—1]or fr€[g—u+1,¢g—1] for all t, let S = {t|f; € [1,u — 1]}
and S’ = {t|f: € [g—u+1,¢— 1]}. Then,

”
S(r-L) -2 (n-E)+ 2 (- 1)

Sra(1-L)+ T a(i-£) where fi=0- 1,

f

tes tes!
> <1— "‘)(th-*‘ th)
teS tes!
u?
> u—-—.
q

The last inequality is obvious if } ;g ft > u. If > °,c5 ft < u, then, since

th'Fth:kl‘I‘l'U

tesS teS’
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for some integer ki, which implies

kog— Y fi=kig+u—Y_f

teS’ teS

for some integer ks, it follows that

=1

ngz(kg—kl)q—uA—thZq——uZu (since th'ZOandl <u< 5)

teS' tes tesS’

Case 2. i <u<g-1
This follows from Case 1 by replacing u with ¢ — u and noting that

I C )
u q—(q ) P

To prove E-optimality of d, we define two functions, g(r) and A(r). By equations
(4.1) and (4.3),

h(r +1,p) = h(r,p) =1+ Zint(—r—

bp) =1+2I, (4.4)

and

r— bgl,

m(r + 1) — m(r) =2(qu+r—quq—q X int< )) +1, Vr. (4.5

Define
g(r) = pge(r) = pgr — ph(r, p) — gh(r, q) + m(r), (4.6)

A(r) =g(r+1) —g(r)
— bql
=pq—p(1+2lp)—q(1+2Iq)+2(q1q+r_bqfq_qxint(r qq ")>+1

=(p-1)(g—-1) - 2pIp+2(r —bgly — g X int(r _qquq))

Since a nonregular GYD exists in each block, 7 = l—’%q must be an integer.
We define

v
R = {(7‘1,7‘2, ...,Ty) : 7; is a nonnegative integer V ¢ and Z’r,- = vf}.

=1

Theorem 4.2. d is E-optimal.
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Proof. By equations (3.5) and (3.9) in Kiefer (1975), if C4- is completely sym-
metric and maxg min; g(r;) = g(7), then d* is E-optimal. Since C}; is completely
symmetric, it suffices to show

max min g(r;) = g(7).

If g(r;) is an increasing function for r; < 7, then we have g(r;) < g(7), which
implies
min g(r;) < g(F) where (r1,72,...,7,) € R.

Therefore, to complete the proof, we need to show g(r;) is an increasing function
of r;, for every r; < 7. Since A(r) = g(r + 1) — g(r), it is sufficient to show that
A(r) >0, for r < 7. Now

bpg _ ¢

r<7"=>é<@=’—v—=>fp=int(é)Sint(%)<%.

Thus,

A(r) (p—1><q—1>—2pfp+2(r—bqfq‘qut(r_—_;g‘fi>>

2 (p-1(g-1)-2pl
p-1(¢g—-1) - 2p% (since I, < 9_)

v

V

1
> (p—-1)(g-1) - 3P4 (since v > 4 if a GYD exists)
> 0. (since p,q > 4 if a GYD exists)

Next we show that d has an stronger optimality property when the number
of rows equals the number of columns, i.e., p=¢. Welet N = {n: 0 < n < bpq,
n =tp, t integer, b> 1}, and M ={n € N:n < 91%9}

Definition 4.1. (Kiefer (1975)). If C, D € N, C < D, and no integer between C
and D is in N, then [C, D] is called an elementary interval. Also, the elementary
interval [Co, Do| containing 7 = I-’%‘l is called the basic interval.

When p = ¢ = s (say), it is straightforward to show that g(r) in Equation
(4.6) has all of the following properties which were given by Kiefer (1975).

(i) For each elementary interval [C, D], A(r) is linear in r and increasing for
C <r < D, ie., gis a convex quadratic on each elementary interval.

(ii) g is increasing in each elementary interval [C, D] with D < Dy.
(iii) g is symmetric about 91219
(iV) If C;,Cy € N and Cy < Cs, then A(Cl) > A(Cz) and A(Cl —1) > A(CQ -—1).
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(v) g is nondecreasing on M and is nonincreasing on N\ M.
By the same argument as in Equation (3.17) of Kiefer (1975), d is ®,-optimal
d*(g(r))”"
_— >
dr? 20,
Let Iy = int(%), which equals int(f;) when Cp <7 < Dg. Then

if
Co < r < Dy.

g(r) = sir — 23(—bsIg + 2rly — bsly + 1) + int(r — bSIO> (s(Ip + 1))2
— bsl _ 2
+ (b—l—int( sO)(I)) (sIo—}—'r—sbIo—sxint(T b310)>
s
= 12 + aor + Po,
where
ag = s2 — 25 — 28Iy — 2sbly — 2s X int(r _ bSI()),
s
—b
By = 2bs’IZ + 2bsIy + int(r SIO>(3(I0 +1))?

_ 2
+<b~1—int( bSIO)(I)) (sIo—sbIg—sxint<r :’SI")).

Notice that ag, Go are constants when r € (Co, Do). Let I'(r) = (g(r))~*. Then

d?’T(r)
72 >0 Vre (Co,Do)

e ala+1)(gr) "' (M)? - g"(Ma(g(r)™* 1 20 Vr e (Co,Do)
= (a+1)(g'(r)* —29(r) 20

— (a+1)(2r+ap)® —2(r* + aor + o) 2 0

<

2(r? + aor +
> ( @r +an)2ﬁ0) - 1. Vre (Co,Do)

a

Theorem 4.2. d is a ®,-optimal NRC if

2(r% + aor + Bo)
a>

max - 1.
- {r:rE(Co,Do)} (27‘ + Ofo)z

Example 4.1. Let d = d* Ud¥#, where d* € _4 6,6,6 1s a universally optimal NRC
(easy to construct) and d#* is a GYD. Then d € E46,,7 is a $o-optimal design
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when a is (approximately) greater than 4.5. Hence, d is E-optimal in E466 7.

However, d is not A-optimal. Let d = {d*,d'}, where d' is

L B NN
NN W W~ s
W W W - RN
> N = W W s
N = N R W W
=W R N RN

The nonzero eigenvalues of C; are A\; = (58.67,61.67,61.67). And, the
nonzero eigenvalues of Cj; are A; = (60.33,60.33,60.33). Thus, d is superior
to d with respect to A- and D-optimality.

5. Discussion

Given v, p, and ¢, we have been able to find universally optimal designs among
NRC’s with v! blocks. When v is large, such designs involve a relatively large
number of blocks, and, in turn, have limited use in practice. However, requir-
ing a large number of blocks is a common drawback in the area of constructing
NRC'’s (John (1987, p.113)). For small numbers of blocks, repetition of a nonreg-
ular GYD, if possible, is highly efficient, if not optimal. In order to reduce the
number of blocks in the optimal designs above, an appropriate way to arrange
the experimental units is desired. We have presented one way to obtain some
reduction, but often one must resort to trial and error to obtain an initial design
whose information matrix has the form given in (3.1).

When the number of rows and columns within blocks does not allow for a
Latin square or a regular GYD, optimal designs are somewhat asymmetric in
blocks, although symmetric overall. Such designs, however, may not be very ro-
bust against losses of several blocks. As a result, designs which are more balanced
in blocks, such as repeating a non-regular GYD, may be preferable. Such designs
are not optimal but they are highly efficient.

Finally, if the numbers of rows and columns within blocks are equal and
allow for a nonregular GYD, we have shown that a design which has completely
symmetric information matrix but does not have maximum trace is ®,-optimal
for some a.
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