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Abstract: In product research and development, the decision maker may wish to select
the most reliable product from among several competing products. This selection
problem is very difficult for highly reliable products, since it may take a long time to
observe failures under normal operating condition. To shorten the life-testing time,
an accelerated life test is usually used. For life-stress relations following a Weibull-
Arrhenius model, this paper proposes an MLR (Modified Likelihood Ratio) rule to
select the most reliable product. A suitable sampling plan which is needed by this
rule is also derived. An illustrative example is given to demonstrate the proposed
rule.
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1. Introduction

At the research and development stage, the decision maker usually faces the
problem of selecting the most reliable product from among several competing
products (populations). Several selection rules have been proposed over the past
thirty years. General reference may be found in Bechhofer, Kiefer and Sobel
(1968), Gibbons, Olkin and Sobel (1977), Gupta and Panchapakesan (1979), and
Gupta and Huang (1981). A comprehensive survey of selection procedures in
reliability models was given by Gupta and Panchapakesan (1988). In particular,
Berger and Kim (1985) and Kim (1988) proposed some subset selection proce-
dures for exponential populations under Type-I, Type-II and random censored
data. Besides, Kingston and Patel (1980, 1982) and Tseng and Chang (1989)
studied the problem of selecting the best population from several Weibull pop-
ulations using an intuitive selection rule under a Type-II censoring plan. Most
of these selection rules are based on complete or censored data. However, for
highly reliable designs, it is very difficult to measure product reliability since 1t
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may take a long time to perform life testing under normal operating condition.
Consequently, most of those selection rules mentioned above are not applicable
in such a situation.

The Accelerated Life Test (ALT) is a commonly used method for estimat-
ing the (product) reliability in a short time. The products are tested at higher
stresses and the results are extrapolated, by an assumed model, to estimate the
reliability under normal operating condition. When “temperature” is the acceler-
ated factor under consideration, the Arrhenius reaction rate model is often used
to describe the relationship of the product parameter (such as failure rate) as
a function of operating stress (temperature). Thus, the life of certain products
1s suitably described by a Weibull distribution whose product characteristic life
follows the Arrhenius model, e.g. capacitor dielectric and insulative tape (Nelson
(1990, p.82)).

Chang, Huang and Tseng (1992) proposed an intuitive rule for selecting the
most reliable design under Type-II ALT. One advantage of this rule is that it has
a very clear and simple expression; but it requires heavy numerical computation
to obtain a sampling plan. Besides, the information contained in the observed
data is not efficiently used. To overcome these drawbacks, we propose a modified
likelihood ratio (MLR) selection rule which is obtained by the MLR. principle.

This paper is organized as follows. Problem formulation is presented in Sec-
tion 2. The MLR selection rule is proposed in Section 3 and a suitable sampling
plan called the MLR rule is given in Table I. For illustrative purposes, an ex-
ample is given in Section 4 to demonstrate this MLR rule. A simulation study
for the robustness of the proposed rule is presented in Section 5. The theoretical
derivation of the MLR selection rule is given in Section 6.

2. Problem Formulation

Let IIy, ..., IIx denote k competing products. For 1 < ¢ < k, let R;(t,So)
denote the reliability function of II; under stress Sy, where Sy denotes the normal
operating condition. Product II; is said to be most reliable at time t* if

Ri(t*, o) = lrél?Skae(t ,S0), (1)

where t* is a specific constant (e.g., one-year warranty period) which was pre-
determined by the experimenter. The experimenter is only interested in selecting
the most reliable product at t*.

Suppose the life testing was conducted at m values of accelerated stresses
{Sj};-'f__l, where (Sp <) S; < -+ < S,,. It is assumed that life-stress relation
follows a Weibull-Arrhenius model. That is, the life of product II; under stress
S; follows a Weibull distribution with an unknown product characteristic life
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(scale parameter) 6;; and a known shape parameter f;. Thus, the reliability
function of II; under stress S; can be expressed as R;(t,S;) = exp(—(t/ 0:;)P),
for t > 0. Besides, the relationship of 6;; and stress S; can be expressed as

8;; = exp(Ai — Bi/S;), (2)

where (A;, B;) denote the unknown parameters of product II; in the Arrhenius
model. For each combination of (II;, S;), there are n;; units which are put on
test to perform an ALT. The experiment of (II;, S;) terminates when 7;; failures
occur and the ordered failure data Y;;q) < --- < Yij(r;,) are recorded.

We define the standardized stress v; (Nelson and Meeker (1978)) as

o (1/8)) = (1/5n)
I W/B0) = (1/8m)

It is easily seen that 1 = vy > v1 > - -+ > vy, = 0. Further, (2) can be rewritten
as

(3)

Inb;; = a0 + 15, (4)
where ;g = A; + Bi(=1/Sm) and a;1 = —B;(1/S0 — 1/Sm).
Let Z;j(p) = Bi{ln(Yij(g)) — ctio — irv;}. Then, the likelihood function of the
ith product may be expressed as

m Tij

I { TL s {1~ Pl ™7} )

where f(-) and F(-) denote the probability density function (pdf) and cumulative
distribution function (cdf) for the standard extreme distribution, respectively.
The maximum likelihood estimators (MLE) of a;o and s, (éio, 1), can be
obtained by solving

m m Tij
Srii=d, { > exp(zijg) + (nij — 7ij) eXP(Zij(r,.j))} =0, (6)
j=1 j=1 *£=1

and

Z TijV; — Z Uj{ Z exp(2j(g)) + (naj — T4j) eXp(zij(rij))} = 0. (7)
Jj=1

J=1 =1

Consequently, the MLE of 6;q, 60, can be obtained from the following equation
fi0 = exp(&io + &) (8)

By the assumption and results mentioned, we have the following lemma.
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Lemma 1. In 9?0‘ 1s asymptotically normally distributed with mean In 9?& and
variance 0%, where

7=1 =1 =1
; - (9)

(L) (rnd) - ()

7=1 7=1

3. MLR Selection Rule and Sampling Plan

Without loss of generality, we assume that t* = 1. According to Kingston
and Patel (1980), the observed failure time can be scaled so that ¢* = 1. Then
(1) can be rewritten as

()% = max (6u0)". (10)

Based on the ALT data described above, we propose an MLR selection rule
= (61,...,0) as follows:

6; : Select II; if and only if H {Hﬂ' } > d. (11)
IF

This MLR rule may lead to selecting more than one product if d is too small. In
order to select the most reliable one, we introduce a procedure to determme the
values of {r;;,n;;} and d.

We call the selection rule §; a correct selection (CS) if the selected II; is the
most reliable product, and an error selection otherwise. Let Pr(CS|é;) denote
the probability of CS of rule §; under 7 = (71, ..., Tii-1, Tii+1, - - ., Tik ), Where 7;;
denotes the measure of separation of products II; and II;. We can suitably define
75 = In{ln R;(¢*)/In R;(t*)}. As t* = 1, 7;; can be expressed as ln(Oiﬁ&/Q%).
Thus, the ith preference region, {2;, may be suitably defined as

Q, = {TlTij > A, for j # i}, A > 0. (12)
Similarly, the indifference region, g, can be defined as
Qo = {r|rj = 0, for j #i}. (13)

It is usually required that the probability of CS have a minimum value P* for
T € §; (P*-condition) and the error probability have a maximum value o* for
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r € Qo (a*-condition). That is, the P* and o* conditions can be expressed as
(Tseng and Chang (1989))

: > p*
7_1251 P+(CS|6;) = P7,

and

sup P+(CS|6;) < a”.
TEQ

Incase of r;; = rjand ny; = nj, for1 <¢ < kand 1 < j < m, these two conditions
are asymptotically approximated, utilizing Theorem 3 stated in Appendix, by

q)(lnd— (k-1)A

yrrem ) <(1-P, (14)

Ind

o)z (1-2) (15)
\/ k(k —1)o

where ®(-) denotes the cdf of a standard normal distribution. Furthermore, a

decision maker usually wants to control the time-saving factor of life testing at

a specific level p* (p*-condition). So, the time saving factor can be defined as
follows (Tseng and Chang (1989)):

E(Yiﬂ'(rij))
E(Yij(n;))

Let R, denote the reliability of the most reliable product at normal operating
condition and R, denote the reliability of (k — 1) less reliable products at normal
operating condition. Then A can be expressed as In(ln Rq/In Ry). Set r; = raj;,
where {a;}7., are predetermined. We state an algorithm to compute {(nj,75) Y7
and d under various combinations of k, P*,a*, p*, A, (ai1,...,am) and stresses
S1 << Snm (1=v0_>_v12---2vm=0).

Step 1. Start with r = 1.

and

< p*, for each combination of (II;, S;). (16)

Step 2. Multiplying (a1, ..., am) by 7, we get the associated value of (P1,..-,7m).
Step 3. Compute d by (14). ‘

Step 4. Check by (15). If it holds, then (ry,...,7r) is a feasible solution; go to
Step 5. Otherwise, set 7 = (r + 1) and return to Step 2.

Step 5. Compute the corresponding sample size (n1,...,nm) from (16).

For illustrative purpose, three higher levels of accelerated stresses are con-
sidered (i.e., m = 3). Denote by L, M and H the low, middle and high stresses.
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Meeker and Hahn (1985) suggested (ar,anm,any) = (4,2,1) as an efficient al-
location for censored ALT. Given P* = 0.90, «* = (1/k), p* = 0.50 and
(vp,vm,vy) = (0.5,0.25,0.0), we compute the number of failures (77, 7y, 75),
sample sizes (nz,na, ny) and critical value d for various combinations of (R,, Rj)
and k. The results are given in Table I.

4. An Illustrative Example

Problem description:

Suppose there are four competing highly reliable products of capacitor dielec-
tric, where temperature is the accelerating variable (Nelson (1990)). From histor-
ical field data, it is known that the life-stress relation follows a Weibull-Arrhenius
model with a common shape parameter which approximates 1.25. Suppose the
operating condition Sy is 85°c (358°k). Three higher stresses, say S; = 115°¢c
(388°k), Samr = 132°c (405°k), and Sy = 150°¢c (423°k), are chosen for performing
an accelerated life test. The corresponding standardized stresses are vy, = 0.50,
vy = 0.25 and vg = 0. Based on the ALT data, the decision maker is inter-
ested in selecting the most reliable product. If we wish to control the quality of
the decision such that the P*-condition achieves 0.90, the a*-condition achieves
(1/k) = (1/4) and the p*-condition achieve 0.50, then two questions arise:

(1) How to determine the sample size and the number of failures for each combi-
nation of (II;, S;)?
(2) What is the selection rule?

Answer:
Since A is unknown, we propose a two-stage procedure to determine a sam-
pling plan as follows:

Stage 1

From Table I, we take the smallest sample sizes and the number of failures,
among the combination of (8, k) = (1.25,4), to perform a pilot ALT. The corre-
sponding sample sizes and the number of failures are (n9,n%,,n%) = (34, 18, 10)
and (r9,78,,7%) = (28,14,7). A pilot ALT is performed as follows:

Under 115°, 132°¢ and 150°¢, there are 30,16 and 9 items on test for each
product. The experiment terminates when the number of failures for each product
reaches 24,12 and 6 items. Based on the failure data, using (6)-(8) we may
obtain (&;p, &;1) and 6:0. Consequently, we obtain an approximate value of A.
For illustrative purposes, it is assumed that A ~ 0.917.

Stage 2
In Table I, as A = 0.9171 and (B8,k) = (1.25,4), we find (np,np,ng) =
(56,30,16), (rz,7m,7H) = (48,24,12) and d = 2.6484. Thus, for each product,
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we shall add 22,12 and 6 items on test under 115°¢, 132°¢ and 150°¢, respectively.
The test will be terminated when the number of failures for each experiment
reaches r; = 48, 7y = 24 and rg = 12.

Based on these failure data, we compute éio for 1 < i < 4. The selection rule
can be expressed as: Select II; if and only if

H;*#,-{éﬁ;/éfé} > 2.65.

Using this selection procedure, we have at least 90% confidence to select the
most reliable product.

5. A Simulation Study

The computation of the sampling plan in Table I is based on the asymptotic
normal approximation. Besides, this sampling plan is affected by variation of 3.
Therefore, we perform a simulation to investigate the robustness of the proposed
selection rule.

Suppose the shape parameter 3 follows a Beta distribution with parameter
(5,5) on the interval §*(1+¢), where B* is the mean value of 8. For each combina-
tion of (8*, k) and (Rq, Ry), five hundred simulation runs are conducted by using
the sampling plan given in Table I. A selection trial leads to a correct selection
whenever (11) holds. The proportion of correct selection (PCS) is calculated.
The- results are given in Table II, where the PCS values are the average of all
combinations of (Rq, Rp). From the results, it is seen that the total average PCS
(0.865) is close to the predetermined value P* (0.90). This suggests that the
performance of the MLR rule is insensitive to moderate variations in .

The accuracy of the estimated A (in Stage 1 of the illustrative example)
also affects the determination of this sampling plan. For each A, we use the
smallest sample sizes and the number of failures (as described in Section 4) to
estimate the true value of A. Five hundred simulation runs were conducted under
each combination of 8 and k. The results are given in Table III, where E(A,A)
denotes the absolute error (in percentage) of A with respect to A. It is seen that
all the values of E(A, A) are within 3%. Thus, the procedure in Stage 1 provides
a satisfactory estimation of A.

6. Theoretical Derivation of The MLR Selection Rule

Let II4,...,II; be k independent products and S; < Sy < --- < S, denote
m different levels of accelerated stresses. For each cell of (Il;, S;), ni; items are
exposed to a life test. Let Y1) < -+ < Yijiri)) denote the first ;; ordered failure
data. Suppose the life distribution for each cell of (I;, S;) follows a Weibull
distribution with scale parameter 6;; and shape parameter ;. The relationship
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between 6;; and S; in the Arrhenius model can be expressed as (2) and the MLE
of 650 can be computed by (8). Since 7;; = ln(ﬁz%'/é’?é), we define ¢;; = ln(é%/é%).
Under the assumption that r;; = r;, for j = 1,...,m and with the notation stated
previously, we have the following result:

Theorem 1. The joint pdf of T = (ti1,...,tu-1,tiu+1,- ., tik) under T is

1 1 re—1
h-r(t) = (27r)k—1/2|2T|1/2 eXp | — '2-(t - T) ET (t - T) y (17)
where ) i
2 1 1
1 2 1
Yr = 08 1
.1
1 - - 1 2 (b 1)x(e-1)
and ™ m ™
(Zrﬂ?) — 2(27']"0]-) -+ (Z"'j)
2 j=1 Jj=1 j=1
gg = m m ™m 2
(2m) (Xr3) = (Zrow)
J=1 Jj=1 Jj=1

Proof. (see the appendix).

In order to construct a suitable selection rule, we condsider a family of hy-
potheses as follows:

Hy:7€Qy vs Hi:T7eQy;, i=1,...,k.
The MLR selection rule § = (41,...,8;) can be defined as
inf h‘r(t)

TEQ;

—_—
sup hr(t) = © (18)
TEQ

6; : Select II; if and only if

where ¢ is a constant. From Theorem 1, we have the following result.

Theorem 2. The MLR selection rule can be expressed approzimately as

k
6; : Select I; if and only if 9% 1% > g 19
10/ Y50
i
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where d is a constant to be determined.

Proof. (see the appendix).

7. Conclusion

At R & D stage, a decision maker usually faces the problem of selecting the
most reliable product from among several competing products. For highly reliable
products, the ALT is usually used to get the information of product reliability
within a short time of life test. Based on the ALT data, this paper proposes an
MLR selection rule to select the most reliable product when the life-stress relation
follows a Weibull-Arrhenius model where the shape parameter 3; is known. For
the case where f3; is unknown, the reader may refer to the work of Tseng (1991).
Besides, life-testing time needed by Type-II censoring is shorter than that of
Type-I censoring (Tseng (1991)). Thus, in this paper we restrict our discussion
to the case of Type-II censoring and derive a suitable sampling plan for selecting
the most reliable design in this case.

Appendix

Proof of Lemma 1

The Fisher information matrix of (g, ;1) can be expressed as

m m

DTy DL Tiv
BZ J=1 J=1
1 ™m m

Caye s .y

Z TijVij TijVs
=1 =1

Since In ;o = (&0 + @), In éiﬁo" is asymptotically normally distributed with mean
In Biﬂoi and variance 2.

Proof of Theorem 1
Let

B11n 610 B1 In 610 ot 0
Y = : , p= : and T =

Br In bxo Br In Oo 0 Tio

By Lemma 1, it is seen that Y is asymptotically distributed with N (p,X). Since
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T = HY, where
| 7th column
- ) _
-1 0
-11
H=| oo
1 -1
-1
-0

- 1 —1 -
So, T is asymptotically distributed with N(up, S7),
where

Biln b,y — 51 Inbyy
B =Hy =7 = :
Bi In G;0 — Br In Oxo
and
oy + 0 o 750
o 0f 10+ 0%
Sr=HIH = |
giv10 T 05 ok
L ok ; ol "7130 + 0% |

Under the condition that Ti; = 75, we have afo = crg, 1 <7< k. So X7 can be
reduced to

(2 1 «vv ... 17
1 2 1
X7 =0y 1
o
(1 .. .. 1 2

(k—1)x(k—1)
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Proof of Theorem 2

Since infregq, hr(t) depends on the value of ¢, it is rather complicated to
derive the MLR rule. Instead of using €; in (12), we restrict our attention to €17,

where
Q= {7|m; = A, for j #i}, A>0.

Then (18) can be approximately expressed as

{exp ( - %(t ~ AYSFMt - A))/exp (— %(t —0)S7i(t - 0))} > c.

It can rewritten as
2t (Sr) A - A'(Zr) A > o,

where c; 1s a constant. Since

A 1 k A2
/ 1 — i — .. / 1 T — ———
t (ET) A= (2) % <JE it”> and A (ZT) A = 0 ( A ),

(18) can be expressed as

> tij > e,

JF

where ¢ is a constant. Since t;; = 1n(0 v/ 0 7), we have

1 {85/0%) = d

J#i
where d is a constant to be determined.

Theorem 3. The P*-condition and o*-condition are equivalent to (14) and (15),
respectively.

Proof of Theorem 3

Pr(osi) = Pr(I] (0 /00" > d))

i

Pr (0~ Dm0 - S I 2 In a)
J#

Ind — 5z { m(8i0)* — In(80) }

= PT<ZZ >,
\/k(k—1)od

where Z denotes the standard normal density. Thus P*-condition and *-condition
can be expressed by (14) and (15), respectively. '
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Table L. (rp,7um,7H), (nL,na,ng) and d, in the MLR selection rule,
under various combinations of 8 and (R,, Ry)

B (R, Rp), A | k=2 k=3 k=4 k=5 k=6
32,16,8 | 44,22,11 | 48,24,12 | 52,26,13 | 56,28, 14
(0.9975,0.999) | 35,18,10 | 47,25,13 | 51,27,14 | 56,29,15 | 60,31, 16
A=0917 | 1.03 1.69 2.65 4.32 7.27
24,12,6 | 28,14,7 | 36,18,9 | 36,18,9 | 40,20,10
0.75 | (0.9970,0.999) | 27,14,8 | 31,16,9 | 39,20,11 | 39,20,11 | 43,22, 12
A=1.097 | 1.08 1.74 3.48 5.75 11.25
20,10,5 | 24,12,6 | 28,14,7 | 28,14,7 | 32,16,8
(0.9965,0.999) | 22,12,6 | 27,14,8 | 31,16,9 | 31,16,9 | 35,18,10
A=1254 | 114 2.08 4.20 7.48 16.92
32,16,8 | 44,22,11 | 48,24,12 | 52,26,13 | 56,28, 14
(0.9975,0.999) | 37,19,10 | 49,26,14 | 53,28,15 | 58,30,16 | 62,32,17
A=0917 |1.03 1.69 2.65 4.32 7.27
24,12,6 | 28,14,7 | 36,18,9 | 36,18,9 | 40,20,10
1.00 | (0.9970,0.999) | 28,15,8 | 42,17,9 | 41,21,12 | 41,21,12 | 45,24,13
A=1.097 | 1.08 1.74 3.48 5.75 11.25
20,10,5 | 24,12,6 | 28,14,7 | 28,14,7 | 32,16.8
(0.9965,0.999) | 24,13,7 | 28,15,8 | 32,17,9 | 32,17,9 | 37,19,10
A=1254 |1.14 2.08 4.20 7.48 16.92
32,16,8 | 44,22,11 | 48,24,12 | 52,26,13 | 56,28, 14
(0.9975,0.999) | 39,21,11 | 52,27,15 | 56,30,16 | 61,32,17 | 65,34, 18
A=0917 | 1.03 1.69 2.65 4.32 7.27
24,12,6 | 28,14,7 | 36,18,9 | 36,18,9 | 40,20, 10
1.25 | (0.9970,0.999) | 30,16,9 | 34,18,10 | 42,23,12 | 43,23,12 | 47,25, 14
A=1097 |1.08 1.74 3.48 5.75 11.25
20,10,5 | 24,12,6 | 28,14,7 | 28,14,7 | 32,16,8
(0.9965,0.999) | 25,14,8 | 30,16,9 | 34,18,10 | 34,18,10 | 39,21,11
A=1254 |1.14 2.08 4.20 7.48 16.92
32,16,8 | 44,22,11 | 48,24,12 | 52,26,13 | 56,28 14
(0.9975,0.999) | 41,22,12 | 55,29,16 | 60,32,17 | 64,34,18 | 69,36, 20
A=0917 | 1.03 1.69 2.65 4.32 7.27
24,12,6 | 28,14,7 | 36,18,9 | 36,18,9 | 40,20, 10
1.50 | (0.9970,0.999) | 32,17,9 | 36,20,11 | 46,25,13 | 46,25,13 | 50,27, 15
A=1.097 | 1.08 1.74 | 3.48 5.75 11.25
20,10,5 | 24,12,6 | 28,14,7 | 28,14,7 | 32,16,8
(0.9965,0.999) | 27,15,8 | 32,17,9 | 36,20,11 | 36,20,11 | 41,22, 12
A=1254 | 1.14 2.08 4.20 7.48 16.92
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Table II. A simulation study of PCS for the MLR rule
under Beta distribution for 8

B | e%) | k=2 |k=3|k=4|k=5 k=6
001 | 887 | 872 | 892 | .886 | .873
075 | 0.03 | .882 | .865 | .869 | .891 | .855
005 | .862 | .833 | .856 | .857 | .886
001 | 863 | .858 | .892 | .872 | .850
1.00 | 0.03 | .843 | 811 | .852 | .855 | .869
0.05 | .829 | 918 | 902 | .883 | .891
001 | 884 | 875 | .866 | .864 | .876
1.25 | 0.03 | 817 | 879 | .843 | .818 | .854
0.05 | .888 | .866 | .821 | .856 | .856
0.01 | .891 | .861 | .903 | .864 | .901
1.50 | 0.03 | .861 | .844 | .856 | .865 | .884
0.05 | .887 | .862 | .865 | .810 | .855

Note: average PCS across the table is 0.865

Table ITI. A simulation study of the accuracy of A

B | (Ra,Rs) A | A | B(A%)
(.9975,.999) | 0.917 | 0.930 1.42
0.75 | (.9970,.999) | 1.097 | 1.113 1.46
(.9965,.999) | 1.254 | 1.265 0.88
(.9975,.999) | 0.917 | 0.906 1.20
1.00 | (.9970,.999) | 1.097 | 1.089 0.73
(.9965,.999) | 1.254 | 1.245 0.72
(.9975,.999) | 0.917 | 0.892 2.73
1.25 | (.9970,.999) | 1.097 | 1.082 1.37
(.9965,.999) | 1.254 | 1.234 1.60
(.9975,.999) | 0.917 | 0.904 1.42
1.50 | (.9970,.999) | 1.097 | 1.116 1.73
(.9965,.999) | 1.254 | 1.259 0.40

245
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