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S1. Technical Proofs

S1.1 Proof of Theorem 1

It suffices to show ||LJ Li || — 0 in probability, where Li is the basis of the
subspace orthogonal to that spanned by the columns of I:l, which is ob-
tained via the minimization in problem (2.2). First, we show that f(-9(X,)

is not a consistent estimator of f(X;) when ||L{ L|| = 0. On the one hand,
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CMLM) = =YX - () - ePu(X)
= Y WX+ = YK - SX)Pu(X)

-2 3 A - X he(X)e

= 770+H1+H27

where 7 is irrelevant to the minimization over M. Since II; is mean 0 and

n

1
B(IL[Xu,..., X,) = = Y wX){ BX)? + Y K02,
i=1 j#i

4 n
BIBIX,,..,X,) = — 3 otw(X){ B + Y Kot}
i=1 G

where B(X;) = f(X;) = f(X;) and f(X;) = 30, f(X;)K};. We have

Ji g

Iy, = O,,(n_l\/Zyzl{B(Xi)2 + 2,4 K307}). Hence, II; is the dominant

term compared with IIy in CM,,(M) — 79. On the other hand,

FONX) = f(Xi) =D FX)E;, = f(Xo) + > 6K,
j=1 j=1
Suppose that there exists a subsequence of n = 1,2, ---, such that L, — LJ{

but ||[LJ Lt # 0. For notational simplicity, we still denote the subsequence

as the original n. With ||h|| — 0,

3 FX)ES - BE{f (X)X € x + Li*Hex, = (X))
j=1



S1. TECHNICAL PROOFS3

in probability, as n — oo. We intend to show
P{fI(X) = f(X)} < L.

Indeed, suppose that P{fT(X) = f(X)} = 1 and then fT(x) = f(x)
for all x € Q. Since fi(x) = ff(t) if x — t € LI*, we have f(x) = f(t) if
x —t € Li*. Tt follows that f{t + c(x —t)} = f(t) for all ¢ € R. By the
identifiability condition (C4), we have x—t € F and thus LI+ € F = L or
equivalently S(Lg) € S(L!). Since Ly and LI are both column orthogonal
matrices of size p x 7, we have S(Lg) = S(L!). This is in contradiction

with the assumption that ||LJLi"|| # 0. Hence, P{fT(X) = f(X)} < 1.

Since f1(-) and f(-) are smooth functions, we write
DUURCSETERES
- 3 D) = 1)+ 1K) = SR 0(X)
> 330K = SR+ 1 S0 = 10K ()
- 23S0 = £KHSK) — FK) ()
> ¢o + 0,(1). (SL1)

The last inequality is followed by the Cauchy-Schwarz inequality, the strong
law of large number of W; = {f1(X;) — f(X;)}*w(X;) and the consistency

of f)(X;) with repect to f1(X;). As a result, CM,(M) — 7 is at the
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order of O,(1) with some positive lower bound ¢y > 0. Nevertheless, we

now show that with ||L{L{|| — 0 and ||h|| — 0,

sup |fC9(X;) — f(X)] = 0 in probability, (S1.2)

1<i<n
as n — 00. As a consequence, CM,, (M) — 7, is at the order of 0,(1).

In fact, recall that Q° is the support of w(-) and f,,(u) = f(uq,. .., ur,)
is the density function of U = LJX. Now, define 0 = {y € R :
infxeqo [|[y—x|| < 6}, where § > 0 is a small constant such that min g5 fx(x) >
0. Hence, there exists 7 > 0 such that min,_qs f,,(Ljx) > 7. To show

(S1.2), it is sufficient to prove that for any € > 0,

P{ sup | fu(x) = f(x)] > e} — 0, asn— oo. (51.3)

xeQd

For simplicity, denote v(x) = f,,(Lj x). Let ¢(x) = f(x)v(x) = g(Lg x)v(x),
6030 = = S VKX, — %), va(x) = -3 Kna(X, — )
j=1 j=1

And thus f,(x) = ¢,(x)/va(x). It is not hard to verify that

P{ sup | fulx) = F(0)| > e

x€N9

< p{ Sup |6 (X) — F(X)m(x)] > e(r — e)} n P{ sup |vn(x) — v(x)| > e}

x€Ns xeNd
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where b = sup, s | f(x)| < co. Recall that

o (o 1)

is a p X p orthonormal matrix, where L; € RP*™ and Ly is the augmented
orthonormal basis in R?. Define fr,(x) = [ cpo-rp fx(X + Losz)dss.

To proceed, we first show that as n — oo, ||h| — 0 and ||LJ La|| — 0,

sup |E{¢,(x)} — ¢(x)| — 0. (S1.5)

xeNd
Define ¢(x) = f(x)fx(X), ¢r,(X) = [, cpw-r O + Lasy)dsy and I, be

the rg X ry identity matrix. We have

E{f(X)Em(X —x)} (S1.6)
e [ R )
Ty o, KI5

1

= — K(s"LTLiH L] Ls)¢(Ls + x)ds
hl e h?“o seRP

1 Ir S1
ey SRS 1 CHEY | I L ()
h ...hro 81E€R™0,55€R(P—70) 1 2 0

0 So

[y

X¢(L1$1 -+ LQSQ + X)dsldSQ

1

= — / K(SITH_Qsl)qE(Llsl + LQSQ + X)dS1d82
hy--- hro s1€R70,s5cR(P—T0)

= / K(||s1]*)¢r, (x + Ly Hsy )dsy
s1€R"0

= o000 + T LT G, (L) + of ),
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where the last equality is due to the Taylor expansion of ¢r,(x + LiHs;)

and the condition fs

s1K(||s1]]*)ds1 = 0. Therefore, we have

1ERT0

sup [E{¢n(x)} — ér,(x)] < sup |Ry(K)tr{HL{ ¢r,(x)LiH} {1 + o(1)}

xeNd

xeNd

= O(|h|*). (SL.7)

Recall that f(x) = g(Lgx). According to the Taylor’s expansion,

sup [r, (%) — o(x)]

xeNs

IN

sup / G(LIX + L Loss) fx (% + Loss)dss — g(LIx)0(x)
XGQg SQER<I)7T0)

sup |g(LYx) fu (%) + §(L] %) LI Ly / 50 (x + Losa)ds,
xe0’ so€R(P—70)

~g(Lyx)(x) + of| [ La]))

sup [g(Lg )/, (%) — g(Lg x)v(x) + O(||Lg Lo||)|

x€Nd

sup [9(Lg%)]o(1) + O(|[LJ L), (51.8)

xeNs

where the last inequality holds by the fact that fr,(x) = f,,(Lgx){1+0(1)},

asn — oo and || Lg Ly|| — 0. This result can be derived using the condition

(C1) and the Taylor expansion of fr,(x). In fact, recall that fx(x) is the

density of X and thus the density function fg(u) of U = QX satisfies

fo(u) = fx(x) for any p x p rotation matrix Q. By taking Q" = (Lo L),
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we have that as ||Lj La|| — 0,

fu.(x) = / fx(x + Lasy)ds,
so€R(P—T0)

LJX + LE)FLQSQ
s2€R(P70) L(J)‘TX + L(J)_TLQSQ
Lix|
- [ {1+ o(1))
So€R(P—T0) ~
S92
= Ju(Lix){1+o(1)}.

Hence, as n — 0, if ||h|| = 0 and ||Lj Lo|| — 0, (S1.7) in conjunction with
(S1.8) yields (S1.5). On the other hand, following a similar proof of Lemma
B.1 in Newey (1994) and applying condition (C5) and Ay - - - h,, > n~° for

some 0 < § < 1, we have

sup |¢n(x) — E{¢n(x)}| — 0, in probability. (S1.9)

x€NS

Therefore, (51.7), (S1.8) and (S1.9) yield

P{ sup |6 (x) — F(x)v(x)] > @} 0.

x€Q?
Likewise, by replacing Y; with 1, it can be shown that sup, s [Vn(x) —
v(x)| — 0 in probability. As a result, combining inequalities (S1.4), we
have proved (S1.3).

In conclusion, in case of ||Lj Lg|| — 0 and ||h|| — 0, CM,,(M) — 1 is at
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the order of 0,(1). This violates the definition that CM, (M) < CM,, (M)

for M € S%. The proof is complete.

S1.2 Proof of Theorem 2

For brevity, we write w(X;) by w;. The following lemmas are needed to

prove Theorem 2. The proofs of Lemmas 1-4 is given latter.

Lemma 1. Suppose conditions (C1)-(C5) hold. Then, E{Km(X —x)} =
fr,(x) + O([h]]?). Moreover, for any i =1,...,n, 37, Km(X; — X;) =
nfr, (Xi) {1+ op(1)}.

Lemma 2. Define 0f,(x) = [ _pw-ro) fx(X + Los)o*(x + Lys)ds. Under
conditions (C1)-(C5), we have

B ot = 5201 o))

where Ry(K) = [ oo K*(|[s]*)ds and

VO_/xeRP (Lo x) fro(Lg x) o

Lemma 3. Under reqularity conditions (C1)-(C5), suppose |LgLa| — 0

and ||h|| = 0. Then, for any t € €,
E[{f(X) = f(t)}Em(X — t)] = ¢(t, b, L) + o(|[h]|* + [|Lg La|),

where the definition of 1(-) is given in Theorem 2.
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Lemma 4. Under regularity conditions (C1)-(C5), for anyt € , Var[{ f(X)—

O} Ena(X — )] = O{[][2/ (R - - sy }. Consequently,

1
~0 ()

WrE}f ()} Km(X; — t)

Proof of Theorem 2. Write
CM,(M) = % szf? + % Z{B(Xz>}2wz + % Z (Zl CjK;i)Qwi
__ZB wZEZ——ZZeejK AW,

=1 j=1

+= ZB Z e K w;
7=1

No+m +n2+ 13+ 1M1+ 75,

where f(X,) = Y0, f(X;)K?, and B(X;) = f(X;) ~ f(X,). Here B()

stands for the bias. Observe the facts that

(a) mo = n~ ' D21 wiel is free of M and thus it is irrelevant to the mini-

mization over M.
(b) m =n"13Y " {B(X;)}?w; stands for the bias term and n; > 0.

(c) mo is viewed as the variance term and 7y > 0. E(n9]Xy,...,X,) =
n! E?:l 22:1([(;1)2‘7]2'101-
(d) E(n3|Xy,...,X,) =0and E(n?|Xy,...,X,) = 4n2 Z?:l{B(Xi)Pafwf.

Hence, ng = Op(n~" /2 {B(Xi) ).
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(e) E(nXi,...,X,) =0and E(m3|Xy,...,X,) =4n2>"" 2?21 {(K;Z)wa

+ KK jww; ofo?. Hence, = Op(n™'\ /S0, S0 (K5 12).

(f) E(ns]Xy, ..., X,) =0 and 15 = O, (n ™2 supx o5 |B(X)]).

The above statements (a)—(e) are trivial and we only give one justification
for statement (f).

Since ||h|| — 0 as n — oo, Kjw; = 0 for all (X;,Xj;) if X; or X;
is outside Q9 for all large n. Set a,(x) = n~! >z Km(X; — x). By the
Lemma 1, with probability one, for all large n, there exists some constant

C > 0 such that

1/C < inf a,(x) < sup a,(x) < C.
x€0 <08

It follows that with probability one, for all large n,

su B(X K* Wi = su B(X K* JW;
1<j£)7’7, ZZ Xego Z
S{sup ‘B z}{ Supz }
X;eQ? X0 i
1 — Km(X, — X,
:{ sup ‘B(Xl)wl|}{ sup —ZM}
Xz‘EQg XjEQg n j=1 an(Xi)
< C? sup ’B }
X;€Q8
Hence,

E(2Xy.. ... X,) = = Zag{ 3 B(X-)K;wz}2 — 0,(n™" sup {B(X;)}*w?).

2
A i=1 X,
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In the following, we intend to show that n; and ny are the dominating

terms, compared with ns, n4 and 7s.

Write

{BX)} = {f/(X) - f(X)}?
([ 5l X5) = S (X} (X,; = X)) )
{n_l Zj;ﬁi Km(X; — Xz)}2
By Lemma 1, the above denominator is ff, (X;){1+ 0,(1)}. And it follows

from Lemmas 3-4 that the above numerator is
1
2(X;,h,L h|*+ Ll L2 4+ — .
00K L) o I+ LG Ll 4

Hence, by the law of large number and the continuous mapping theorem,

we have

Q/JQ(X7 h7 Ll)

x€ERP f’r?() (LE)FX)

1
Lo Ly|? + |b[* + ——— | .
oy (ILTLal? + I+ )

m= 1 S BX)Pu, rlxu(x)ix

Write
n n n
1, 1 _
= E €5+ o E E €j1€j2j1,j2 5
Jj=1 J1=1j2#51
~ n * \2,,,. . ~ n * * )
where a; = > ", (Kj;)*w; for all i and a;, 5, = > ., Kj K}, jw; for all

Jo # j1. We now show that Z?Zl e?&j is the dominant term in ns.
First, from Lemma 2, we have

E(% Zn:eﬁaj) - %{1 +o(1)).

j=1
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Second, it can be easily verified that E(37 _, >0 . €5€5,05 5) = 0. By
Lemmas 1-2, we have a;, j, = O,(n™!). And recall condition (C5), it follows
that
n n 2 n n
E( Z Z €j1€j2dj1,j2> = E<Z Z 0]2-10]2»2@17]-2) =0(1).
=1 jaF# =1 ja#51

As a result,

=2 >+ o) = S g )y

j=1

Since 73,14 and 75 are of smaller order than ||LJ Lo |>+||h||*+1/(nhy - - - hy,)

and 7 is free of M, then

CM,,(M)—n9 = m+nm+n+n.+mns
¢2(X7h7L1)

N x€RP frzo (Lo x) Felju ) +

1
L. Ll hi*+ — ).
+ 0y (ILTLal? + Il + )

Ry (K)Vo
nhy - hy,

The proof is complete. O

S1.3 Proof of Corollary 1

It is seen that Lj Ly is only contained in the bias term of the asymptotic

expansion shown in Theorem 2. And we can easily verify that

Y(x,h, L) = —vec(TT) Tvec{b(Lj t)§(LJ t) " }+Ri(K)tr(HL] LoA(Lj t)Lj L,H),



S1. TECHNICAL PROOFS13

where T = L] Ly. Let b(t) = vec{b(LJ t)§(LJ{t)T} and
é(t,h) = Ry (K)tr(HL LoA(Lg t)Lj L H).

Since the objective function is quadratic, the optimization procedure over

vec(TT) yields the solution

{ - BB O (Lgt)dt} | h>6<t>fx<t>—2“gf§t)dt,
(S1.10)

where the AT denotes the generalized inverse of a matrix A. By some
simple calculations, it can be shown that the order of (S1.10) is O(]|hl?).
Since Lj L; is asymptotically orthonormal, we obtain that the ||LJLy| =
O(|[h*).

Further, to find the optimal rate of the bandwidth h, we also con-

sider optimizing the asymptotic expansion. Let LjL; = €y, ,Ero) and
then ¢i(t,h) = Ry(K)> 72 VW26 A(Ljt)€;. Taking derivative over hy,
k=1,...,r9, we have

O{CM,,(M Ry (K)Vo

)=} _ +Cr(Ly) +4hk20h2

=0,

Ohy, (Hj;ék hj)

where

C = (R0 [ ATOBHE ALTOBx(t) st = O
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and

w(t)

Cr(Ly) = Ri(K) /t o g(LJt) TTh(L] t)£] A(LJ t)ey, fx(t)m gt
= Ry (K)vec(T")"
- /R vec{b(Lg t)g(Lg )T} A(L] t)ékfxw%dt

= O(|[h]*).

As a result, we obtain that h = O{n~Y/(*49}. This completes the proof.

S1.4 Proof of Proposition 1

~

Recall that from Theorem 1, we have CM,,(M,,) — 7o = 0,(1), where 7y =
E(w(X)o?(Lg X)) is irrelevant to ro. When 1 < 7 < ry, we can show that
CM,,(M,) — iy > ¢, + 0,(1) for some constant ¢; > 0. Let Ly (r) € RP*" be
the CVML estimator when the dimension of CMS is set to be r and L (r)
be the augmented orthonormal basis in RP. Since the column vectors of Ly
and Ly form a set of basis in RP, there exists a unique decomposition of
L (r) such that

L (r) = LoA(r) + L B(r), (S1.11)
where A(r) is a 79 X (p —r) matrix and B(r) is a (p —19) X (p — r) matrix.
We now show that ||LJ Li-(r)|| does not converge to zero. Suppose that

|ILI L (r)|| converges to zero. Then by the decomposition (S1.11), we have
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that |[LJLi(r)|| = ||A(r)]|—0. Since the column vectors of Li-(r) are
orthogonal, we have that Li (r)TLi (r) = A(r)TA(r) +B(r) TB(r) = I,
where I,y is a (p—7) X (p—r) identity matrix. It follows from || A(r)||—0
that B(r) "'B(r)—I;,_,. However, due to r < rg, the rank of B(r)"B(r)
shall not exceed (p — r9) and is not able to attain (p — r), which is in
contradiction with B(r) "B(r)—I,_,). Therefore, we have | L Li-(r)|| - 0.
Then it follows from simular proofs in Theorem 1 that f( (X;) with M
set to be M, = L;(#)H2L,(r)7 is not a consistent estimator of f(X;)
when |LJ L (r)|| - 0. Moreover, by similar derivation of (S1.1), we obtain
that for any 1 < r < rg, there exists a positive constant ¢; such that
CM,,(M,) — 7y > ¢ + 0,(1). As a result, CM,,(M,) > CM,,(M,,) for all
1 <r < rg because of the lack of fit.

One the other hand, when r > rg, let L;(r) represent the column or-
thogonal matrix Ly of order p x r and Lg(r) be the augmented orthonormal

basis in R?. Then, we have

f(fi)(X') _ Zj;éz‘}/jKM(Xj - Xl)
Zj;ﬁi KM<XJ - Xz)

where M = L;(r)H 2L;(r)". Following a similar derivation as Theorem
1, we have that as n — oo, ||h|| — 0 and ||LJ Lo(r)|| = 0, fC(X,) is
also a consistent estimate for f(X;). As a result, CM,(M,) = 7 + 0,(1)

for all 7o < 7 < p. Therefore, we have CM,,(M,)/CM,(M,,) —, 1, for all
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ro <r <p.

S1.5 Proofs of Lemmas

Proof of Lemma 1. Recall that L = (L; L) is a p X p orthogonal matrix.

Analogue to (S1.6), we have

E{Kn(X —x)} = K(||s1]?) fr, (x + L Hs, )ds. (S1.12)

s1ER"0
According to condition (C3) and the Taylor expansion of fr,(x + L;Hs;),

(S1.12) equals

fra(x) + { fr,(x)} 'L H s1K (||s1]|?)ds (S1.13)

s1ER"0

1 ;
45 [ STHTL] fu L HsyK (fsi s + of )
s1ER™0
U L o, (L o 1))

sz (X) +

Jr.(x) + O(/[u[]*),
where fr,(x) = 0f1,(x)/0x and fr,(x) = (0%/0x?) fr,(x).
On the other hand, a similar calculation to (S1.12) and (S1.13) yields

BOR(X — 0} = 2L 601 + o),

Consequently, Var{n™* Y7 | Km(X;—x)} = O{(nhy -+ hy,) '} =0(1). O

Proof of Lemma 2. By Lemma 1 and the continuous mapping theorem, for
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j # 1, we write

E{(K7,) w07}

_ / Kl%/l(t — X>w<x)02(t)fX<X)fX<t) dtdx{l + 0(1)}
teRP, x€RP anEQ(X)
1 fx(x)w(x)

_ 1 { [ e w0 DB a4 o)

n

R
= 2 A / / 0% (x + Los) fx (x + Lasy)ds,
n hl 7“0 x€RP JsyeR(P—70)

fx( Jw(x)
LX) g x{l+o(1)}

T )fXJELj(xg B sl ol .

where the last two equalities hold by invoking Ry(K) = [, ... {K(|[s|*)}*ds.

Noting that

0'2(X+L2S2) = 02(LJX+LJL252)

= 0*(Lgx) +6*(Lgx) 'Ly Losy + of|[Lg Lo]).

It follows that

B o s
Ry (K) 21 T JX(X)w(x)

— e /XGRP 0*(Lyx) 7o dx{1+o(1)}
Re(K)Vo
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Proof of Lemma 3. Tt follows from f(x) = g(Ljx) that

E[{f(X) = f(t)} Km(X —t)]

= [ (s ) - F}K(STH ) fx(Ls + t)ds
177" Mrg JseRp

_ / (F(LyHs, + Losy + t) — f(£)}
s1€R"0,s9€R(P~70)

XK(HSl ||2)fx(L1HS1 + LQSQ + t)dSldSQ.

= LHs 4 L L+ L6 — gL 1)

s1€ER70,50€RP~T0

XK(H51||2)JCX(L1H51 + LQSQ + t)dsld821d822. (Sll5)

Now expanding both g(LJ LiHs; +LJ Laoso+LJ t) and fx(t+L;Hs; +Loss)

in Taylor expansions yield

g(LgLiHs; + Lj Losy + Ly t) — g(Lg t)
= g(Lgt1) " (Lg LiHs; + L Lys,)

+ —(Lg LiHs; + L Lysy) " §(Lg t)(Lg LyHs; + Lj Lsy) + o |h?)

N | —

and

fx(t + L1H81 -+ LQSQ) = fx<t -+ LQSQ) + fx(t -+ LQSQ)TLlel -+ O<HhH)
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Therefore, (S1.15) equals

/R ooy (8L 6) (L LaHsy + Lo Loss) +
s1€R"0,s0€RP~T0

1
é(L(—l)—Llel + LJLQSQ)T‘é(LJtl)(LE)rLIHSl + LJLQSQ)
+ o[ YK ([ls1]|){fx (t + Loso) + fx (t + Los,) ' LiHs; + o(||h||) }dsds..

= Q(Lgt)TLg/ Losy fx (t + Lgsy)ds,
s1€R70 soeR(P—T0)

+ BRI TILEL] [ (b Tasa)ds,
sg€RP~T0

1 )
+ 5 Ra(K)tr{HL; Log (L t)Lg LiH} fi, (t) + o(|[h]|* + || Lo La|))

= A1+ As+ Az 4 o(|h|]* + Ly Ly|)

As ||[Ly Ly|| — 0 and ||h|| — 0, taking Q" = (Lg Ly ), we have

Al = g(Lgt)TLS—LQ\/ ngx(t + LQSQ)dSQ
SQER(P*TO>
LTt + LTLQSQ

_ g(Lgt)TLJLg/ safq | 0 ds,

s2€R(70) LiTt 4+ LiTLos,
Lot

= g(LJt)TLOTL2/ safq dsp{1+o(1)}
s2€R(70) Lyt +s9

= g(Lgt)TLJLg/ ( )(s2 — Ly "t) fo(Lgt,s2)dsy {1+ o(1)}
so€R(P—T0

= GLIOTLLe [ (s LT fu (lL] s, (L {1+ 0(1)
so€RP—T0

= §(Lgt) Lo Lo Fuyj, (U2 — Ly "t[UL = Lo t) /i, (Lo t){1 + (1)}

= g(Lgt) "Ly Lyob(Lj t){1 + o(1)}, (S1.16)
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where u; € R, uy € R(”_TO), U, e R, U, € R(®=70) and
b(Lgt) = By, (U2 — Ly 't|Ur = Ly t) £, (Lo t).
For A,, it is straightforward to show that

Ay = Ry(K)tr{HL{ Log(Lgt) fr(Lg t) "Lg LiH}{1 + 0(1)},  and

1 .
Ay = 5Rl(K)t]f{HLILOg(LOTt)LJLlH} fro(Lg t){1+o(1)}.
As a result,

E{f(X) = f(t)} Km(X - t)]
= §(Lgt) Ly Lob(Lgt) + Ry (K)tr{HL{ Log(Lg t) fr, (Lo t) 'Ly L H}
+ %Rl(K)tr{HLlTLog'(Lgt)LJLlﬂ}fm(Lgt) + o([[h[|* + |ILg Le|)
= g(Lgt) ' LjLob(Lgt) + Ry (K)tr{HL] LoA(Lj t)L, L, H}
+ o(|[h[* + | Lo Ly|))

= ¥(t,h,Ly) +o(|[h* + [[Lg Le|),

where

A(LTE) = SLI0 o (L) + G150, (L] 1)
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Proof of Lemma 4. With an analogue calculation to Lemma 3, we have

E[{f(X) = f(t)} Kn(X = t)]*
1
hl T hro /sleRro7526R(p—To)

x K*(||s1]|*) fx (LiHsy + Lyss + t)dsyds;

{g(LgLiHs; + Ly Losy + L t) — g(Lg t) 1}

1 :
by h / oy (Lo ©) (L Ly Hsa + Lo Losa) + o([[b] + [T La|)}*
ro Js1€ERT0,52€RPT0

x K2(s1]){ fx(t + Losz) + O[] ydsudss.

Recall that [| g, s1K([[s1]*)dsy = 0 and [| ., s18] K2(|[s1]|*)ds; exists.

Let
| sl (s = il
s1€R"0

for some ¢y > 0. It follows that

Var([{ f(X) — f(t)} Km(X — t)]
< B{f(X) — f(t)} Km(X - t))?

G . .
by 2 h tr{HLlTLOQ(LoTt)g(LoTt)TL(TLlH}fL2 (t){1+0(1)}

C2

= 0Lt L LiHL Log(Lg t) fua(6){1 + o(1))
To

_ [hl?
- O(hl"'hro )
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