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INFLUENCE OF SELECTION BIAS ON TYPE I ERROR
RATE UNDER RANDOM PERMUTED BLOCK DESIGNS
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Abstract: A model for selection bias in a large, single blind clinical trial is presented.
The actual Type I error rate is evaluated, and this is used to quantify the degree of
selection bias under random permuted block designs. The approach utilizes results
from the theory of random walks to show rigorously that when the total number of
patients is fixed and there is only one investigator, the least bias occurs when there
is a single block (random allocation). Even under random allocation, however, the
bias does not become negligible as the number of patients becomes large. It is also
shown that if the total number of patients and blocks is fixed, the bias is maximized
when the blocks are all the same size. On the other hand, if there are two or more
investigators, each aware only of his own assignments and each attempting to bias
the results, the bias appears to be minimized when the investigators enter the same
number of patients.

Key words and phrases: Random allocation, random permuted blocks, returns to the
origin of a constrained or unconstrained random walk, selection bias.

1. Introduction

In many clinical trials, patients enter sequentially, and must be treated as
they arrive. It is desirable to ensure an equal number of patients in the treatment
(T) and control (C) groups at several times throughout the trial. This is because
there may be time trends, causing a possible unintentional bias if a dispropor-
tionate number of early patients were assigned to the control group, for example.
Random permuted block randomization is often used to avoid this problem. If
the trial is not double blind, an investigator who knew that random permuted
blocks were being utilized could keep track of past assignments and figure out to
which group the next eligible patient is more likely to be assigned. Such knowl-
edge could affect the investigator’s eligibility determination of the next patient.
This is called selection bias.

Previous papers on randomization designs have evaluated selection bias in
terms of the expected number of correct treatment assignment guesses by the in-
vestigator (Blackwell and Hodges (1957), Efron (1971), Matts and Lachin (1988))
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or in terms of risk (Stigler (1969), Wei (1978)). An alternative measure of se-
lection bias is the actual Type I error rate. This paper uses such a measure to
quantify the degree of selection bias under different random permuted block de-
signs. A simple model is proposed wherein the investigators, using their power
to veto prospective patients, act according to their guesses (see 1.2). The model
allows explicit calculation of the Type I error rate when the investigator attempts
to bias the outcome.

1.1. Model

Suppose that treatment is intended to reduce the value of a continuous vari-
able X. For simplicity, assume that X is normally distributed with known vari-
ance o2. These assumptions of normality and known variance will be relaxed for
some of the results. With n observations in each group we base a one-tailed test
of the effectiveness of the treatment on the statistic Z = D/(2nc?)/2, where

D= ( - > )(X,-). (1.1)

control treatment

Since Z is a constant multiple of D when ¢ is known, we may consider D to be the
test statistic. The approximate one-tailed rejection region is D > (2no?)/22,.
The biasing policy may be stated succinctly as follows: The investigator counts
the numbers N¢ and N7 of patients assigned to the control and treatment groups
respectively thus far. He then chooses a patient with expected response:

p—mn if Nr< Ng;
" if Ny = Ng; (1.2)
w+n if Ny > Ne.

This is the setup of Blackwell and Hodges (1957), who then consider the expected
number of correct guesses.
Assume throughout this paper that there is no real treatment difference.

2. One Block of Size 2k (Random Allocation)

A permuted block design with only one block is called random allocation. In
this case the total sample size, 2n, is 2k, the block size. It is useful to consider
the constrained random walk associated with the treatment assignments. With
P; denoting patient %, let

g = -1 if P; is assigned to C
Tl 41 ifPRis assigned to T,
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and S; = Y0_, &. Let
T=min{i:2§i§2k:Si=0}

be the time of the first return to the origin of the random walk. Note that 7 is
well defined since we know that Sgx = 0. Throughout the paper Ny, will refer
to the number of returns of a symmetric, unconstrained random walk up to and
including time 2k, and Ny, will refer to the number of returns of a symmetric
random walk constrained to have a return at time 2k. Thus any statement about
the distribution of Nj, concerns the conditional distribution of Nax given that
Sor = 0.

The X response of the first patient, Py, will have mean . Assuming P is
assigned to T, the investigator will guess C next and choose the second patient
with expected response p+7, and he will continue choosing patients with expected
response u + 7 until the number of C’s equals the number of T’s. Let

DT=( > -y )(Xi)~

i<7,P;eC i<T,P,eT

Then by pairing one of the C’s among P,,...,Pr with P, we can write D, as
n+U+ Z;ffl V;, where U has mean 0 and variance 202, and V; are i.i.d. with
mean 0 and variance 202 and independent of U. The same representation holds
if the first patient is assigned to C.

Once patient 7 is reached, the entire process is repeated. Given that Ny, =7,

T k—r
D=r+Y Ui+ V; (2.1)
i=1 j=1

where the U’s and Vs are jointly independent with 0 means and common variance
252, Since we assume the response is normally distributed, then conditional on
N}, =r, D has a normal distribution with mean rn and variance 2ko?.

We see that the distribution of the test statistic under (1.2) depends only
on the number of returns of the constrained random walk associated with the
treatment assignments. The greater the number of returns, the stochastically
larger the test statistic becomes.

To find the unconditional distribution of D we must find the distribution of

1
It is shown in Proschan (1991) that

Py > )= (7 )k —j)zj“{ (%) —j)}_l (2.2)
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and therefore that

PN =) = ( )jzj{(zlf % —j)}_l. (2.3)

It is also shown that
Jlim Pr(Ny, /(2k)Y? > z) — exp(—z?%/2). (2.4)
Thus the survival distribution of the test statistic is
Pr(D/(2ko®)"/? > 3) = 1 — B&(X - Nyen/(2ka®)1/?). (2.5)
Asymptotically,

Pr (D/(2ke®)/? > A)

— 1 —/ o(A —'yz)xe"zz/zdx
0

= 1-9%(\)+ \/_IJI—? exp (EZ%F%)‘i(_l_\/li‘?)’ (2.6)

where v = 1/0 = the selection effect.

The probabilities corresponding to different sample sizes and selection effects
are given in Table 1 for & = .05 and o = .01. The degree of bias does not seem
to change much with different total sample sizes of 50 or more. Even with a very
small selection effect of .1 standard deviations the investigator is able to increase
the probability of a Type I error from .05 to nearly .065. A selection effect of
.3 standard deviations allows him to double the probability of a Type I error if
a = .05, and asymptotically to nearly triple it if o = .01.

Table 1. Probability of a significant result, one investigator

a = .05 - a=.01
vy=mn/o 2k =50 2k=100 2k=c0 2k =50 2k=100 2k =00
.10 .063 .063 .065 .013 .014 .014
.20 .079 .080 .083 .018 .019 .020
.30 .098 .100 107 .024 .025 .028
.40 121 124 .134 .033 .034 .039

.50 .147 152 .166 .044 .046 .053
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The asymptotic result (2.6) actually holds without the assumption of nor-
mally distributed responses. To see this, note that from (2.1),

NI
NI 2k
D/(2ka®)? = Niyn/(2ka®)'/? + @c—g—g’;l—/; ((1/N§k) ) Ui)
= (2.7)
2 k=N, '

{1 — Ny [k}
[2(k — Nj)o™ /2

7.

i=1

The corresponding U and Vj’s if the first patient following a return is assigned
to T do not necessarily have the same distribution as when the first patient
is assigned to C. They do, however, have the same means and variances. The
second term in (2.7) converges a.s. to 0 by the strong law of large numbers.
Since k — Nj, — oo a.s. as k — 00, the third term converges in distribution
to a standard normal deviate. Moreover the first and third terms are clearly
asymptotically independent; so, by (2.4), Pr(D/ (2ko?)1/2 > X) tends to the right )
side of (2.6).

Up to now the variance has been assumed known, for simplicity. If it is
unknown, then one would use the usual pooled estimate from the treatment and
control groups. Within each group, there will be a mixture of observations with
means u, 4 +17, and g —n. The proportion of observations with mean p becomes
negligible as k becomes large. The proportion of observations with mean u + 7
is approximately the proportion of time the constrained random walk spends
above 0. This proportion converges in distribution to U = p{t : Wo(t) > 0},
where u denotes Lebesgue measure and W9 is a Brownian Bridge process. U is
known to be uniformly distributed on [0, 1] (see Billingsley (1968, p.85)). Given
that U = u, the pooled variance estimator will approach o2 + 4n*u(1 — u). This
attains its maximum value of n2 + o when u = 1/2, so the asymptotic survival
distribution of D when the sample estimate is used in place of o is at least as
large as (2.6) with A replaced by Av/1 + ~2. This makes very little difference if ~y
is small.

3. More Than One Block

The biasing policy (1.2) is also effective when there are m > 1 blocks. It
makes no difference whether the block sizes are equal, and whether they are fixed
or random. According to Pocock (1983), “Also, it is advisable not to inform clin-
icians that blocking is being used and especially they should not know the block
size.” However, policy (1.2) works well regardless of whether the investigator
knows the block size. For any treatment allocation strategy which forces more
balance than complete randomization, policy (1.2) is effective. This applies to all
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permuted block randomization, whether the block sizes are fixed or random, and
to Efron’s (1971) biased coin design.

It is intuitively clear that of all random permuted block designs with fixed
total sample size, the one minimizing bias is a single block (random allocation),
and that the more one forces balance, the greater the selection bias will be. This
will be formalized through Theorem 3.1 below.

Recall, first, that random variable Y is said to be stochastically larger than
random variable X if Pr(X > z) < Pr(Y > z) for all 2. This is much stronger
than the expectation of Y exceeding the expectation of X. In fact it can be
shown that if Y is stochastically larger than X then E¢(X) < E¢(Y) for every
increasing function ¢ for which the expectations exist (Marshall and Olkin (1979,
p.481)).

Theorem 3.1. Suppose a study consists of a combination of random permuted
blocks of various sizes, with total sample size 2n. If the investigator adopts policy
(1.2), the test statistic D (as well as the number of correct treatment assignment
guesses) becomes stochastically smaller each time a pair of blocks is collapsed into
one. In particular, the design making D stochastically smallest is a single block
design (random allocation).

Proof. It suffices to show that the number Nj, of returns to the origin of the
random allocation design with sample size 2k is stochastically smaller than the
total number Nj; + Ny, _,. of returns when the sample is split into two blocks
of respective sizes 25 and 2k — 2j. Let S; denote a symmetric random walk, and
condition upon Sy, = 0. We further condition on the value of S2;, and show
that for any given value of Sy;, Ny, is stochastically smaller than Ny, + Nog—o;-
It suffices to show that the number of returns to the origin of a random walk
beginning at Sp = 2r and constrained to be 0 at time 2j is stochastically smaller
than the number of returns of a random walk beginning at Sy = 0 and constrained
to be 0 at time 2j, for any integer r. Let T; be the constrained random walk
beginning at the origin and U; be the constrained random walk beginning at 2r.
Without loss of generality assume that 7 > 0 and that T} = 1. Let 7 be the time
of the first return to the origin of T;, and let u be the time of the first return
to the origin of U;. Independently, generate a realization from each process, and
observe both. Then one of the following mutually exclusive events must occur:

A = {34 <min(r,p) 3T =U;»} or
B = A°n{7 < u}.
Given event A, the number of returns for the two processes has the same distri-

bution, and it is easy to show directly using (2.2) that given event B, T; has a
stochastically larger number of returns to the origin than U;.



SELECTION BIAS IN PERMUTED BLOCK DESIGNS 225

In Section 2 we considered the distribution of D under random allocation.
Under this scenario the number of returns to the origin is of the order of the
square root of the total sample size, so, by expression (2.5) the test statistic
converges weakly to a non-degenerate random variable. If more than one block is
used and there is a return at 2n, then (2.5) is still valid with k replaced by n and
N, replaced by the total number of returns by time 2n, whether forced by design
or occurring by chance. It is therefore clear that if the number of returns is of the
order of the sample size itself instead of its square root, the probability of a Type
I error converges to 1. Thus, rejection of the null hypothesis will be assured with
a large enough sample size. This will be the case whenever random permuted
blocks with a fxed maximum block size are used, irrespective of whether there is
a forced return at 2n. It is also the case with Efron’s (1971) biased coin design.
A comparison of different designs for which the number of returns is of the order
of the sample size is therefore moot.

A result stronger than Theorem 3.1 undoubtedly holds. It seems reasonable
that not only should the test statistic become stochastically larger each time a
pair of blocks is collapsed into one, but also each time a pair of blocks is made
more nearly equal in size without changing the total size of the two blocks. This
leads naturally to the topic of majorization and Schur functions.

For a vector z, let zp denote the ith largest component of z. Recall that
the vector ¢ = (z1,...,%n) is said to be smaller than y = (y1,-.-,Yn) in the
majorization ordering if

k k
PIECEOMT
i=1 i=1

for k = 1,...,n, with equality when k = n. A function f(z) is said to be
Schur-concave if f(x) decreases as « increases in the majorization ordering. The
above conjecture may then be rephrased as: With m blocks of respective sizes
b1, ..., bm, the probability Pr(D > c | b1,...,bm) is a Schur-concave function of
(b,...,bm) for each c. Unfortunately, this author has been able to prove this
only asymptotically:

Theorem 3.2. Suppose an investigator follows strategy (1.2) in a random per-
muted block design with m blocks of respective sizes by, ..., bm, and total sample
size 2n. Fiz m and let n — oo, b; — 0o in such a way that bi/(by + -+ + bm) —
m >0, 1<i<m. Then limy_ooPr(D/(2no?)'/* > ¢ | w) is a Schur-concave
function of ™ for each c. In particular, D 1s asymptotically stochastically largest
when ™ = (1/m,...,1/m).

Proof. It suffices to prove the theorem for m = 2, with respective block sizes
by = 27 and by = 2n — 2j. As usual let Néj denote the number of returns to the
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origin of a symmetric random walk constrained to have a return at 27, and let N} j
and Nén—2j be independent. We need only prove that the limiting distribution

of (Ny; + Nén_zj)/(Zn)l/2 as j — 00, n — 00, j/n — X becomes stochastically
larger as A increases from 0 to 1/2. Now

(Na; + Nén—zj)/@?”t)l/2 = AV2U + (1 = A2,

where U and V are independent Weibulls with common survival distribution
given by (2.4). It suffices to show that the survival function (), t) = Pr(A}/2U +
(1 — A)Y/2V > t) is increasing in A for 0 < A < 1/2 for each fixed t.

t/(1=M)1/2 (1 — \\1/2,,\ 2
Y(A, t) =/O exp{—(t (1)‘1/2/\) U) /Z}Uexp(——vz/Z)dv

+/ —v%/2) dv.
t/(1—,\)1/2UeXP( v°/2) dv

Integrating this expression, differentiating with respect to A and simplifying
yields:
oY

T = @2 {o0) - o(w) +

(v ; w) (q)(u) + ®(v) — 1)} :

where ¢ and ¢ are the density and distribution function of a standard normal
random variable, and u = (l—fA—)l/zt < (%—A—)l/zt = v for A < 1/2. It therefore
suffices to show that h(s,8) = ¢(s) — &(s — 6) + (6/2)(®(s — 6) + ¥(s) — 1) is
nonnegative for 0 < § < s. It is easily verified that h/8s = (25 — 6)(¢(s — 6) —
#(s)) > 0, and hence the value of s > § minimizing h(s, §) is s = §. It is therefore
sufficient to verify that g(§) = h(6,8) = ¢(6) —1/(27)Y/% + (6/2)(®(6) —1/2) > 0
for all 6 > 0. Now ¢'(8) = (6/2)((1/6)(2(8) — 1/2) — ¢(6)) = (6/2)($(6") — ¢(8))
for some 0 < 6* < §. Since this is nonnegative, g is increasing in § > 0. The
proof is completed by noting that lims_,o g(6) = 0 is nonnegative.

We see, then, that asymptotically the more nearly equal the block sizes the
greater the Type I error rate if the investigator is attempting to bias the results
of the trial. Equal block sizes are commonly used in practice.

4. More Than One Investigator

It is usually the case in clinical trials that separate blocked randomization
is used for each center participating in the trial. It is not uncommon for a
center to consist of several different hospitals called satellites. In this case an
investigator from one hospital might know the treatment assignments for his
hospital, but not those of the other satellites. It is interesting to consider what
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bias reduction results when the overall study is a random allocation design, but
there are 2 or more investigators, each oblivious to the treatment assignments of
the others. To illustrate, consider a random allocation design with 2n patients
and 2 investigators. Suppose that each investigator, not knowing the treatment
assignments of the other, follows strategy (1.2). Let S; be the random walk
representing the state of treatment assignments after patient i, and without loss
of generality assume the first investigator selects patients 1,..., 2k. Let 61 be the
time of the last return to the origin of S; at or before time 2k.

The first investigator will not make as many correct guesses as if a block
(random allocation) of size 2k were used for him for two reasons:

(1) S1,...,S2x will have stochastically fewer returns to the origin with the con-
straint that Ss, = 0 than it would with the constraint that Sor = 0.

(2) There will be a “tail” of more incorrect than correct guesses at times 6; + 1,
..., 2k unless Sy = 0.

For example, Figure 1 shows what might happen with the first investigator
entering 2k = 10 out of the total of 2n = 20 patients. In that figure 6; = 4 and
Sor = 2. The first investigator may or may not guess correctly for patient 5. He
will correctly guess assignments 8 and 9, and incorrectly guess assignments 6, 7,
and 10.

1 | T 1 1 i ¥

0 2 4 6 8 10 12 14 18 18 20
i

—=— |nvestigator 1 —=— Investigator 2

Figure 1. Random walk: 2 investigators
Overall random allocation
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How many correct guesses the first investigator makes is seen to depend on
the number of returns to the origin up to and including time 2k, and on Sy.
Let Ny be the number of returns to the origin of the random walk up to and
including 2k. We must first determine Pr(Nox = v1 N Sox = 25 | Son = 0). For
j = 0 one can use formula (2.3) to conclude that Pr(Nox = v1 N Sap = 0| San =
0) = 121 (2k;"1) (2"—2k)/[(2k - 1/1)(2:)] for 0 <v; <k. For j >0,

n—k

PI‘(Ngk =y N Sy =23 | Son = 0)
k—j
= > Pr(A, 2r N Bajgk—2r N Can—2k25)/ Pr(S2n = 0),

r=1

where A,, 2r = {v1th return of the random walk occurs at time 2r}, Bajok—2, =
{52r+1 > 0,5242>0,...,8 = 2j}, and C2n—2k,2j = {Szn - S = -—2j}. From
Feller (1968) the probability of Ay, 2r is v1 (*"7*!) /(2271 (2r — 11)]. Conditioned
on A,, 2r, the probability that Bg;ax_2, occurs is the probability that a random
walk beginning at state 0 is always positive and ends up at state 25 > 0 af-
ter 2k — 2r steps. By the ballot theorem (Feller (1968)) this probability equals

j(,ff;i;.) J[2%2 (k — r)j. I;inally, conditioned on Ay, 2» and By; ok—2y, the prob-
n—

ability of Cop—ok 25 is (n_k_j) /2?7=2k  Putting these all together and simplifying
one obtains, for 0 <1 <k — 7,

Pr(Nox = v1 N Sox =25 | Son = 0)

g [, B
n 1
(2n) (k - 1/1) r=vi41 (27‘ - Vl)(k - 'r)
= 4 (4.1)

V12V1 (2k;1/1) (2:—_-ik) lf ] _ O
| k- '

Now the second investigator will not know the treatment assignments of the
first, and consequently will not know that his portion of the constrained random
walk is starting at state 25. He will act as though the random walk were starting
at 0, and will flip a coin to guess whether the first patient will be assigned to
T or C. Likewise he will flip a coin each time the random walk returns to the
state 2j. Let Ny,_or be the number of returns of the random walk to the state
25 after time 2k. In Figure 1, No,_s; = 3. In a manner similar to the above one
can show that for 0 < vy <n -k —j,

Pr(Nap—gk = v2 | Nop = v1, Sox = 2j, Son = 0)
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. n—2k—2v n—k—j n—2k—2r) (2r—v
A e R L
B CEEr M- N e D (42
= 9 (2n—2kk—uz) |
D22 n— - if j =
{ (2n — 2k — 1) (*n %)

The next step is to find the conditional distribution of D given Sy =
2j, Nop = vi, and Naop_gx = V2. Assume for the moment that ;7 > 0. Re-
call that 6; was the last return to the origin at or before time 2k. Patient
9, + 1 will have mean p, and then patients 6; + 2,...,2k will all have mean
p+n. Thus (Xg +1<i<2k,Piec — S 6, +1<i<2k,per)(Xi) is normally distributed
with mean (1 — 25)(u + 1) — p. Now let 6, be the last time at or after pa-
tient 2k that the random walk returns to state Sox = 2j. In Figure 1, 6; = 18.
(X6,+1<i<on,PieC — Y 6,+1<i<2n, pier)(Xi) is normally distributed with mean (25—
1)(p — n) + p. It follows that the conditional distribution of D given Sk = 27,
Nox = v, and Ng,_9; = Vo is normal with variance 2no? and mean

(1 +v2+2(1—=25))n if 7>0 (4.3)
(v1 +v2)n if j=0. '
If j < O then (4.1)-(4.3) are valid with j replaced by l7]-

Using (4.1)-(4.3) one can obtain the distribution of the test statistic. Table 2
shows the actual Type I error rate if two investigators use strategy (1.2) in an
overall random allocation design of total sample size 60. As can be seen, the Type
I error rate is lowest when each investigator enters the same number of patients,
and this rate is substantially lower than when one investigator enters all patients.
For a selection effect of .3 standard deviations the Type I error rate is .099 if
one investigator enters all 60 of the patients, and 1t is .073 if each investigator
enters 30 patients. This is not surprising in view of the fact that the constrained
random walk tends to be largest in absolute value at the midway point. It is
conjectured that with m investigators, each following strategy (1.2) applied to
his own treatment assignments, the test statistic is stochastically smallest when
the blocks are all the same size.

Table 2. Probability of a significant result, two investigators

2n = 60, a = .05
y=mn/o (0,60) (10,50) (20,40) (30,30)

.10 .063 .058 .056 .056
.20 .079 .067 .064 .063
.30 .099 .079 075 073
.40 122 .094 .087 .086

.50 .148 110 .102 .100
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5. Conclusion

It is well recognized that a clinical trial should be double blind, if possible,
and that the treatment assignments should be nearly balanced throughout the
study. If double blinding is impossible or infeasible, then selection bias can result
in serious inflation of the Type I error rate. Moreover this inflation increases as
we try to make treatment assignments more balanced. For example, a random
allocation design (one large block), which requires balance only at the end of
the study and could be quite unbalanced in the interim, was shown to be least
susceptible to selection bias. By contrast blocks of size two, which guarantee
balance after each pair of patients, yield the largest bias. Furthermore, for a fixed
sample size and number of blocks, the bias is maximized when the block sizes
are all equal. This is precisely because the more nearly equal the block sizes,
the more balanced the treatment assignments tend to be. Even if we sacrifice
some treatment balance and use a random allocation design, the bias does not
disappear as we increase the sample size. This reinforces the idea that double
blinding is critical when possible.

It may be that the overall design is a random allocation but there are two
or more investigators, each knowing only his own past treatment assignments.
If each is attempting to bias the results, the impact on the Type I error rate is
smaller than if there were only one investigator, but it is still noticeable. In this
case the bias appears to be minimized when each investigator enters the same
number of patients.
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