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Abstract: We show that empirical likelihood is justified as a method of inference for
a class of models much larger than the class of linear models considered by Owen
(1991). In particular, we show how empirical likelihood may be used with generalized
linear models. Quasi-likelihood and extended quasi-likelihood are used to derive the
necessary estimating functions, but the method can be applied similarly using other
sources. We consider separately those models in which the dispersion parameter is
fixed and known, those in which it is fixed but unknown, and those in which it is
itself modeled linearly via a link function.
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1. Introduction

Empirical likelihood is a nonparametric method of inference with sampling
properties similar to those of the bootstrap, but instead of resampling it works
by profiling a multinomial likelihood supported on the sample. In settings with
independent and identically distributed random variables, its properties have
been examined by Owen (1988, 1990), Hall (1990), DiCiccio, Hall, and Romano
(1991), and Qin and Lawless (1991). Recently, Owen (1991) has extended the
applicability of empirical likelihood to the context of linear models. In this paper
we show that the results of Owen (1991) imply that empirical likelihood is justified
for use in a much larger class of models. We focus, in particular, on how it may
by used for generalized linear models (GLMs).

Specifically, let data (Y1,X1),-..,(Yn, Xn) be observed, where Y; € R are
independent random variables and X; € IR? are fixed covariates. A GLM models
the Y; in terms of the X; by specifying that

E(Y:) = pi, g(ps) = X8, var(Ys) = ¢V (ui), (1.1)

where g(-) and V() are real-valued link and variance functions respectively, and
0 € RP. If it is thought appropriate to model the dispersion, ¢, as well as the
mean, a second level is specified for the model, i.e.

E(d:) = ¢i, h(e:) =Uv, var(di) =7Vp(i)- (1.2)
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Here d; = d(Y;; u;) is some statistic that measures dispersion, h(-) and Vp(:)
are real-valued link and variance functions for the dispersion, and v € IR?. The
U; € IR? are covariates for the dispersion and are often a subset of the X;.

Not surprisingly, it becomes more difficult to develop parametric methods of
inference for GLMs as the complexity of the models increases and/or the num-
ber of distributional assumptions decreases. In the original form in which GLMs
were introduced by Nelder and Wedderburn (1972), where the Y; are assumed
to have an exponential family distribution, approximate confidence regions can
be found for # by using a normal approximation to the distribution of the maxi-
mum likelihood estimate . Wedderburn’s (1974) introduction of quasi-likelihood
showed that the distributional assumption on the Y; can be replaced by a weaker
one on the form of their mean and variance, and still have normal theory con-
fidence regions justified. The extended quasi-likelihood of Nelder and Pregibon
(1987) is a natural generalization of quasi-likelihood which enables one to esti-
mate or model the dispersion ¢ or nonlinear parameters in the variance V(-).
However, first and second moment assumptions are insufficient to justify typi- -
cal parametric methods of inference in this context and we are forced to make
assumptions about the forms of higher moments. Davidian and Carroll (1988)
examine a suggestion by Nelder and Pregibon (1987) to treat the extended quasi-
likelihood as an actual likelihood and approximate its distribution by that of a
chi-square. They conclude that while such an approach is valid for exponential
and near-exponential family distributions, it may be misleading in many other
cases. For the combined model of (1.1) and (1.2), Smyth (1989) asserts that
extended quasi-likelihood estimates of v have an asymptotic normal distribution,
but there is no usable variance estimator for these estimates unless the form of
Vp(-) is specified. Efron (1986) and Jgrgensen (1987) grapple with these types
of problems in methods similar to extended quasi-likelihood. Some methods of
non-parametric inference have been investigated by Simonoff and Tsai (1988) for
use with quasi-likelihood functions. They find that application of the bootstrap
is not at all straightforward and that it seems to suffer poor performance as a
result. Several jackknife-based estimators are proposed, and some are found, in
simulations, to have certain robustness qualities.

Empirical likelihood has an advantage over some parametric methods of in-
ference for GLM’s in that it makes only mild assumptions on the existence of
certain moments. The number of moments depends, to some degree, on the com-
plexity of the statistics being used. Although numerous methods have been sug-
gested for estimating # and ¢ or -, quasi-likelihood and extended quasi-likelihood
lend themselves particularly well to empirical likelihood because of their simplic-
ity and their semi-parametric character. For this reason, our results show how
to use empirical likelihood mainly with estimating functions derived from these
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two methods. However, in principal, empirical likelihood can give estimates and
confidence regions with almost any method that yields a “reasonable” set of esti-
mating functions. By “reasonable” we mean that the estimating functions have
zero mean, finite variance, and either are based on independent and identically
distributed sampling or have higher order moments which allow the use of a tri-
angular array argument. In Section 2, a brief introduction is given to empirical
likelihood. Section 3 discusses why empirical likelihood confidence regions are
justified for a general class of models which estimate parameters via a set of es-
timating equations. In Section 4, it is shown, explicitly, how empirical likelihood
can be used with GLMs. Three situations are examined: those models in which
the dispersion parameter is fixed and known, those in which the dispersion is fixed
but unknown, and those in which the dispersion itself is also modeled linearly
via a link function. Some examples are given in Section 5. Section 6 contains
concluding remarks.

2. Introduction to Empirical Likelihood

Let X1,X2,... be independent and identically distributed random vectors
in IRP with distribution function F;. Based on a sample of size n from Fp, the
empirical distribution

Fa() =2 Y 10 € (&)
i=1

is well known to be the nonparametric maximum likelihood estimate of Fy. The
function that it maximizes is the empirical likelihood function,

L(F) = [] F{=:},
1=1

where F{z;} is the probability, under F, of the set {z;} and z; is the observed
value of X;. Analogous to the parametric case, the empirical likelihood ratio
function is defined by

L(F)

RE)= 1wy
If the z; are all distinct we may write R(F) = [] np:, where p; = F{z;}. In the
case where the z; are not all distinct, Owen (1988) shows that this expression for
R(") is still appropriate, but with the modification that 3.z =z, Pj = F{z;}. In
other words, ties among the data do not affect this natural re-expression of the
likelihood ratio.

Suppose that Fp has mean po = (us,---,mh) € IRP and variance Vp of full-
rank. In order to form an empirical likelihood confidence region for po, we define
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the profile empirical likelihood ratio function

n n n
R(u) = Sup{ [[reilpi >0 =1, pizi= M}-
1=1 i=1 =1

Owen (1990) shows that —2log R(u) — x?p) in distribution as n — oo, which is
analogous to the parametric case shown by Wilks (1938). Therefore, to construct
an approximate (1 — a)-level confidence region for ug one computes the set

Cuo = {1 € R?| = 2log R(p) < ca},

where ¢, is defined such that P(x?p) <cy)=1-a.

A discussion of the computation of () can be found in Owen (1990, Section
3). The problem of maximizing [] np;, subject to the constraints p; > 0, Y p; =1,
and ) p;x; = u, is shown, using a Lagrange multiplier argument, to be equivalent
to minimizing the expression — Y log(1 + X' (z; — u)) over A = A(u) € R?, when
p is in the convex hull of the data, i.e. ch({z1,...,z,}). This alternative version
of the problem is the convex dual of the original. Instead of attempting to solve a
constrained maximization problem, the researcher is faced with the much easier
task of finding the unconstrained minimum of a convex function, a problem for
which many algorithms exist.

3. Empirical Likelihood and Modeling

For independent and identically distributed random variables, Owen (1990)
extends the applicability of empirical likelihood beyond single functionals by jus-
tifying its confidence regions for functions of several means, Frechet differentiable
functions, and M-estimates. Qin and Lawless (1991) show that empirical likeli-
hood may be used in this context to perform inference on a parameter which is
estimated by the solution of a general set of possibly nonlinear estimating equa-
tions. However, it is from the following result of Owen (1991) that justification is
derived for the use of empirical likelihood with data which are independent but
not necessarily identically distributed.

Theorem 1. Empirical Likelihood for Triangular Arrays. Let Z;, € IR?, for
1<i<nandp<n<oo, be a set of random vectors such that Zi,,...,Z,, are
independent for each n. Suppose that E(Zin) = pn, var(Zin) = Vi, and define
Vo, = %Ef‘zl Vin, 01n = maxeig(V,), and 0p, = mineig(Vy,).

Assume that the following three conditions hold.

P(un € ch({Zin,- .., Znn})) —1 as n— oo (3.1a)
n=2 ZE(HZm - pn||401'n2) —0 as n— o0 (3.1b)
=1

For some ¢ > 0 and alln > p, opn/o1n > c. (3.1¢)
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Then —2log R(pn) — x?p) in distribution as n — oo, where

n n n
R(p) = sup { [Inpi | pi > 0, pi= LZPi(Zm —p)= 0}-

=1 1=1 i=1

To see how we may use this theorem for modeling, assume that we have pairs
(Y1, X1),...,(Yn, Xn) where the Y; are independent real random variables and
the X; € IR are fixed covariates. In addition, suppose that we have a vector of
real functions f(W;; ) such that

!/
FWis0) = {1(Wis6), ..., (Wi 0)}, and E{f(Wii0)} =0,  (32)

where W; = (Y;, X;) and 8 € IRP is to be estimated. It follows immediately by
Theorem 1, with Zi, = f(Win;0), and the assumption that E{f(Win;0)} =0
under the true 8, that —2log R(6) — X%,,) in distribution as n — oo, where

R(6) = sup { ﬁnpi | pi > O,ipi = 172n:pif(Win;0) = 0}- (3.3)
=1 3

i=1 i=1

Note that if we define ¥;, = var{f(Win;0)}, ¥p, = %Z?zl Vin, Yin =
maxeig(¥,), and ¥p. = mineig(¥,), conditions (3.1a), (3.1b), and (3.1c) are
replaced by the following.

P(0 € chl{f (W1n;6), - ,f(W,m;B)}]) —~1 as n—oo (3.1a)

n2 Y B{If(Win; 6)*937} — 0 as n— oo (3.10")
1=1
For some ¢ > 0 and all n > p, Ypn/¥1n > €. (3.1¢")

Although we restrict our attention to generalized linear models in this paper,
it is clear that Theorem 1 implies that empirical likelihood should be valid over
a large class of linear, nonlinear, and semi-parametric models. For a given set
of data, if the hypothesized model admits a set of estimating functions of the
form (3.2) which satisfy (3.1a’), (3.1b'), and (3.1c'), then the use of empirical
likelihood confidence regions is theoretically justifiable. Further research needs
to be done examining the application and performance of empirical likelihood for
specific classes of models.

4. Generalized Linear Models

The class of generalized linear models arises through a natural generalization
of the ideas behind classical linear regression. Hence, this class of models would
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seem a logical area in which to begin applying our extension of Theorem 1. In
this section, we consider, in sequence, the cases where the dispersion ¢ is fixed
and known, fixed but unknown, and itself modeled as in (1.2). As mentioned
above, we use the methods of quasi-likelihood and extended quasi-likelihood to
derive estimating functions for empirical likelihood. Note that, since maximum
likelihood and quasi-likelihood coincide for all linear exponential families, the
class of estimating functions derived using the former method automatically falls
within that of the latter. See Morris (1982) and Nelder & Pregibon (1987).

4.1. GLMs with fixed, known dispersion

Suppose for the moment that we are working with Model (1.1) in which
the dispersion parameter ¢ is fixed and known. The quasi-likelihood (or, more
precisely, log quasi-likelihood) for Y; is defined to be

Mi Yz -1
Q(pi; Y3) =A Wdt’

when this integral exists, and hence, by independence, the quasi-likelihood for
the complete set of data is

n
QYY) = Qui;Yi).
=1
Differentiating with respect to # and substituting from (1.1), the quasi-score
function may be written as

a Y; — pi Op;

‘a‘EQ(l/vﬁYi) = V() 96 (4.1.1)

where, by definition, u; = g~*(X/6). Note that, if V(u) is the variance function of
an exponential family, then (4.1.1) will simply be the maximum likelihood score
function.

Since E{&Q(u;Yi)} = 0, we take as the f(Wi;6) of (3.2)

Y; — pi Ops
€ IR?.
¢V (ni) 06

Table 1 gives some examples of such Z;. Using the results following Theorem 1,
the maximum empirical likelihood estimate (MELE) of 6 is given by

Z; = Z{(YhX't)ye} =

(4.1.2)

0 = arg Imax R(6),

and an approximate confidence region can be found for § by using a chi-square
approximation to the distribution of —2log R(6).
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The usual inference for quasi-likelihood estimation uses either a normal ap-
proximation to the distribution of the maximum quasi- -likelihood estimate, 9Q L, Or
a chi-square approximation to the distribution of the qua31-11kehhood ratio statis-
tic, when it exists. Although the point estimates 6 and fgr, will be the same,
this need not be true for the corresponding likelihood ratio curves, and hence the
confidence regions. At first glance it may appear that empirical likelihood and
the parametric methods of inference rely on more or less the same assumptions,
namely the specification of the first two moments and some weak conditions on
a few of the higher moments. However, while quasi-likelihood requires that the
first two moments be specified correctly, empirical likelihood only requires that
the estimating functions have expectation zero. Hence empirical likelihood will
be robust to misspecification of the variance function, as long as the equation for
the mean is correct. In the parametric case, a normal approximation will still be
valid in the presence of variance misspecification, but the wrong quantity will be
used in setting the confidence limits; the chi-square approximation will not even
be valid.

As an example, consider the case where the variance is a power of the mean.
Suppose that while we specify V(u;) = pf, the true variance is in fact VT(M) =

p&te, for some a, e > 0. Define D to be the n x p matrix with (7, 7)th entry Z4* 69 ,
V = dmg{u1 .-, 1%}, and V. = diag{ps,...,rs}. Then, whereas we would use
the relation

V(6 fgr) ~ N (0, ng(D'V- D))

in setting our approximate normal conﬁdence limits, the correct relation to use
would be

V(8 —boL) ~ N (0, n¢(D'V'D)"}(D'V.V ' D)(D'V'D)7?).

Furthermore, if the quasi-likelihood ratio statistic, QLR = —2{Q(u,Y) — Q(Z¢rL,
Y)}, exists, we would approximate its distribution by a xfp) random variable,
when in reality we have

QLR ~ X?P) + Up + Op(n™*/?),

where Uy is a random variable with expectation E[Up] = tr{(D'V1D)"}(D'V.V !
D)} — n. As a check, note that when € = 0 the two normal approximations are
identical and Uy = 0.

In general, empirical likelihood may suffer a loss of efficiency under misspec-
ification of the variance, but the confidence regions for 6 will still be correct,
provided that conditions (3.1a’)-(3.1c’) are satisfied. Condition (3.1a') insures
that the mean of the quasi-score functions (i.e. zero) is in the convex hull of the



206 - ERIC D. KOLACZYK

data with high probability. Similar to Owen (1991), a sufficient condition for
(3.1a’) to hold is that

ch(P)Nch(N) # 0, (4.1.3)

where P = {z; | yi —u; > 0}, N = {z; | yi — s < 0}, and p; = g~ !(z}6).
Conditions (3.1b") and (3.1¢’) are mild conditions on the moments of Y to allow
a moment approximation of —2 log R(#) and the use of the Lindberg-Feller Central

Limit Theorem. If we define p4(z;) = (ag_;‘(f:g))‘1 f[;‘}@i")]‘;dFm” then

n
n72 Y " Nzl pa(zs) — 0 (4.1.4)
i=1

is a sufficient condition for (3.1b"). To understand condition (3.1c’) better in the
context of this section, first note that ¥;, = var(Z;) = 7(z;)z;z}, where
(39‘1(2729))2
a6
¢V (mi)
and so ¥, = 1 3" 7(z;)z;z}. Trivial inequalities then show that it is sufficient for
(3.1¢') that the 7(z;)’s and the maximum and minimum eigenvalues of 1(X’'X)

be bounded away from zero and infinity. The following corollary formalizes the
above statements.

Corollary 1. Let Z; be defined as in (4.1.2). Assume (4.1.4) holds, and (4.1.3)
holds with probability tending to 1 as n — oo. Suppose there exist constants
a,b >0 such thata < 7(z;) fori =1,...,n, and for alln > p,a < mineig(}—l(X'X))
and L 3 7(z;)||zi]|? < b < 0o. Then —2log R(6) — xfp) in distribution as n — oo.

7(zi) =

The condition that 1 3" 7(z;)||z;||> < co comes from using Rayleigh’s prin-
ciple on ¥,. For normal data and the model in Example 5.2 below, (a non-
exponential family), 7(z;) is a constant. For binomial data, 7(z;) < %. Thus for
these three cases, this condition may be replaced by %Z lz;]|]> < oo. For the
cases where the data is modeled as Poisson, gamma, or inverse Gaussian, 7(z;) is
simply ps, u?, and u3, respectively. Hence, with the assumption that the u; are
bounded above, we may again use the simpler condition that 2 3" ||z;||2 < oo in
these three settings. Note that this condition is satisfied easily in the cases where
the z;’s are bounded and where they are sampled from a normal distribution.
Since 7(-) is just a function of the link and variance functions, other models may
be checked on a case by case basis.

4.2. GLMs with fixed, unknown dispersion

Consider Model (1.1) again, but now suppose that, although ¢ is believed to
be fixed, its value is unknown. Such an assumption is common in binomial and
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Poisson overdispersion models. A commonly used point estimate for ¢ is

L1 &K wm)

a moment estimator based on the squared Pearson residuals rf, = %‘%ﬁ Note
that by assuming the form of only the first two moments, quasi-likelihood does not
enable one to do inference on é. In this respect, Nelder & Pregibon’s (1987) ex-
tended quasi-likelihood offers an improvement by augmenting the quasi-likelihood
Q(p;Y) so that it will behave like a likelihood with respect to both 6 and ¢. The
resulting likelihood is

D(Y:; pi
@ (i i) = - S log{2ngV () - 3 20t
where v
BV —
D(¥i ) = ~26{Qus Y0 — Qs Y} = =2 [1* S

is the deviance function.

. + o O . .
By construction, 29Qt _ 8Q _ Yizpi Ot 1, 7er0 mean. With the assumption
Y] 86 #V(u;) 08 p

that k,(Y;) = O(¢"!) for r > 2, a saddlepoint argument using small-dispersion
asymptotics shows that E{D(Y;;pi)} = ¢ and hence ‘—9% = DZ;S;“ 2 - 513 has
approximately zero mean (McCullagh and Nelder (1989)). In contexts where
these assumptions are tenable, empirical likelihood confidence intervals may be

obtained for (8, ¢) using the estimating functions

7 = 2{v Xs 0,00 = {2, 2 -

in place of the Z; of (4.1.2). Since the assumptions above on the cumulants are
properties of the exponential families, empirical likelihood confidence intervals
based on Z; should be especially useful in models for binomial and Poisson data
with mild overdispersion.

In addition to the deviance function D(Yj;u;), another common measure
of dispersion is the squared Pearson residual, rf,, defined above. As use of the
deviance function can be motivated by extended quasi-likelihood, use of the Pear-
son residual can be motivated by pseudo-likelihood methods. Differentiating the
pseudo-likelihood

!
} € RP+! (4.2.2)

2

PL; = % &+ Log(2meV ()
i394 28 Hi
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27
with respect to ¢, we get Qp—i’l = %ﬁ - ggg, which has zero mean under the true

(0, ¢). This would suggest using

- . r2. 1\
7= KO0 0.0) = (25 - 1) eRP (23
as our estimating functions. Simply noting that r ; 1s an unbiased estimate of ¢
and inserting it in place of D(Y;; u;) in (4.2.2) Would lead to the same formula.
In the case of a normal model the above two measures of dispersion coincide,
but they differ when one moves away from normality. Nelder & Lee (1992) cite
“considerable disagreement” about which is better and address the question in
the context of finite samples through an extensive series of simulations. This
approach is motivated, in part, by the work of Davidian & Carroll (1988), which
found the Pearson residuals to be preferable in certain cases due to the asymptotic
bias of D(Y; u). Their asymptotics were based on small ¢ or large u. In terms of
mean square error, Nelder & Lee found that the deviance did noticeably better
than the Pearson residuals in examples with small values of y, and as well or
slightly better with large values. The authors reason that these results arise
from the bias of D(Y'; 1) being overwhelmed by the larger variance of rpl in finite
samples, the latter being due to the fact that the deviance residuals are very
close to the best normalizing transformation. Hence, in general, it appears that
Equation (4.2.2) is preferable to (4.2.3). However, in practice if the p; are felt
to be large, (4.2.3) at times may be more attractive because it will often be less
complicated to code into an optimization routine. Moreover, in some situations,
the D(Y;; u;) may not exist, as will be seen in Example 5.2.
Regardless of whether Z; or Z! is used, the MELE of ¢ is given by

¢ = arg max R{(6,9)}.

An approximate confidence interval for ¢ can be found by approximating the
distribution of —2log R(¢) by x?l), where R(¢) = supgerr R{(6,#)}. A set of
sufficient conditions for (3.1a’)-(3.1¢’) to hold in the present context would be
similar to those in Section 4.1, but necessarily involving higher moments of the
Yy’s. It should be noted that the validity of empirical likelihood confidence regions
for a portion of the parameter vector obtained by profiling out the remaining por-
tion as nuisance parameters does not follow directly from Theorem 1. However,
Corollary 5 of Qin & Lawless (1991) supports this in the case of independent
and identically distributed random variables, and can be adapted to the present
context by appealing to the Lindberg-Feller Central Limit Theorem.

As mentioned above, there are certainly other sources for the variables Z;
and Zr. For example, Efron (1986) and Jgrgensen (1987) use slightly stronger
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assumptions than those above to arrive at expressions similar to those of extended
quasi-likelihood. Also, Godambe and Thompson (1989) derive optimal sets of
estimating equations for either 6 or (6, ¢), but knowledge of the skewness and
kurtosis of the underlying distribution is necessary in order to use them. However,
Godambe (1991) has shown, recently, that the dependence on these moments is
“slight” in some situations.

4.3. Simultaneous modeling of mean and dispersion

The model (1.1) can be extended even further by attempting to model the
mean and dispersion simultaneously. This type of modeling has received increased
attention, recently, in areas where quality control and quality improvement are of
interest. We begin by assuming that (1.1) and (1.2), together, form a reasonable
model for the data. Empirical likelihood can then be applied in a straightforward
manner by using the method of Section 4.1 on both the mean and dispersion
submodels. The resulting estimating functions are simply

zr = Z{(Yi, Xi,Us); (6,7} € RP™
o [Bom O &b aqs,l', (4.3.1)
¢:V (ui) 86" TVD(¢:) Oy
where p; = g~ *(X!0) and ¢; = A~ (U}7).

Unfortunately, in practice (4.3.1) cannot often be used because the form of
Vp(-) in (1.2) cannot be specified with any confidence. Typically, we may be
comfortable with specifying only that h(¢;) = U/ for some real-valued function
h(-), covariates U;, and parameter 7 € IR?. Using extended quasi-likelihood,
this is still sufficient to obtain a set of estimating functions. By differentiating
Q*(Y;; pi) with respect to 7y instead of ¢, we get

_ D(Yi; i) — ¢i 9¢s

9 H+
= i Y) = , 3.
5@ ) 297 3y (4.3.2)
and can, therefore, use
! d'i_¢i6¢i},
o = Z{(Ye, Xi, Us); (0,7)} = | 205 »—5 3 pte, 3.
25 = Z{05, X, Ui 0,70} = | 257, S 5| € (433)

where Z: is the first component of (4.3.1).

Note from the form of (4.3.2) that this approach implicitly assumes that
var(d;) = 2¢2. Since var(r2) = 2¢°(1 + ps/2), where ps = ka(Y)/Kk3(Y), and
var(D(Y; p)) =~ 2¢*(1 + pa/2), both D(Y3; i) and rl; seem to be reasonable
candidates for d;. Note that, if an estimate of p4 is available from the data, using

- d;
&= ——— (4.3.4)

" V14 pa/2
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should improve efficiency of the corresponding estimating equations. See McCul-
lagh and Nelder (1989, Chapter 10), for a more complete discussion. Godambe
& Thompson’s (1989) paper also develops a set of optimal estimating functions
for estimating 6 and v simultaneously, although these, too, require knowledge of
the skewness and kurtosis. However, in situations where the data are substantial
enough to estimate pg4 well in (4.3.4), estimates of skewness and kurtosis may be
good enough to make the equations of Godambe & Thompson worth trying as
well.

The manner in which the Z}* and Z;** are used to form empirical likelihood
confidence regions for (8, ~) is completely analogous to Sections 4.1 and 4.2, using
xfp +¢) to approximate the distribution of —21log ®{(6,v)}. Confidence regions for
components of either 8 or v are obtained by profiling out the other components
as nuisance parameters. Because the theory behind empirical likelihood implies
that it may be used with any reasonable set of estimating functions, the pri-
mary difficulty in modeling the mean and dispersion simultaneously is in finding
such functions. The performance of empirical likelihood may vary greatly among
competing sets of estimating functions, depending on their relative efficiencies.

5. Some Examples
5.1. Kyphosis data

This example involves the presence or absence of kyphosis, a post-operative
deformity, following corrective spinal surgery (Chambers & Hastie (1991)). Mea-
surements were taken on 81 children, with 17 cases of kyphosis being observed.
The response y; was a binary variable for the presence or absence of kyphosis,
while the covariates were z; the age of the child, z; the number of vertebrae
involved in the operation, and z3 the beginning of the range of the vertebrae.
Physicians were interested in whether the latter three variables are related to the
former in such a way that they could be used for pre-operative screening. A logit
model was fit to the data, with the dispersion parameter ¢ identically equal to
1, ie.

1

E(y;) = m, var(y;) =m(1-m), log (I——W_w) = 0o + 6171 + G2 + O323.

One question to ask of these data is whether the age of a child has a significant
effect on the odds of developing kyphosis after surgery. For example, if younger
children seem more inclined to develop kyphosis, perhaps postponing the time
of operation would be beneficial in some cases. Thus we test the hypothesis
Ho . 91 = 0.
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In order to find empirical likelihood confidence intervals for 6;, the FOR-
TRAN package NPSOL (Gill, Murray, Saunders & Wright (1986)) was used.
The empirical likelihood estimating functions for the model are

Z; = X; [Yi -{1+ e(—Xt{e)}_l].

The problem of finding

R(6:)= sup R(6)
(60,82,83)ER®

was interpreted as one of maximizing S log(np;) over 84 variables, i.e. the p;, 6o,
8, and 63, subject to the constraints p; > 0, Y p; =1,and 3 piZ; = 0. Although
the dimension of this problem appears daunting, it turns out to be relatively
unimportant to NPSOL. Much more important is the smoothness of the func-
tion being optimized. For this problem, NPSOL was able to compute reliable
values of the profile empirical likelihood ratio far beyond any necessary levels, as
determined by a chi-square approximation.

Figure 1 shows the resulting profile empirical likelihood curve, with asymp-
totic 95% and 99% lines drawn in by comparing the distribution of —2log R(61)
with the x%l) distribution. For the hypothesis Hy, empirical likelihood gives a
p-value of slightly less than 0.05, thereby suggesting that there is some evidence
for rejecting at the 95%-level but not at the 99%-level. The dotted curve in Fig-
ure 1 is the profiled parametric binomial likelihood ratio. The fact that the two
curves are so close suggests that the logistic model does a good job describing
the relationship underlying the data. Empirical likelihood gives a slightly larger
right endpoint, and a noticeably smaller left endpoint, at both the 95% and the
99% levels. Note that, based on the binomial likelihood ratio, we would not have
rejected the hypothesis that 6, = 0 at the 95% level. The actual confidence inter-
vals were (—0.00109, 0.02468) and (—0.00475, 0.02958) for the binomial likelihood
ratio, and (0.00055, 0.02488) and (—0.00247, 0.03028) for empirical likelihood, at
the 95% and 99% levels respectively.

5.2. Leaf-blotch data

As an example of doing empirical likelihood inference on the dispersion pa-
rameter ¢, we consider the leaf-blotch data of Wedderburn (1974). Ten varieties
of barley were grown on nine sites and examined for Rhynchosporium Secalisi or
Jeaf blotch. The response y; was the proportion of the leaf area affected, while
the covariates were indicators for variety and site. Following the example of
Wedderburn (1974) and McCullagh & Nelder (1989), we treat the proportions
as pseudo-binomial data. These authors found the usual binomial variance to be
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inadequate for the data, and instead suggested using the model

E(y:) =m, var(y)=¢mi(1-m)?, log (1 TW) =0 + b1z1 + - - + O17717.
2

Here the parameter ¢ cannot strictly be called an overdispersion parameter, but
instead acts as a simple scale parameter. Hence, for example, if ¢ = 1 it follows
that a more suitable variance for this data than the binomial variance is just its
square.

In order to construct empirical likelihood confidence intervals for ¢ we first
note that the variance we have chosen corresponds to the deviance function

i yi _ 1-wi
D(yi;ui)=—2{(2yi—1)log (1 “.> T 1_2.}’
1 7 1

which is undefined when u; is 0 or 1. Since some of the observed proportions
were zero, this is not actually a proper deviance function in the context of our
problem (see McCullagh & Nelder (1989)) Therefore, for the purpose of defining
estimating functions, we prefer to use r ; with (4.2.3) instead of D(y;; u;) with
(4.2.2). It follows that the estimating functlons take the form

{qz(9)sz(9)}2 _1
2¢7 2¢)°

where s;(6) = 2 + exp(X}0) + exp(—-X;6) and ¢;(8) = y; — {1 + exp(—X!6)} 1.

Again, the computations were done using NPSOL, this time to find R(¢).
Here the problem takes the form of optimizing )" log(np;) over 108 variables, i.e.
the p;’s and the 18 coordinates of §. The maximum empirical likelihood estimate
for ¢ was ¢ = 0.791, suggesting that 7?(1 — ;)? alone is an inflated model for the
variance by about 25% However, the commonly used moment estimator (4.2.1)
estimates ¢ by ¢ = 0.99, which suggests that the variance can indeed be modeled
effectively as m(1—m;)%. The difference between these estimates can be explained
easily by noting that

Z; = |si(8)¢ ™ q:(0) X

- 1 n—2p-
¢ = ;Zrﬁi = @. (5.1)

By estimating (6, ¢) simultaneously using likelihood-based methods, ¢ automati-
cally incorporates weights of % On the other hand, ¢ uses weights of nl__,g to ad-
just for the biasedness from having first estimated éQ L- A similar situation arises

with the use of parametric likelihood methods. For example in a model where
Y; ~ N(X]6,0?), the maximum likelihood estimate for o2 is % LY — X16)?,

while the uniform minimum variance unbiased estimator is ;—— (Y — X!6)2.
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Cox and Reid (1987) have used conditional likelihoods in the parametric case to
get “maximum likelihood” estimates which are adjusted. It remains to be deter-
mined whether conditioning can be used to get an analogous result for empirical
likelihood.

Figure 2 shows the profile empirical likelihood curve for ¢ with 95% and 99%
lines. Considering the fact that ¢ is a parameter in the variance of the model, and
hence implicitly more difficult to estimate accurately than 0, empirical likelihood
gives much narrower confidence intervals than might be expected. The ratios
of the right endpoint to the left endpoint are about 1.69 and 2.15 respectively,
at the 95% and 99% levels. In comparison, with the same sample size and the
same dimension for 8, confidence intervals for o? in the above N(X6, 0?) model
would have ratios 1.93 and 2.38 respectively. These ratios are the same regardless
of whether the adjusted or unadjusted estimator is used to estimate o%. Note,
however, that some allowance may need to be given for the fact that ¢ is bounded
above, whereas o2 is unbounded. :

If the adjusted estimator é is preferred to #, Equation (5.1) implies tha
the corresponding confidence intervals can be obtained simply by shifting the
unadjusted curve by a factor of % = 1.25. This can be seen by noting that the

confidence intervals based on ¢ are found using the equation

Ep‘i'rfn' - ¢ = 07

=1

but those based on ¢ would use

n

n—p
D piryi = ¢ =0.
=1 n

The resulting curve is plotted in a dashed line in Figure 2. Because the number
of parameters being fit to the mean is so large with respect to the number of
observations, we feel that confidence intervals based on the adjusted estimator
are more reliable here. Note that the adjusted 95% confidence interval, (0.73,
1.27), is almost symmetric about the point estimate dA) = 0.99 and fairly tight.
Combining this with the fact that we cannot reject the hypothesis Hyp : ¢ = 1
at the 95%-level based on the unadjusted estimator, we suggest that ¢ may be

taken to be 1 and hence the variance may be modeled effectively as 72 (1 — m;)2.

6. Discussion

We have shown that empirical likelihood is justified as a method of inference
for a large class of models extending far beyond that of linear models. Work
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remains to be done examining the behavior of empirical likelihood when applied
to specific sub-classes of models such as nonlinear or semi-parametric models.
For models with dependent data however, such as time-series, Theorem 1 is not
enough to justify empirical likelihood confidence regions.

The fact that empirical likelihood may be applied immediately to almost any
reasonable set of estimating functions means that care should be given ahead
of time when choosing such functions, for reasons of efficiency. In Section 4
we concentrated on using empirical likelihood mainly with quasi-likelihood and
extended quasi-likelihood estimating functions, because of their flexibility and
their use of only first and second moment assumptions. In specific cases, the
methods of Efron (1986), Jgrgensen (1987), or Godambe and Thompson (1989)
might prove to be more appropriate for deriving estimating functions, in which
case empirical likelihood should still be easily applicable.

Empirical likelihood shares properties of various non-parametric methods
based on resampling, yet it works by optimizing a continuous function, which
makes it particularly amenable to the imposition of side constraints. This is
advantageous, for example, when Model (1.1) is further complicated with the
addition of an unknown ¢ or Model (1.2), since the effect on empirical likeli-
hood is equivalent to simply imposing more side constraints. We expect em-
pirical likelihood to exhibit many of the robustness properties of Simonoff and
Tsai’s (1988) jackknife estimates for quasi-likelihood, but this needs to be ex-
amined more closely. Extensions of the bootstrap and jackknife to extended
quasi-likelihood estimating functions have yet to be made, so no comparisons can
be offered.
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Table 1. Estimating functions for some common mean-variance relationships

¢ Vi) g(u) VA Family
1 1 9 X(Y - X'9) N(g, 1)
1 . log() X(Y -eX) Pois(y)
L pu(l-p) log (1—5;) X[Y -m{l+ e(_xlo)}“‘l] Bin(m; u)
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