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FORM OF SIMULTANEOUS PERTURBATION
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Abstract: Neural networks (NNs) have recently attracted much attention in the math-
ematical modeling community. One of the most promising areas for the use of NNs is
in the control of complex (multivariate) dynamic systems when the nonlinear equa-
tions governing the system are not known. In this paper, a NN is used to model the
resulting unknown control law without the need to construct a separate model (NN
or other type) for the unknown process dynamics. This is a challenging statistical
problem in that the weights (parameters) of the NN are estimated concurrently with
controlling the system. The weight estimation uses a form of stochastic approximation
that relies on an approximation to the gradient of the underlying loss function. The
implementation here uses a simple smoothing operation when constructing the gra-
dient approximation: namely, the gradient approximation at any iteration is formed
as a combination of the previous approximation and a new simultaneous perturba-
tion gradient estimate. This paper shows that this smoothing idea is often useful in
improving the ability of the NN-based controller to have the system perform in the
desired way. Aside from presenting the smoothing idea, this paper includes brief in-
troductions to the fields of nonlinear adaptive control, neural networks, and stochastic
approximation.

Key words and phrases: Nonlinear control systems, stochastic approximation, neural
network learning, gradient estimation.

1. Introduction
1.1. Scope of paper

This is an interdisciplinary paper spanning the fields of control, statistics,
neural networks, and optimization. The goals of this paper are four-fold: (1) to
consider the problem of developing adaptive controllers for general dynamic sys-
tems with unknown (usually nonlinear) governing equations — which has been
an essentially unsolved problem — and develop a solution for an important class
of such problems, (2) to briefly review the growing area of neural networks (NNs)
and show how a NN used as a function approximator can be employed in the
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above-mentioned adaptive control problem, (3) to review stochastic approxima-
tion (SA) as a general optimization technique in the presence of noisy data and
show how the simultaneous perturbation SA technique can be used in the problem
of “training” the NN for use in the control problem, and (4) to introduce a mod-
ification to simultaneous perturbation SA that is based on smoothing gradient
approximations across iterations and illustrate this modification on the NN-based
control problem. Because of the interdisciplinary nature of this paper, the reader
may find certain aspects to be of greater interest than others. In fact, many of
the ideas discussed here (e.g., the smoothed SA algorithm) are generic and could
apply in areas other than NN-based adaptive control.

1.2. Adaptive control and neural networks

One of the major problems faced by system designers is finding a means to
control and regulate a system when there is uncertainty about the nature of the
underlying process. Adaptive control procedures (i.e., those that can learn and
adapt over time) have been developed in a variety of areas for such problems.
Examples of applications in areas such as robot arm manipulation, aircraft con-
trol, macroeconomic policy making, and biological systems regulation are given
in 1986 and 1991 IEEE Press books (see list of references) and journals such as
the IEEE Transactions on Automatic Control, Automatica, the Journal of Eco-
nomic Dynamics and Control, and the International Journal of Adaptive Control
and Signal Processing (to name a few); an excellent brief introduction to adaptive
control is given by M. Gupta on pp. xv-xxii of the above-mentioned 1986 IEEE
Press book. Existing adaptive control procedures are typically limited by the
need to assume that the forms of the system equations are known (and usually
linear) while the parameters within the assumed equations are estimated. Fur-
ther, existing procedures require that the assumed equation forms do not change
as the system evolves in time. In complex physical, socioeconomic, or biological
systems, however, the forms of the system equations (typically nonlinear) are
often unknown and may also be changing in time, making it impossible to deter-
mine the control law in existing adaptive control procedures. This provides the
motivation for considering the use of artificial neural networks.

Artificial neural networks, or more commonly just neural networks, have
recently attracted much attention for their potential to address a number of
difficult problems in modeling. One of the areas receiving a significant portion of
the attention is the use of NNs for controlling and regulating nonlinear dynamic
systems. Traditionally, developing controllers for nonlinear systems has been
extremely difficult, even in deterministic settings where the equations governing
the system dynamics are fully known. (See Pao, Phillips, and Sobajic (1992) for a
brief review of the nonlinear control problem.) NNs, however, offer the potential
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for addressing control problems even broader than this, including the control of
stochastic systems with unknown nonlinear dynamics.

The approach here uses the observed system output error (i.e., actual output
— target output) to train the NN-based controller without the need to estimate or
assume a separate model for the equations governing the dynamics of the system.
As we will show, it is then not generally possible to train the NN (i.e., estimate
the connection weights) via well-known back-propagation (steepest descent)-type
algorithms since the required gradient depends on a model for the underlying
system. Thus, this paper shows how the simultaneous perturbation SA algorithm
(Spall (1992)) can be used as a practical weight estimation technique in such a
model-free setting.

The control approach here is based on using a NN to approximate the un-
known control law. The basis for this approach is the now well-known fact that
any measurable function can be approximated to within any degree of accuracy
by some single (or multiple) hidden-layer feed-forward NN (e.g., Funahashi (1989)
or Hornik, Stinchcombe, and White (1989)). Our approach will proceed in one
of two ways: one method will be based on making almost no assumptions about
the nature of the underlying process, and the other method will be based on
assuming that some information (but still incomplete) is available on the form of
the process equations. In the first (basically no structure information) method,
the output of the NN will be used to directly approximate the elements of the
control vector; in the second (partial structure information), we create a con-
trol law that depends on unknown functions describing the system dynamics and
then use a NN to approximate the unknown functions. The second method is
reminiscent of the self-tuning regulator approach to adaptive control (e.g., Davis
and Vinter (1985, pp. 309-312)), except that we are concerned with estimating
unknown functions, as opposed to unknown parameters, in a control law.

A number of others have considered using NNs for the problem of control-
ling uncertain nonlinear (usually deterministic) systems (see, e.g., the April 1990
and April 1992 special issues of the IEEE Control Systems Magazine, Narendra
and Parthasarathy (1990), Tulunay (1991), Hunt and Sbarbaro (1991), or Pao,
Phillips, and Sobajic (1992)). Although these methods are useful under certain
(fairly restrictive) conditions, they often lack the ability to control systems with
minimal prior information. In particular, they require an explicit model (either
NN or other parametric type such as linear or nonlinear ARMA) for the under-
lying process equations; this model is assumed to be equivalent to the “true”
process equations so that it is possible to calculate the gradient needed in back-
propagation-type learning algorithms. These techniques typically require off-line
identification of the process model before implementation of the adaptive control
algorithm.
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In contrast to the above, our direct approach applies the NN strictly as a
model for use in the control law (no additional NN or parametric model is used
for the process); the weights in the NN are estimated adaptively based only on
the output error of the process as it operates in “closed-loop” mode (no prior
open-loop model estimation is required). Thus the approach here addresses the
shortcoming noted in Narendra and Parthasarathy (1990, p.19) that “At present,
methods for directly adjusting the control parameters based on the output error
(between the plant and [target] outputs) are not available.” One of the major
advantages of such a direct approach is that it will tend to better adapt to changes
in the underlying system, since it is not based on a prior model for the system;
further, it will tend to be more robust to extreme values of the control even when
the underlying system does not change (i.e., the prior-model-based approach may
perform poorly for closed-loop controls outside of the range of open-loop controls
used in the off-line estimation step).

1.3. The optimization problem

There is a critical difference between the optimization problem for control
and that associated with typical “model fitting” (such as regression). In control
problems, the output being produced by the model (a NN here) is a control input
to the system. The system output is the quantity of ultimate interest, rather than
the value of the control (the model output). In contrast, in standard model fitting
the output produced by the model is of ultimate interest and is compared with
actual system output for purposes of fitting (estimating) the model parameters.
We now elaborate a little on the optimization problem here.

Our goal is to find optimal values of the NN weight parameters, i.e., those
parameters such that the NN-based control leads to optimal system output. Be-
cause it is not possible in our framework to obtain the derivatives necessary to
implement standard gradient-based search techniques such as back-propagation
(this is discussed in more detail in Subsection 3.2), we will consider stochastic ap-
proximation (SA) algorithms based on approximations to the required gradient.
Usually such algorithms are based on standard finite-difference approximations
to the gradient (for examples of such algorithms in control, see Saridis (1977, pp.
375-376) or Bayard (1991)). The finite-difference approach, however, can be very
costly in terms of the amount of data required, especially in high-dimensional
problems such as estimating a NN weight vector (which easily has dimension of
order 10% or 10®). We will, therefore, consider an SA algorithm based on a “simul-
taneous perturbation” gradient approximation (Spall (1992)), which is typically
much more efficient than the standard SA algorithms mentioned above in the
amount of data required. Spall and Cristion (S&C) (1992, 1993) also consider
the use of simultaneous perturbation SA (SPSA) in general control problems. To
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make this paper self-contained, some of the discussion here will be a review of
material in S&C (1992, 1993).

The main new result of this paper is to show that the SPSA-based approach of
S&C (1992,1993) can often be enhanced by a certain across-iteration smoothing
for the required gradient approximation. The SA algorithm is used to estimate
the NN weights while the system is being controlled. To do this estimation, an
approximation to the gradient of the loss function is formed at every iteration. In
S&C (1992,1993) this gradient approximation is formed independently at every
iteration, as is typically done in most SA techniques. In contrast here, we consider
a smoothing technique where the gradient approximation at every iteration is
formed as a convex combination of the previous gradient approximation and a new
approximation based on the SP technique. This smoothing is in the spirit of the
conjugate gradient type SA algorithm in, e.g., Ruszczynski and Syski (1983). It is
shown here that this smoothed implementation of SPSA can often offer improved
performance over the standard unsmoothed algorithm with no additional cost to
the user, either in terms of the number of measurements needed or in terms of
computational burden.

The remainder of this paper is organized as follows. Section 2 presents back-
ground information on NNs and SA. Section 3 presents an overview of our ap-
proach to control and describes why it is not possible to determine the gradient
of the loss function for use in a standard back-propagation algorithm (in contrast
to the approaches of Narendra and others where they either assume that the pro-
cess dynamics is of known structure or introduce an additional NN to model the
dynamics). Section 4 discusses the SA approach to weight estimation using the
smoothed implementation of the simultaneous perturbation gradient approxima-
tion and presents a theoretical result on the convergence of the weight estimate.
Section 5 presents a numerical study on two different nonlinear systems taken
from the control and statistics literature and Section 6 offers some concluding
remarks.

2. Background Material: Brief Reviews of Neural Networks and Sto-
chastic Approximation

This section is composed of two subsections. Subsection 2.1 presents a brief
introduction to certain essential neural network concepts and Subsection 2.2 does
the same for stochastic approximation.

2.1. Neural networks

Feed-forward artificial neural networks (simply neural networks or NNs here)
are mathematical models that attempt to achieve some predetermined goal via
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the adjustment of weighted interconnections between simple computational el-
ements (referred to here as nodes). Our interest in NNs in this paper is as an
approximator for an unknown nonlinear function. The NN model was inspired by
its biological counterpart, the human brain. Just as humans attempt to process
all information received by their sensors (e.g., eyes, ears, etc.) to determine ap-
propriate actions (e.g., talk, move, etc.), NNs attempt to use input information
to derive useful outputs. Of course, as with humans, there must be a learning
process that improves the performance of the NN over time. It is important that
this learning process produce a NN model that not only is able to reproduce a set
of known input-output relations, but is also able to produce reasonable outputs
for new input data.

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer

=

Bias

Bias

Bias . NONLINEAR NODE
(O LINEAR NODE

Each of the p connections (here p = 25) is weighted
by an element of the p-dimensional weight vector 6.

Figure 2.1. Example of simple neural network (N2 4.2.1)

NNs typically consist of many nodes arranged in layers (see Fig.2.1 for a
simplified example). Each node in a layer is connected to every node in the next
layer; other configurations are certainly possible, but we will only consider the
standard feed-forward NN of the generic form shown in Fig.2.1. There are three
types of layers: input layer, output layer, and one or more “hidden” layers, where
the hidden layers are between the input and output layers and are necessary for
learning general nonlinear input-output relationships. The shorthand notation
used here (as in Narendra and Parthasarathy (1990)) to denote a NN with a
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certain configuration is Ny, where (-) is an ordered listing of the number of nodes
in each layer beginning with the input layer; in this notation the NN of Fig. 2.1
is Ny421. Bach node generates an output value that is based on a weighted
sum of its input signals and a bounded nonlinear (e.g., output = tanh(-)) or a
linear (e.g., output=input) operation. Bounded nonlinear nodes are typically
used throughout the NN with the exception of the output layer, where linear
nodes are sometimes used to allow for outputs with unknown ranges (this is the
case in Fig. 2.1 as well as in the examples of Section 5). The input signals to a
node are provided from previous layers (e.g., in Fig. 2.1 the input signals for each
node in Hidden Layer 2 are provided by Hidden Layer 1). They are processed
by the node and passed on to the next layer. This process is repeated for each
node in each layer. Each node takes as an input the weighted (by elements of
the weight vector §) sum of output signals from the previous layer (so, e.g., the
input to a node in Hidden Layer 2 of Fig. 2.11s a weighted sum of the four output
signals from Hidden Layer 1 and a bias weight, described below). The value of
0 is determined through some learning process (typically by the so-called “back-
propagation” algorithm, although this technique can not be used in the control
problem here, as described in Section 3 below). Often it is useful to include an
additional weighted bias input signal (a constant, data-independent input signal).
These bias inputs are also elements of the weight vector 0 and must be derived
by the same learning process. A more detailed general discussion of NNs and
their properties may be found in, e.g., Wasserman (1989). NNs used in practice
typically have many more nodes than shown in Fig. 2.1 in order to provide the
richness needed to capture a complex nonlinear relationship.

2.2. Stochastic approximation

Stochastic approximation refers to a general set of recursive algorithms for
finding minima (or roots) of functions in the presence of noisy observations. In
particular, suppose we wish to minimize some differentiable loss function L(6), L :
RP — R!. Thus we are searching for a minimizing point 6* satisfying the gradient
equation:

oL

There are two main classes of SA algorithms for solving this equation; these are
outlined in the pioneering papers of Robbins-Monro (1951) and Kiefer-Wolfowitz
(1952). The Robbins-Monro class assumes that (noisy) observations are available
on g(#) directly, i.e., data are obtained in the form g(8)+noise for various levels of
0. Kiefer-Wolfowitz techniques, on the other hand, only require observations on
the loss function itself, i.e., data are obtained in the form L(6)+noise for various
levels of 6. In either class, the basic form for the recursive algorithm to find 6*
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is
0 = 01 — ax (approz. of g(fk_1)), (2.1)

where aj is a positive (scalar) gain coefficient. Under appropriate regularity
conditions on {a;} and the gradient approximation, 6 converges to 6* (in some
probabilistic sense) as k — oo (see, e.g., Blum (1954)). The essential difference
between the Robbins-Monro and Kiefer-Wolfowitz classes of algorithms is in the
information used to form the gradient approximation in (2.1). As mentioned in
Section 1 (and shown in more detail in Section 3), observations of g(6) are not
available in our control problem; hence the Robbins-Monro class (which includes
NN back-propagation — see White (1989)) is not applicable.

Within the Kiefer-Wolfowitz class, the standard approach to constructing
the gradient approximation in (2.1) is to use a finite-difference method (Ruppert
(1983)). In particular, at each iteration of (2.1), we form an approximation based
on observations of L(-) at design levels of § representing a positive and negative
perturbation of each component within 6;_; taken one at a time. Thus, since 6
is p-dimensional, we need a total of 2p observations of L(-) per gradient estimate.

An alternate approach to approximating the gradient in (2.1) is the si-
multaneous perturbation (SP) method of Spall (1988,1992). The SP gradient
estimate is formed from two observations of L(-) independent of the dimen-
sion p (vs. 2p observations for the finite-difference method). In particular, let
A = (Ak1, Dray ...,y Akp)T be a vector of independent mean 0 random variables
satisfying certain regularity conditions and let ¢ be a positive scalar. The two
required observations of L(-), say ﬁgci), are obtained at design levels 8;_; £ c;Ay.
Then the SP approximation to gk(ék_l) is

L O
2¢k A1
9k (Bk—1) = : . (2.2)1
B 50
2ck Agp

-

Note that the numerators in the p components of gk(ék_l) are identical (in con-
trast to finite-difference). Spall (1992) gives a detailed discussion of the regularity
conditions for the SPSA algorithm of using (2.2) in (2.1) (one interesting condi-
tion is that certain inverse moments of the Ag; must exist, which prevents them
from having a uniform or normal distribution). It is shown in Spall (1992) that
Gx(fx_1) is an unbiased estimator of g(fx_1) to within O(c?), ¢, — 0. Further,

!Note that the indexing in (2.1) and (2.2) differs slightly from that in Spall (1992); this was
done to be consistent with standard adaptive control indexing.
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it is shown that the SPSA algorithm has the usual almost sure (a.s.) conver-
gence and asymptotic normality properties of standard finite-difference (FDSA)
SA algorithms, but that the asymptotic normality result indicates that SPSA
can achieve the same level of asymptotic accuracy in estimating 6* as FDSA with
only 1/p the number of measurements of L(-). This is of particular interest in
neural network problems since p can easily be on the order of 102 or 103.

There are two main SPSA innovations in this paper (considered in Sections 4
and 5). The first is allowing for the loss functions to be time-varying (i.e., {Lx(-)}
replaces L(+)), which is a consequence of the adaptive control problem here. The
second innovation is in using a smoothed version of the SP gradient approxima-
tion, which involves a weighted average of gradient estimates across iterations. In
particular, the gradient approximation at any iteration will be a convex combi-
nation of the previous gradient approximation and a new SP estimate. Section 4
includes an a.s. convergence result for the smoothing-based algorithm with time-
varying loss functions and Section 5 demonstrates the improvements in efficiency
resulting from the smoothed approach.

For control applications, such as in this paper, improvements in the efficiency
of the SA algorithm can translate into direct improvements in the performance of
the underlying system. For instance, in a manufacturing process control setting,
achieving a certain percentage reduction in number of iterations required for the
controller to have the product meet quality specifications will lead to the same
percentage reduction in number of products that are of unacceptable quality and
must be discarded. Hence, to the extent that the above-mentioned smoothing is
effective at increasing the efficiency of SPSA, we can expect an improvement in
the system performance over that possible with non-smoothed SPSA.

3. Overview of Neural Network Approach to Control

This section summarizes our overall approach to the control of nonlinear
systems in discrete-time form; more specific aspects of the approach associated
with the use of SPSA will be given in Section 4. Subsection 3.1 describes the
two methods for NN-based control that were mentioned in Subsection 1.2 above:
one method applies when essentially nothing is known about the dynamics of
the system and the other method applies when partial information on the dy-
namics is available. Subsection 3.2 is a discussion of why the well-known “back-
propagation” algorithm (or any other algorithm requiring the gradient of the loss
function) can not be used for connection weight estimation in this type of control
problem, which motivates the use of SPSA as discussed in Section 4.

3.1. The model and an overview of NN-based approach to control

Consider a system output vector at time k -+ 1 given by
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Tk+1 = Ok(Th, Th—1,..., Th—s, Uk, Wk), & >0, (3.1)

where ¢x(-) is a generally unknown, nonlinear function governing the dynamics
of the system, uy is the control input applied to affect the system at time k& + 1,
and wy is serially independent random noise (the ¢x(-) may also depend on an
arbitrary number of previous controls and/or noise terms, but we omit this gen-
eralization for ease of notation). The most important special case of (3.1) is the
Markov formulation where s = 0. Our goal is to choose the sequence of control
vectors {ux} in a manner such that the system output is close to a sequence of
target vectors {tx}, where “close” is relative to the magnitude of the noise and
the cost associated with the control.

In the approach here, a NN will be used to produce the control u;. Associated
with the NN generating u; will be a vector of connection weights 6, € RP that
must be estimated. We will assume that the NN structure (e.g., number of nodes
and layers) is given. Hence the adaptive control problem of finding the optimal
ur = ug(Ok; Tk, Th—1,- - - , Tk—s; tk+1) 1 equivalent to finding the 6, that minimizes
some loss function Lj(f) measuring system performance. A common function is
the one-step-ahead quadratic loss:

Lk(gk) = E[($k+1 - tk+1)TAk(1:k+1 - tk+1) + ukauk], (3.2)

where Ay, By are positive semi-definite matrices reflecting the relative weight to
put on deviations from the target and on the cost associated with larger values
of ux. (The approach of this paper would apply equally well with other [non-
quadratic] loss functions, as might arise, e.g., in constrained problems where
penalties are included on certain values of zx; and/or ux.) An important special
case of (3.2) is the minimum variance regulator, where Ay = I and By = 0. Note
that although (3.2) is a one time-step error function, much of the adaptive control
literature focuses on minimizing a loss function over an infinite horizon; Saridis
(1977, pp. 291-296) is one of a number of references that discuss the relationship
between the two approaches.

We will consider two methods for the problem of constructing a controller
uy in the face of uncertainty about the dynamics of the system, as illustrated
in Figs. 3.1a,b for the important special case where s = 0 (for the more general
case, as shown in (3.1), the diagrams would be modified in an obvious way).
Both methods here correspond to direct adaptive control approaches, as defined
(without a solution) in Narendra and Parthasarathy (1990), in that NN learning is
based directly on the output error, zx —tx, during system operation. These are in
contrast to the indirect adaptive control methods of Narendra and Parthasarathy
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(and others mentioned in Section 1), which are based on the off-line prior identi-
fication of a model of the system based on the error between the system output
and model output (not system output and target) for a set of prespecified ug
inputs, which is then used in building the adaptive controller. As discussed in
Section 1, there are distinct disadvantages to the indirect control method, aside
from the obvious one of having to collect prior input-output data on the system,
which may be costly or unavailable.

In the method of Fig. 3.1a, the output of the NN will correspond directly to
the elements of the uy vector, i.e., the inputs to the NN will be z; and tx4; and
the output will be ug. This approach is appropriate when virtually nothing is
known about ¢%(-). In contrast to the direct approximation method of Fig. 3.1a,
the self-tuning method of Fig. 3.1b requires that some prior information exists
about the form of ¢x(-). In particular, it requires that enough information be
available to write ux = mr(fi(*), tk+1), where mg(-) is some known control law
and fx(-) is an unknown function that is to be approximated by a NN.

As we will see in Section 5, when prior information associated with knowl-
edge of ¢x(+) is available, the self-tuning method of Fig. 3.1b may yield a superior
controller. Both the direct approximation and self-tuning methods require knowl-
edge of which arguments appear in ¢i(-), i.e., for the general setting of (3.1) it is
required that s be known since zy, Zx-1,...,Tk—s and tx4; will be the input to
the controller.

3.2. Challenges in connection weight estimation

Based on the error criterion in (3.2), we wish to determine the optimal con-
figuration for the NN. Since we assume here that the number of layers and nodes
(i.e., network structure) is given, this reduces to a problem of determining the
optimal values for the connection weights (determining the NN structure is an
important problem in its own right, and has been considered, e.g., in Huang and
Huang (1991)). Thus, we are seeking the value of 6, say 65, that minimizes
(3.2) given the control as found in Figs. 3.1a,b. So, for each k, we are seeking the
minimizing 6; such that

8Ly _ duf 0Ly
89k - 60k 3’u,k

Since ¢ (-) is an unknown function, the term 8L /Oux in (3.3), which involves the
term O¢y/Ouk, is not generally computable. To illustrate further why 0Ly /06y
is not available in our setting, consider a simple scalar-deterministic version of
system (3.1). Then, under the standard squared-error loss,

0Lk _ O(Tkt1 — tht1)? = 2Uzpsr — t )%%
80, a0, k+1 T TR Sk 00k

=0 at 6 =6} (3.3)
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Leaming
Algorithm
i W,
NN weights
NN Control
__"—>target, P o | Process L
Delay
xk k =— k+1

Figure 3.1a. Control system with NN as direct approximator to optimal control (assuming
s=0)

Controller
—— - | Process X
target, t, o | Tl tisy) U - i+t
Learning
Algorithm
} NN weights
fk P Delay
NN ———
- Xk -&- k- ket

Figure 3.1b. Self-tuning control system with NN as approximator to fi(zx) (assuming
s =0)
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Since 8¢ /Oux depends on knowledge of ¢ (-) and on fi(-) for the self-tuning con-
troller, we see that in neither of the methods in Figs. 3.1a,b is 9Ly /06 generally
available.? The same principles apply in the more general multivariate stochastic
version of model (3.1). Thus the standard “back propagation” algorithm (i.e.,
steepest descent or Robbins-Monro stochastic approximation — see, e.g., Naren-
dra and Parthasarathy (1991) or White (1989)) or any other algorithm requiring
a direct observation of 8Ly /96 is not feasible.

The fact that Lx/80; (or a noisy observation of 0Ly/06k, & la Robbins-
Monro) is not available is inherently connected to the fact that feedback of
the system dynamics is present. This contrasts with standard model fitting or
identification problems in, e.g., White (1989, Eqns. (2.2)-(2.4)) or Narendra and
Parthasarathy (1990, Sec. 5), where in estimating the connection weights no un-
known functions appear in the gradient (i.e., the gradient of the squared-error
loss function is derived using input-output data from the system and from the NN
together with the known gradient of the NN with respect to the weights). This
also contrasts with implementations of indirect feedback controllers as discussed
above, where a NN is used to model the unknown system dynamics and the iden-
tification and adaptive control is performed as if the NN model was identical in
structure to the true system dynamics.

To address the fact that 8L /00 is not computable, we consider a stochas-
tic approximation algorithm of the generic form in (2.1), where 6r denotes the
estimate of ) at the given iteration, {ax} is a scalar gain sequence satisfying
certain regularity conditions, and the gradient approximation is such that it does
not require knowledge of ¢x(-). The next section is devoted to describing in more
detail the SA approach to this problem.

4. Weight Estimation by Stochastic Approximation with a Smoothed
Gradient Approximation

This section presents the SA algorithm for use in estimating the NN connec-
tion weights. The algorithm applies in either the direct approximation control of
Fig 3.1a or self-tuning control of Fig. 3.1b. It is based on a smoothed (across iter-
ation) implementation of the simultaneous perturbation gradient approximation
that was described in unsmoothed form in Subsection 2.2. Subsection 4.1 gives
an overview of the algorithm and comments on how it is much more efficient (in
terms of number of system operations) than the more standard finite-difference

2One special case where Lx /80 can be computed is in the self-tuning setting of Fig.3.1b
where ux (-) is known to enter ¢i additively (since ¢x/Our then does not depend on unknown
quantities). Of course, in the more general setting of direct approximation control (Fig.3.1a)
0Ly /86x would still be unavailable.
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SA (FDSA) algorithm of Kiefer-Wolfowitz. This subsection includes a brief dis-
cussion on how the algorithm would be implemented in a practical control prob-
lem. Subsection 4.2 presents regularity conditions under which the algorithm
yields a strongly convergent weight estimate.

4.1. Overview of SA algorithm based on smoothed gradient approxi-
mation

Recall that we are seeking the NN weight vector at each time point that
minimizes (3.2), i.e., we are seeking the minimizing 6y, 5, such that

where 6y is for use in the control ug. In line with (2.1), the simultaneous pertur-
bation SA (SPSA) algorithm here has the form

ék = ék—l — ar Gy, (4.1a)

where Gy is the smoothed approximation to gk(ék_l). In particular for some
0< Pk < 11 .
Gk = pxGr-1 + (1 — pk)Gr(0k-1), Go =0, (4.1b)

where §x(-) is the simultaneous perturbation approximation to gx(-), as in (2.2).
That is, the £th component of §x(6x-1),£=1,2,...,p, is given by

. JAS2 I A,
Gre(Or—r) = ———=— (4.1c)

2ckAge
where
R T +
i Li*’ = (xiﬂ - tk+1)TAk(x§§.)1 = tht1) + ui*’ Bkui ),
o ugci) = ug(Or_1 £ ck A, tks1, Tk, - - - , Tk—s), i.€., a control based on a NN with
weight vector Oy = 0x_1 + ck Ak or 0 = Ox_1 — ck Ak,

. miﬁ)l is system output based on u

o A = (Agy, Aga, .. .,Akp)T, with the {Ay;} independent, bounded, symmetri-
cally distributed (about 0) random variables Yk, 1, identically distributed at each
k, with E(AL?) uniformly bounded V k, 1,

e {cr} is a sequence of positive numbers satisfying certain regularity conditions.

(£)
k

bj

The key fact to observe is that at any iteration only two measurements are
needed to compute §i(-) (i.e., the numerators are the same for all p components)
and hence to compute Gi. This is in contrast to the standard FDSA approach
where 2p measurements are needed to construct the approximation to gx(-), as
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discussed in Subsection 2.2. Spall (1992) gives a detailed analysis of the SPSA
approach to optimization in the classical setting of a fixed loss function L(-) and
corresponding fixed minimum when no smoothing is used (i.e., pr =0V k). As
mentioned in Subsection 2.2, it is shown there that SPSA can achieve the same
level of asymptotic accuracy as FDSA with only 1/p (or some low multiple of
1/p) the number of system measurements. Of course, in the control setting here
the loss function Li(-) is not generally fixed and hence it can not be automati-
cally assumed that the results of Spall (1992) would apply; further, the gradient
smoothing introduces additional across-iteration dependence in the gradient esti-
mate. Therefore, we show below that the SPSA estimation error ék — 0}, converges
almost surely (a.s.) to 0 as in the fixed Lx(-) and unsmoothed setting.

There are several ways in which a practical control strategy could be imple-
mented using the SPSA algorithm in (4.1a,b,c). These differences result from
whether or not it is desired to produce a “nominal” state zx,1 based on a control
with updated 6, = 0) (only azgfl_)l are required in implementing (4.1a,b,c), which
use O = r_1 £ cxAx) and whether or not it is possible to reset the system from
a given state value to the previous state value. S&C (1992 [extended version],
1993) elaborate on these strategies for the unsmoothed SPSA algorithm; the S&C
(1992, 1993) discussion would apply equally well to the smoothed gradient setting
here since no additional quantities are needed to implement the SPSA recursion.
As an illustration of these strategies, suppose that we wish to produce a sequence
of system measurements that includes nominal states, i.e., the sequence to be
produced is {$0,$§+) a:g ) , Z1, mg+), (- ) ..}. Then, if the system cannot be
readily reset from one state to the prev1ous state (as is quite common), each of

u§c+), ugc ) uy are produced using the previous s + 1 state measurements. Thus,

for example, if s = 0, then ugc ) is based on Or = Op_1 — ckAg,tk+1, and xg_)l

On the other hand if the system can be reset from one state to the previous
state (perhaps as with the motion of a robot arm), the nominal zx can be used
in forming all of u(+), (~ ), and ux. We will illustrate both the non-reset and
reset procedures in Sectlon 5. There may also, of course, be periods when only
nominal states might be generated (i.e., no SPSA updating of 6%), e.g., when 6y
has adequately converged (say, the error in tracking {t;} has reduced 80 percent

from its initial value) and the process dynamics are stationary.
4.2. The convergence of the weight estimate O

Let us now show that, as in the fixed loss function case of Spall (1992), the
difference 0 — 6* is a.s. convergent to 0 where 6* is such that 6; — 6” as k — oo.
This result is presented in the Proposition below. Note that having 6; — 6 does
not imply the (say) pointwise convergence of Li(-) to some fixed L(-). In fact,



16 JAMES C. SPALL AND JOHN A. CRISTION

L (8;) may be perpetually varying even when 8} = 6* Vk, as results, say, when t
is perpetually varying. Below we let | - || denote any vector norm. The regularity
conditions for the Proposition are:

C.0. E(egr) - efc_)lél, Oy, ..., 0k_1; A) =0 a.s. Yk, where eii) is the effective SA
measurement noise, i.e., egci) = I:gi) — Lgci), with Lgci) the values of L based on

the controls ugci).

C.l ag,cx >0Vk;ar — 0,c = 0ask — 00; Y 5o ax = 00, S50 (ar/ck)? < oo.

C2. 0< px 1VE; pr — 0 with pg/ar = O(k™") for some r > 0 such that
2 —r

C.3. For some # > 0 and Vk, E(egci)z) < B, E(Li(6x_1 +cAx)?) < B, E(A;ZZ) <
B, |Axel < B, and Ay is symmetrically distributed about 0.

C.4. For some 8 > 0, there exists a K < oo such that for each k > K and almost
all d;_; the function Lg(-) is continuously thrice differentiable with uniformly
(in k) bounded third derivative for all § in a neighborhood of 8;_; such that
10k-1 — 6]| <B.

C.5. For some #,7 > 0 and K < oo and each k > K, ||0x — 0x—1]| < 8 a.s. and
given the r > 0 in C.2, E||6; — 6*||"*Y/" < 3.

C.6. For any # > 0 and for each k > 1 suppose that if ||§ — 8*|| > 3, there exists a
6x(B) > 0 such that (6 — 6*)T gx(6) > 6x(8) where 6x(3) satisfies 322 ; arbi(8) =
00, c26x(8)~! — 0, and with r,7 as in C.5, k™6x(8)~""Y/" = O(1) for some
O<e<rr.

Let us now comment on conditions C.0-C.6. Condition C.0 is critical in en-
suring that gx(-) is an unbiased estimator of gi(-) to within an O(c?) bias, where
ck — 0 by C.1. Condition C.1 presents some standard conditions on the SA gains
(as discussed at the end of this subsection, however, it is generally best to not sat-
isfy this condition in a system with nonstationary dynamics). C.2 ensures that,
asymptotically, all the weight in the smoothed-gradient estimate is being put on
the contribution associated with the current loss function; this helps ensure that
G} is an asymptotically unbiased estimate of the corresponding gradient g(-).
C.3 ensures that the variability of gx(-) is not so large as to potentially cause
divergence of the algorithm; the condition on E(A;f) is particularly important
for the validity of gx(-) as an estimator of gx(-) and for the convergence of 6y,
and disallows, e.g., taking Ag, as uniformly or normally distributed (taking Ay,
as symmetrically Bernoulli distributed satisfies this condition and has proven ef-
fective in our numerical studies). C.4 is used to ensure that Li(-) is sufficiently
smooth so that gi(-) is nearly an unbiased estimator of gi(-) based on a third or-
der expansion of L(-) about ;_;. Of course, C.4 translates into differentiability
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conditions on ¢x(-) and, with the self-tuning method of Fig. 3.1b, into differentia-
bility conditions on the control law 7 (-). C.5 also plays a role in the asymptotic
unbiasedness of G) as well as ensuring that the estimate 0 does not stray too
far from the fixed 6*. Since the r in C.5 may be near 0, C.5 includes a fairly
stringent moment condition. For practical purposes, this moment condition may
sometimes be almost equivalent to a requirement that 6, lie in some compact
subspace of RP. C.6 ensures that if we are at a value fr_1 not at 0*, the gradient
gi() is sufficiently steep (as well as pointing towards 6) so that there will be a
tendency to push the next value 6;. towards 6*. Note that the non-uniformity (in
k) that is allowed for 6;(6) permits Li(-) to “flatten out” in some fixed region
around * as k gets large provided that this ﬂattenmg does not occur too fast.
C.6 also effectlvely requires that the initial condition 6y be sufficiently close to 8*
so that ) does not get stuck in a local minimum of Ly (the same issue arises, of
course, in back-propagation-type algorithms); Chin (1993) discusses a technique
by which SPSA can be used as a global optimizer for arbitrary initial conditions.

We now present the convergence result and proof. After the proof, we include
a few comments on the practical aspects of the Proposition.

Proposition. Let conditions C.0-C.6 hold and suppose there exists a fized 6
such that 6; — 6% as k — oo. Then

6, —0* >0 as. (4.2)

Proof. Rgca}l that AG’C = prGr-1 + (1 — pk)gk(ék_l) where Gy is dependent on
O—_1 = {60, 61,...,0k-1}. From C.0, C.3, and C.4 it follows that

E(Gi|®k-1) = prB(Gr_1 | Ok-1) + (1 — px)(gx(fk-1) + bk)

= ai’: (Br=1 = Or—2) + (1 — pr)(gr(Bk—1) + bx)  (4.3)

where by Spall (1992, Lemma 1) c;2||bk|| is uniformly bounded a.s. To show
(4.2), we establish that the multivariate versions of conditions (i)-(iv) in Evans
and Weber (1986) hold. Relative to (i), we have by (4.3) and (C.6) that for any
e>0

{18x-1]l > € arbf_ E(Gr | ©4-1) < 0}

C {lpk9k 1 (B = Bk—2)/ak—1 + (1 — pi)Bi_1bx| > 5k(6)} (4.4)

where 65, = 0 — 8*. Condition (i) is shown to hold if for the event on the r.h.s.
of (4.4), P({-} infinitely often) = 0. By the Markov inequality, the probability of



18 JAMES C. SPALL AND JOHN A. CRISTION

this event is bounded above by
6k(€) ™Y BlofT_y (By-1 — Ok—2)/ak—1 + (1 — pi)Bi_1bx |7TV/7
4 T+1/r + )
s ( ) (BloxbF- 1 (Br—1 — Bx—2)/ara [ + BI(1 = pr )i 7H1/")

5k(6)
— 5k(6)—-r—1/ro(k—1—r‘r)

where the last line follows from (4.3) (including the uniform bound on ¢ %b;),
C.2, and C.5. Thus for the event on the r.h.s. of (4.4), we have from C.6,
S %21 P({-}) < oo, which implies (i) by the Borel-Cantelli lemma. Condition
(ii) follows from a; — 0 and the fact that (4.3), C.4, and C.5 imply

lim sup [| B(G|Ok-1) (L + 16x-1)7" <00 as.
—00

The fact that -

> GtE|Gx ~ B(Gk|Ok-1)[* < 00

k=1
follows easily by C.1 and C.3, which shows (iii). Finally, we can show (iv) by
establishing that

P(lmf 1Ball > 0, 3" ak | on (et — Be-2)/ar—1 + (1 = pi)(gx(B-1) + ba)|| < oo)
k=1
—0 (4.5)

(recall that the expression inside the || - || terms in the summands of (4.5) is
E(Gk|®k-1)). For any sample point in the underlying sample space such that
hmlnfk__,ooHH;C 1|l > 0 take 0 < € < liminfy_,oo[|fx—1]|. Then 3 a k;(¢) such that
10x-1]| > € V¥ k > ki, which by C.2 and C.6 indicates that for each k > k; 3
a 6, (e) > 0 such that (1 — pi)llgk(Bx—1)]| > 8,(e). Further, by the a.s. uniform
bounds on fx_1 — fx_» and b; and the fact that pr/axr—1 — 0 and by = p(ck)
we have (except, of course, on a set of measure 0) that 3 a ko(e) such that
ok (r—1 — Or—2)/ar—1 + (1 — pi)bi|| < 8i(€)/2 V k > k3. Hence, for this sample
point, we have

o0 oo

> al|B(GrlOk-1)ll > Y arbi(e)/2 = oo

k=1 k=k*

by C.1 and C.6 where k* = max{ky, k2}. Since 3 such a k* and {6, } for almost
all sample points such that liminf||fx_;|| > 0, this shows (4.5) (and hence (iv)),
which completes the proof.
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Let us close this section with a discussion of several practical issues associated
with the application of the Proposition. The condition 8; — 6 is quite weak.
For example, in the reasonably common situation where the system dynamics
are time invariant (i.e., ¢x(-) = ¢(-) with stationary noise distribution) the even
stronger condition 8; = 6* V k generally holds (this follows since the optimal
control can generally be expressed as a function independent of k, as discussed,
e.g., in Nijmeijer and van der Schaft (1990, Ch. 14)). The more general condi-
tion of the Proposition allows for transient effects in ¢x(-). Further, the critical
martingale difference-type condition C.0 (which is perhaps the main condition in
ensuring that the gradient estimate is asymptotically unbiased) is satisfied in all
settings where the process noise wy is additive and independent (it can hold in
other settings as well, as illustrated in the example from Yaz (1987) discussed in
Section 5). Finally, S&C (1992) discuss the use of constant SA gains (ie., ax = a
and ¢x = ¢ V k), which do not satisfy condition C.1. Such constant gains are
useful when 6 is perpetually time varying, as they provide an algorithm that is
better able to adjust to changing dynamics than one with more standard decay-
ing gains (see, e.g., Kushner and Huang (1981)). In this paper, however, we will
continue to focus on the decaying gain setting.

5. Empirical Studies
5.1. Preliminaries

This section presents the results of our studies on two different nonlinear
models. The first model has the control entering multiplicatively and the noise
entering additively and the second model has the control entering additively and
the noise entering non-additively. For the two models, we will compare the perfor-
mance of the smoothed (px > 0) and the unsmoothed (px = 0) SPSA algorithms
in the direct approximation (DA) controller of Fig. 3.1a. In addition, for the first
model (multiplicative control) we will consider the relative performance of the
smoothed and unsmoothed algorithms using the self-tuning (ST) controller and
also with changes in the level of process noise wk.

All studies here are based on Ay = I and By = 0 in the loss function (3.2) (i.e.,
a minimum variance regulator). S&C (1992 [extended version]) present numerical
results for By # 0, showing no significant difference in the relative performance of
various algorithms from when By, = 0. The performance of the various techniques
will be evaluated by comparing estimates of the root-mean-square (RMS) tracking
error as normalized by the dimension of zj, i.e., the RMS at time k that we
estimate is [E(zk — tx)7 (z4 — ti)/dim(zx)]}/2. The (feedforward) NNs considered
here have an input layer, two hidden layers, and an output layer, as in Narendra
and Parthasarathy (1990) and Chen (1990). The hidden layer nodes are the
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hyperbolic tangent functions (i.e., (e¥ — e™¥)/(e¥ + e7¥) for input y) and the
output nodes are linear functions (i.e., output = y). Each node takes as an input
(y) the weighted sum of outputs of all nodes in the previous layer plus a bias
weight not connected to the rest of the network as illustrated in Fig. 2.1 (hence
an Ny 20,102 network, as sometimes used below, has 100 + 210 + 22 = 332 weights
to be estimated). For the SPSA algorithm we take the perturbations Ag; to
be Bernoulli £1 distributed, which satisfies the relevant regularity conditions of
Section 4.

In the numerical studies of S&C (1992, 1993), several analyses are conducted
that would be relevant here as well. For example, these references compare the
performance of SPSA and FDSA, demonstrating that they have essentially equiv-
alent long-run performance even though SPSA uses a much lower number of sys-
tem measurements. This, of course, is the fundamental motivation behind using '
SPSA. S&C (1992,1993) also examine the performance of SPSA when several
conditionally independent SP gradient approximations are averaged at each it-
eration (not to be confused with the smoothing here where the gradients are
averaged across iterations) and show that this can often be of benefit despite the
cost of taking additional system measurements at each iteration.

5.2. Resul_ts of numerical studies

Let us now present our studies on the two different nonlinear models, where,
as mentioned above, the study of the first model will include additional analysis
beyond the comparison of smoothing and non-smoothing in the DA method.

Multiplicative Control/Additive Noise Model

The first model we consider for generating state measurements has the pop-
ular (e.g., Chen (1990)) multiplicative control form:

zri1 = (1= FO(zi))up + wy,
= f(zr)ur +we, wk = N(0,02), (5.1)

where zx € R! and, as in Equation (3.2) of Lai and Zhu (1991) or Sections 4
and 5 of Al-Qassam and Lane (1989), f(9(z;) is given by the exponential-based
function

f(o)(:z:k) = ( -3 - .SC—Zi)iIik-

The target sequence {¢;} will be periodic with one period being a 50 iteration sine
wave followed by a 50 iteration square wave where both waves have amplitude
one.

In the DA method nothing is assumed about the relationship in (5.1) except
that dim(ux) = 1 and that s = 0 (as in Fig.3.1a). In the ST technique we
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assume that enough information is available to know that f(-) and uj multiply
each other, and that w; enters additively, but, of course, we need not assume
that the form of the dynamics f(-) is known since it is f(-) that the NN will
approximate; hence, we take up = 7 (f(zk), tke1) = tey1/f(zx) since wy has
mean 0. As with Narendra and Parthasarathy (1990) we used NNs with two
hidden layers, one of 20 nodes and one of 10 nodes (so an N3 20,10, Was used for
the DA controller while an Nj 20,101 was used for the ST controller).

Figs. 5.1 and 5.2 present the main results for our study of the model in (5.1)
in both the noise-free (¢ = 0) and noisy (¢ = .5) setting. We know that the long-
run RMS can at best equal 0. The controller was implemented without resetting,
as described in Subsection 4.1. The sample RMS value at any time point was
computed by taking the square root of the mean of four independent mean-square
errors based on four runs with different initial weights y. The elements of §y were
generated randomly from a uniform (-.5,.5) distribution with the exception of
the bias weight on the output of the NN in the ST controller, which was set to
1.0 to reflect prior information that f(zp) > 1 (this enhanced the performance
of the ST controller by reducing the likelihood of division by zero in forming
uy = mk(+)). To effect a fair comparison of the algorithms the same four initial
weight vectors and four pairs of random number seeds (to initialize the wy and Ag
sequences) were used in the DA runs; likewise for the ST runs. To further smooth
the resulting RMS error curves and to show typical performance (not just case-
dependent variation), we applied the MATLAB low-pass interpolating function
INTERP to the RMS error values based on the average of four runs. The curves
shown in the figures are based on this combination of across-realization averaging
and across-iteration interpolation. Each of the curves was generated using SA
gains of the form a; = a/k%°% and c; = ¢/k19 (which satisfy condition C.1 of
the Proposition). For each comparison we attempted to tune the constants a, ¢ to
approximately maximize the rate-of-convergence for the unsmoothed algorithm;
the same a, c were then used in the smoothed algorithm in order to be conservative
in considering the performance of this approach (it was found for these particular
studies that .005 < a < .015, .04 < ¢ < .10).3 For the figures zo = 10, so the
initial RMS error is 10. When gradient smoothing was used, we took py = .5/k %3
(note that px/ar = O(k™"), as required by condition C.2, with » = .001).

Figs. 5.1 and 5.2 show that without and with process noise both the smoothed

3The choice of a,c is important for adequate performance of the algorithm (analogous to
choosing the step-size in back-propagation). For example, choosing a too small may lead to an
excessively slow reduction in tracking error while choosing an a too large may cause the system
to go unstable (so, for practical problems, it might be appropriate to begin with a relatively
small a and gradually increase it until there is an adequate convergence rate but little chance
of going unstable).
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Figure 5.1. RMS error for smoothed and unsmoothed DA and ST controllers in multi-
plicative control model (5.1) with ¢ = 0
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Figure 5.2. RMS errors for smoothed and unsmoothed DA controller in multiplicative
control model (5.1) with o = 0.5
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and unsmoothed implementation yield controllers with decreasing RMS tracking
error. In all cases, the RMS error curves show the characteristic shape of first-
order (steepest-descent-type) algorithms in that there is a sharp initial decline
followed by slow decline. Hence, over 90 percent of the possible reduction in RMS
error — which may be all that is required in many applications — occurs within
the first 100 iterations in all error curves of the two figures. In the DA cases, the
smoothed algorithm outperforms the unsmoothed, but for the ST method there
was little long-term difference between smoothed and unsmoothed algorithms.
This may result from the fact that the additional information being used in ST
overpowers the relative gains of smoothing. Note that the differences between the
smoothed and unsmoothed DA algorithms in Figs. 5.1 and 5.2 remain significant
throught the whole range of iterations. This apparently is a consequence of
the different search direction taken by the smoothed algorithm in the first few
iterations since there is a little contribution of previous gradient information to
the current gradient approximation in the later iterations (e.g., at k¥ = 20, only
8 2% of the contribution to Gj is due to Gx—; and at k = 1000 this contribution
is less than 0.8%). ‘

Additive Control/Non-Additive Noise Model

The second model we consider is one where the control is added to the dy-
namics and the noise is not additive. In particular, as in Yaz (1987), the data
are generated according to

-5 3 00 1zl )
Tyl = Tk + U + wg, ZTk,ur € R, 5.2
k+1 ( 0 1.1) k (0 1) k ( 0 koo Tha Tk (5.2)

where wy, is an independent scalar Bernoulli .5 noise process and || - || denotes
the Euclidean norm. As noted by Yaz, (5.2) corresponds to an unstable system.
Hence, in contrast to the study for model (5.1), we employed a controller where
the system could be reset from one state value to the previous state value as
described in Subsection 4.1 (we found that the control/estimation algorithm here
performed poorly if the system was not reset). We consider two constant target
sequences, t; = (0,0)T V k and t; = (1, 0)T V k, which yield long-run best possible
RMS errors of 0 and 1/+/2 respectively. Aside from the multiplicative (possibly
unstable) mode in which the noise enters (5.2), this model is interesting since only
one of the two control elements affects the system and since the first element of
~ z, can only be affected by a control after a delay of one time period. By the fact
that {w} is independent, the important condition C.0 on the effective SA noise
is satisfied here as it is in the simpler additive wy setting. Also, analogous to the
studies above, we used an Ny 20102 network for the controller.
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Fig. 5.3 shows the results of the study with model (5.2). The RMS error
curves are formed from the same averaging/interpolation scheme used in the study
for model (5.1). The figure includes runs for the above-mentioned two different
constant target sequences (which yield two different lower bounds to the long-run
RMS error). The SA gains were chosen as before (i.e., approximately optimally
for the unsmoothed algorithm and decaying at the rates specified above) with a =
.01, ¢ = .75 for the zero target and a = .005, ¢ = .75 for the non-zero target; when
smoothing is used we take (as above) pp = .5/k®%3. We see that the smoothed
algorithm yields a significantly lower RMS over the full range of iterations in
the zero target case and a slightly lower RMS over almost all iterations in the
non-zero target case. As with the earlier studies, pi is essentially 0 for most of
the range of iterations, yet the benefits gained from non-zero pi in the first few
iterations put the algorithm on a more stable path nearer the target for almost
the whole range of iterations. Also keep in mind that the SA gains were tuned
to optimize the performance of the unsmoothed algorithm; we have found that
the smoothed algorithm can be made to work even better if the gains are tuned
appropriately.
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Figure 5.3. RMS errors for smoothed and unsmoothed DA controller in additive control
model (5.2) with zero and nonzero target sequences

6. Concluding Remarks

This paper has considered the problem of controlling nonlinear stochastic
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systems with unknown process equations. The adaptive control approach here is
based on adjusting the weights in a neural network using the output error of the
system. Our approach differs from those of a number of others in that it does not
rely on an explicit model for the system dynamics (either based on a NN or other
parametric form [e.g., nonlinear ARMA|) to be used in conjunction with a NN
model for the controller. Related to this, it does not rely on prior identification
of such a system model based on specified input-output data.

Since we are not assuming full knowledge of the structure of the equations
describing the process dynamics, it is not possible to calculate the gradient of
the loss function for use in the usual NN back-propagation-type search algo-
rithms. Therefore, we describe a stochastic approximation-based method for the
NN weight estimation, which is based on a “simultaneous perturbation” approx-
imation to the unknown gradient (Spall (1988,1992)). This method relies on
observing the system state at two (or a low multiple of two) levels of the control
to construct the gradient approximation and is therefore able to estimate the
weights with many fewer measurements than the standard finite-difference SA
technique of Kiefer-Wolfowitz and others.

This paper has also introduced a smoothed gradient (SPSA) algorithm for
estimating the weights in a neural network. The gradient smoothing of this paper
is a first step in developing an accelerated implementation of the SPSA algorithm.
The smoothing is in the spirit of the well-known conjugate gradient algorithm
of deterministic optimization in that a recursion for the gradient approximation
is formed that combines current gradient information with the gradient approx-
imation of the previous iteration. Although the smoothing idea would apply in
virtually any use of SPSA as a general optimization technique, it has particu-
lar potential in control problems since improved SPSA efficiency can translate
directly into improved system performance.

This paper gives conditions under which the smoothed implementation of
SPSA shares the almost sure convergence property of the unsmoothed version
in Spall (1992). We also describe numerical studies on two different types of
nonlinear models. These studies indicate that the smoothed algorithm often
works better than the unsmoothed (in terms of reducing the magnitude of the
error in tracking the target) and, at worst, seems to work at least as well as
the unsmoothed. Further, there are no additional costs involved in using the
smoothed approach, either in terms of computational burden or the amount of
data required. This improved performance and lack of additional costs suggests
that one should consider using a smoothed algorithm in most applications of SA
in NN-based control.
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