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This document consists of four sections. In Section A we prove Lemma 2,
in Section B we prove Theorem 1, in Section C we prove Theorem 2 and in
Section D we provide details to the verifications of (A1), (B1) and (B2) in

Examples 3-5.

A  Proof of Lemma 2

Let the infinite arms bandit problem be labeled as Problem A, and let
R 4 be the smallest possible regret for this problem. We prove Lemma 2 by

considering two related problems, Problems B and C.

PROOF OF LEMMA 2. Let Problem B be like Problem A except that

when we observe the first positive loss from arm k, its mean py is revealed.
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Let Rp be the smallest regret for Problem B. Since in Problem B we have
access to additional arm-mean information, Ry > Rp.

In Problem B the best solution involves an initial exploration phase in
which we play K arms, each until its first positive loss. This is followed
by an exploitation phase in which we play the best arm for the remaining
n— M trials, where M is the number of rewards in the exploration phase. It
is always advantageous to experiment first because no information on arm
mean is gained during exploitation. For continuous rewards M = K. Let
(= Hbest) = MiN << fe f-

In Problem C like in Problem B, py is revealed upon the observation of
its first positive X;. The difference is that instead of playing the best arm
for n — M additional trials, we play it for n additional trials, for a total of
n + M trials. Let Ro be the smallest regret of Problem C, the expected
value of Zle Ny g, With Zle ny = n+ M. We can extend the optimal
solution of Problem B to a (possibly non-optimal) solution of Problem C

by simply playing the best arm with mean u;, a further M times. Hence
Ry + E(M) >]Rp + E(Mps) > Re. (A1)
Lemma 2 follows from Lemmas 3 and 4 below. O

Lemma 3. Rc = n(, for ¢, satisfying v((,) = %
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_B_
Lemma 4. E(Mu,) = o(ns+1).

Bonald and Proutiere (2013) also referred to Problem B in their lower
bounds for Bernoulli rewards. What is different in our proof of Lemma 2
is a further simplification by considering Problem C, in which the number
of rewards in the exploitation phase is fixed to be n. We show in Lemma 3
that under Problem C the optimal regret has a simple expression n¢,, and

reduce the proof of Lemma 2 to showing Lemma 4.

ProOF OF LEMMA 3. Let arm j be the best arm after k£ arms have
been played in the experimentation phase, that is p; = minj<;<x p;. Let
¢ be the strategy of trying out a new arm if and only if nv(p;) > A,
or equivalently p; > (,. Since we need on the average Iﬁ arms before

achieving 1; < ¢, and the exploration cost of each arm is A, the regret of
Oy is
R. = 525 + nBy(plp < G) = 7a(Gn) = nGp, (A:2)
see (5.1) and Lemma 1 in the main manuscript for the second and third
equalities in (A.2).
Hence Rc < n(, and to show Lemma 3, it remains to show that for
any strategy ¢, its regret R, is not less than R.. Let K, be the number
of arms played by ¢, and K the number of arms played by ¢. Let u, =

minlSkSK* M- Let G1 = {K < K*}(: {minlngK M > Cn}) and GQ =
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{K > K, }(= {p« < (u, K > K,.}). Since

R, = )\E(K)+nE(1£r11€1§rlKuk),

R, = ME(K,)+nE(u.),

we caln express

Rs— R, = 22: {/\E[(K ~K)1g] + nEKIE}EK 1 — M)m} } (A.3)
(=1 -

Under G, minj<g<g pi, > ¢, and therefore by (A.2),

AE[(K — K,)1¢,] +nE [( min_ i — H*) 101] (A.4)

1<k<K

e cof i )ta] - PO )

> PG + nlGu — Ey(uln < G} = 0.

The identity F[(K, — K)1g,] = iégj)) is due to minj<p<g pr > (¢, when

1

there are K arms, and so an additional P

arms on average is required

under strategy ¢,, to get an arm with u; not more than (,. The identity

E(ple,) = P(G)E(u) = P(G1) Eg(plp < Gn)

is due to the independence between 1¢, and ..

In view that (K — K.)1g, = Y72 1ix>k. 15y and

(ér;?gnK I u*) 1c,
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= Z( min g — min ',Uk>1{K>K*+j}7

- 1<k<K.+j+1 1<k<Ki+j
7=0
it follows that
NE(K — K)1¢,] + nE[( min g u*) 102] (A.5)

= ez e e ) oo}
J:

- S e{n- (i )iven} 20
i=0 o

8

The second equality in (A.5) follows from

E< min i — min g
1<k<Ki+j 1<k<K*+j+1

i — 2 K > K* '): .
in =2, K> K +j)=0(@)

The inequality in (A.5) follows from

' < < _ A
U<1S151§1%+juk> < ope) <0(G) = 3,

as v is monotone increasing. Lemma 3 follows from (A.2)-(A.5). O
PROOF OF LEMMA 4. Let K = |n¢,(logn)?*2| for ¢, satisfying

nv((,) = \. Express E(Mp,) = S0_ E(Muy1p,), where

l)1 — {/’Lb S Cn }’

logn
Dy = {w> 10ann’K > [?},
Dy = {32 < < Gulogn)®* K <K},

Dy = {m > C(logn)™ K < K, M > 1},
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D5 = {m>Gallogn)™* K < K, M < 3}.
It suffices to show that for all 7,
E(Mmlp,) = o(n%). (A.6)

1
Since ¢, ~ Cn” 71 [see (3.3) of the main manuscript], % < % = o(n?+1)

and (A.6) holds for ¢ = 1.

Let 1i, = ming  z fig. Since M < n, w, < py and E(uy) < A,

E(M:ub]-D2> < nE(NllDz) (A7>

= nE(u|m > logn)P(Dz)

< A+ o(D)nP(fip > ).

logn

By condition (A1), p(¢) ~ %Cﬁ as ( — 0, hence substituting

Py > 1522) = [L= p(2))F = exp{—[1+ o()] K5 (;2)°] = O(n ")

into (A.7) shows (A.6) for ¢ = 2.
Let M; be the number of plays of II; to the first positive X;; (hence

M = 25{:1 M;). It follows from condition (A2) that E,M; = m <

, hence by 1, < (,(logn)?*3 under Ds,

al mln(,u 1)

EMulp,) < E(M1 )Kgn(log n)?*s (A.8)

{/L > Togn logn

([, aesau)ncitog =

logn

IN
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Substituting
)
O(1) if 8> 1,
= aw g, .
/(n L2dp =9 O(logn) if =1,
logn
| O(()"h) if B <1,

into (A.8) shows (A.6) for i = 3.
If y; > (,(logn)?+3, then by condition (A2), M; is bounded above by
a geometric random variable with mean v~ where v = a,(,(logn)’*3.

Hence for 0 < 0 < log(ﬁ)a

. _ ved
E(™ 1 s catogmay) < D e u(l =)' = =,
h=1

implying that

e P(Dy) <]E(¢"™1p,) < (1=25—)F. (A.9)

1—ef(1—v)

Consider 6 such that ¢’ =1+ ¥ and check that /(1 —v) <1—-% [0 <

log(:=)]. It follows from (A.9) that

P(Dy) < 6_97”(5—7;)K _ oK (k-2

~

= exp[K log2 + [1 +o(1)]4(K — %)

= exp{—[l+o(1)]%} =O(n7").
Since M < n, pp, < pq and E(pq) < A\,

E(Mpp,) < nBlml > G(logn)™*|P(Ds) < n[A + o(1)]P(Dy),
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and (A.6) holds for i = 4.

Under Dj for n large, since v(() ~ Pt as ¢ = 0 and ¢, ~

_a
B(B+1)
C’nfﬁ’

(n — M)o(u)[> 5v(Ga(log ) )] > A.
If we explore one more arm, then the additional exploration cost is not
more than A and reduction in exploitation cost is at least (n — K)v(up).

Hence Ds is an event of zero probability, in view that we are looking at the

optimal solution of Problem B. Therefore (A.6) holds for ¢ = 5. O

B Proof of Theorem 1

We preface the proof of Theorem 1 with Lemmas 5-8. The lemmas
are proved in Section B.1 and B.2. Consider X, Xs,... iid. F,. Let

St = ZZ:I Xu, Xt = % and 6\? = t_l ZZ:I(XU — Xt)Q. Let

T, = inf{t:S; > b,t(,}, (B.1)

T. = inf{t:S, > t¢, + c,01V1}, (B.2)

with b, — oo and ¢, — oo such that b, + ¢, = o(n°) for all § > 0, and

Cp ~ Cn~ 1 for C = (%)ﬁ Let

d, =n"* for some 0 < w < ﬁ (B.3)
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Lemma 5. Asn — oo,

sup [min(p, 1)E,T] = O(1),

p>dnp

Ey(Toplypza,y) < A+o(1).
Lemma 6. Let ¢ > 0. Asn — oo,

s [ME(T.An)] = O(c +logn),
(1+€)¢n<p<dn

Lemma 7. Let 0 <e < 1. Asn — oo,
sup P,(T, < 00) — 0.
p<(1—€)Cn

Lemma 8. Let 0 < e < 1. Asn — oo,

sup P,(T, < c0) — 0.
:U'S(l_e)Cn

(B.6)

(B.7)

The number of times an arm is played has distribution bounded above

by T := T, AT.. Lemmas 7 and 8 say that an arm with gy, less than (1—¢€)¢,

is unlikely to be rejected, whereas (B.5) and (B.7) say that the regret due

to sampling from an arm with g, more than (1 + €), is asymptotically

bounded by A. The remaining (B.4) and (B.6) are technical relations used

in the proof of Theorem 1.

PrROOF OF THEOREM 1. The number of times arm k£ is played is ny,

and it is distributed as T, A T, A (n — le;ll ng). Let 0 < e < 1. We can
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express

R, —n(y =21+ 20+ 23 =21 + 20 — | 23], (B.8)
where z; = E[Zk:ukeDi ng (ke — Cn)] for
Dy =[(1+€)¢,00), Dy =((1=€)G,(1+€)¢), Ds=(0,(1—€)Gl.
It is easy to see that zo < en(,. We shall show that

Ato(1)
S o) (B.9)

7] = 11597 + o(D)]neGa + S5 (B.10)
We conclude Theorem 1 from (B.8)—(B.10) with ¢ — 0. O

ProoF oF (B.9). Since T'= T, A T,, by Lemmas 7 and 8,

¢ = sup P,(T <o0) (B.11)

p<(1=€)¢n

< sup [P,(T, < 00) + P,(T. < 00)] — 0.
p<(1—€)Cn

That is an arm with py less than (1 — €)(, is rejected with negligible prob-
ability for n large. Since the total number of played arms K is bounded

above by a geometric random variable with mean ﬁ, by (B.11) and

p(Q) ~ 4¢P as ¢ =0,

1 1 1
EK < pr=s S Tan@=a6) ~ T=97G0" (B.12)

By (B.5) and (B.7),

Eg(nipnliu>1+0¢.})
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= Ey(mimliaroc,<m<dy) + Eg(nipmliy>a,y)
< B (Te An)pnliaroc<m<dny) + Eg(Topi 1, >d,))

< Ato(l),
and (B.9) follows from (B.12) and z; < Ey(nipi1 1y, >a4oc3) EK. O

ProoF OF (B.10). Let ¢ be the first arm with mean not more than

(1 —€)¢,. We have

23] = E[ > nk(Cn_l/Jk:)] (B.13)

k:u€D3

> (Eno){Gn = Eglplp < (1 = €)Gal}-
Since v(G,) ~ % and p(¢) ~ §¢%, v(() ~ BT 2 (Pt as ¢ — 0,

Cn — Bylplp < (1= €)G]
= G —{(1 =€) — Eg[(1 = €)C — plpr < (1 =€)l }

= G- [1- 96— =]

~ Gk B ~ Gt S
and (B.10) thus follows from (B.13) and
Eng > [(19)° 4 o(1)]n. (B.14)

Let j be the first arm with mean not more than (1 + €)(, and M =

S~ n;. We have
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Since g, — 0 and P({ = j) — (175)7, to show (B.14) it suffices to show

that EM = o(n).

Indeed by (B.4), (B.6) and E,ny < E,(T An),

sup [min(u, 1)E,n]
n=(1+€)Cn

< max [ sup pE, (T, An), sup min(p, 1)E,T;, | = O(Ci + logn).
(1+€)¢n<p<dn u>dn,

Hence in view that = O(n%) and Py(p1 > (1 +¢€)¢,) — 1 as

___r
p((1+€)¢n)

n — oo,

EM < sraey Bo(mlim > (14 6)G)

B c2 +logn
= O(nAT) B[S 1 > (14 )]

_ 0P (B + logn) / gy,
14+€)Cn ’
IR o,
= O(n?71(c, + logn)) max(n?1, logn) = o(n).

The first relation in the line above follows from

(

o(1) if 8> 1,

T g, .

min H=19 O(logn) ifpg=1,
[1+5)Cvz (MJ) ( g ) 5

1-8

O(n71) iff<1. O

\

B.1 Proofs of Lemmas 5—8 for discrete rewards

In the case of discrete rewards, one difficulty is that for p small, there

are potentially multiple plays on arm k before a positive Xy, is observed.
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Condition (A2) is helpful in ensuring that the mean of this positive Xj; is
not too large.

Recall that for integer-valued rewards we assume in condition (B1) that

for 0 < 0 <1, there exists 65 > 0 such that for p > 0 and 0 < 0 < 65,

M,(6) < e+ (B.15)
M, (—0) < e (1790m (B.16)
In addition,
P,(X >0) < ayp for some ay > 0, (B.17)
E,X* = O(u) as u— 0. (B.18)

ProOOF OoF LEMMA 5. Recall that

T, = inf{t : S; > b,t(,},

and that d,, = n™* for some 0 < w < ——. We shall show that

B+1-

sup min(p, 1)E,Ty] = O(1), (B.19)
p>dn

Eg(Tbﬂl{uzdn}) < /\+0(1) (B20)

Let 0 = 2wlogn. Since X, is integer-valued, it follows from Markov’s

inequality that

Pu(Sy < batG) < [ My (=0)]" < {™ < [Pu(X = 0) + 7]}, (B.21)
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By P,(X > 0) > aid, for p > d, [see (A2)], 6b,(, = o(d,) [because
¢ and b, are both sub-polynomial in n and ¢, = O(n_ﬁ)] and (B.21),

uniformly over pu > d,,

EJT, = 14 PuJ(T,>1) (B.22)

t=1

L+ ) Pu(Sy < bat(y)

t=1

{1 =" [Pu(X =0) + e}

IN

IN

= {1—[1+o(d)][Pu(X =0) +dp]}

= [P.(X >0)+o0(d,)] " ~ [P.(X >0)]".

The term inside {-} in (B.21) is not more than [1+o0(d,)|(1—a1d, +d?) < 1
for n large and this gives us the second inequality in (B.22). We conclude

(B.19) from (B.22) and (A2). By (B.22),

Eg[Tb,U]-{;AZdn}] - / Eu(Tb>Mg(:u)d

v
Eu (X
< [+o)] | gt

= (o] [ BL(XIX > gl — \

hence (B.20) holds. O

PROOF OF LEMMA 6. Recall that T, = inf{t : S; > t(, + c,04\/t} and
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let € > 0. We want to show that

sup B (T.An) = O(c +logn), (B.23)
(1+€)¢n<p<dn
Eg[(Te N ”)Nl{(ue)gngugdn}] — 0. (B.24)

We first show that there exists k > 0 such that as n — oo,

sup [ ZP 2> /<;,u] O(logn). (B.25)

pu<dn
Since X is non-negative integer-valued, X? < X*. Indeed by (B.18), there
exists k > 0 such that p, := E,X? < & for p < d,, and n large, therefore

by (B.18) again and Chebyshev’s inequality,
t
Pu(67 > k) < PH<ZX3 > mu)
u=1

Pﬂ(i(Xi _Pu> > mTu)

u=1
Var, (X2 _
= t(ti:/(2)2) = O((tp)™),

IA

and (B.25) holds.

By (B.25), uniformly over (1 + ¢€)¢, < pu < d,,

n—1

B (T.An) = 14 P(T.>1) (B.26)

t=1

n—1
< 14 Pu(S <16+ cnBeVt)

n—1

< 1+ Y Pu(Sy <t + cav/ipt) + O(*52).

t=1
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Let 0 < § < % to be further specified. Uniformly over ¢ > ¢p™,
pt/(cny/kut) — oo and therefore by (B.16), u > (1 + €)¢, and Markov’s

inequality, for n large,

Pu(Se < 16n + cavEpt) < Pu(Sp < (G +6p)) (B.27)
< eeét(Cn'i‘(m)M;(_Q&)

< eWsln—(1-28)u] < e*nwsu’

where n =1 — 20 — 1%6 > 0 (for ¢ chosen small). Since 1 — e """ ~ nlsu

as u — 0,
n—1
st 3 =0, (B2
t=1 t>c3p—1

and substituting (B.27) into (B.26) gives us (B.23). By (B.23),

Eg[(Te An)pl{atoacacp<dy] = Pol(1+€)G < p < d,)O(c, +logn)

= O(dy(c;, +logn)),

and (B.24) holds since ¢, is sub-polynomial in n. O

PrROOF OoF LEMMA 7. We want to show that

P,(S; > tb,(, for some t > 1) =0 (B.29)

uniformly over p < (1 — €)(,.
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By (B.17) and Bonferroni’s inequality,

P,(S; > tb,(, for some t < \fcn) (B.30)
< P,(X; >0 for some t < W ) < \/‘%’én — 0.
By (B.15) and Markov’s inequality, for n large,
P,(S; > tb,(, for some t > \/I%Cn) (B.31)

< Sup [e—elannMM(Ql)]t < o= 0100nCn=21)/ (nv/Bn) _y 3.

> Tz

To see the first inequality of (B.31), let f, be the density of X; with re-
spect to some o-finite measure, and let E% (P?') denote expectation (prob-

ability) with respect to density

Fi (@) o= [Mu(01)] 7' fu(2).

Let T' = inf{t > : Sy > thy(y}. It follows from Markov’s inequality

rc
that
P(T=t) = M;(el)Egl(e—Mq{T:t}) (B.32)

< e M (00)]) BT = 1),

and the first inequality of (B.31) follows from summing (B.32) over t >
1
Toen: O

Proor or LEMMA 8. We want to show that

P,(S; > t(, + ¢,0,V/t for some t > 1) — 0 (B.33)
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uniformly over p < (1 — €)(,.

By (B.17) and Bonferroni’s inequality,

P,(S; > t(, + 0.Vt for some t < ﬁ) (B.34)
< Pu(Xt>0forsomet§$)§g—j—>0.
Moreover
P,(S; > t(, + ¢,0,V/t for some t > ﬁ) < (I) + (1I), (B.35)

1

where (I) = P,(S; > t(, + ca(ut/2)? for some t > -1,

Cn b

II) = P,(7 <% and S; > t¢, for some t > ﬁ)

By (B.34) and (B.35), to show (B.33), it suffices to show that (I)— 0 and
(I1)— 0.

Let 0 < § < 1 be such that 1+ < (1 —€)~!. Hence pu < (1 —€)¢,
implies ¢, > (1 + d)p. It follows from (B.15) and Markov’s inequality [see

(B.31) and (B.32)] that

1
(I) < sup [e olintenGt/22I 01 (9]

t>-1

CnH

< exp{—05[Co — (1 +0)pl/(cats) — O5(ca/2)?}

< exp{—0s(c,/2)7} — 0.
Since X2 > X,,, the inequality S; > ¢(,(> tu) implies >\ _, X2 > tu, and

this, together with 67 < & implies that X2 > £. Hence by (B.15) and
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Markov’s inequality argument, for n large,

1) < PJ(X,> \/g for some ¢ > L)
< sup [e” VML (6)))

t>—1

Cn K

< exp{—6i[\/% — 20/ (car)}

—%}}%0. 0

exp { — 0, [—cn /—2(1176)%

19

B.2 Proofs of Lemmas 5—8 for continuous rewards

In the case of continuous rewards, the proofs are simpler due to positive

X, in particular A = E,u. Recall that for continuous rewards, we assume

in condition (B2) that

sup P, (X <~vypu) = 0as vy — 0.

n>0

(B.36)

Moreover (B.18) holds and for 0 < § < 1, there exists 75 > 0 such that for

0<0u<rTs,

B
=
A

(1+0)0n

M,(—0) < e (0790m,
In addition for each ¢ > 1, there exists & > 0 such that

sup P, (67 < yu®) — 0asy— 0,
<&t

(B.37)

(B.38)

(B.39)
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where 07 = ¢! Zzzl(Xu —X;)?and X, =t! 22:1 X, for iid. X, 4 F,.

ProOF oF LEMMA 5. To show (B.4) and (B.5), it suffices to show that

sup £,T, <14 o(1). (B.40)

pu>dn
Let 6 > 0 to be further specified. By Markov’s inequality,
Pu(Sp < bat(y) < [eebnchu(_Q)]t'

Moreover, for any v > 0,

Mu(_e) < PM(X <yu)+ 6—79117

hence
BT, < 14 Pu(Si < butG,) (B.41)
t=1
< {1 M ORX < ) +
Let v = @ and 8 = n" for some w < N < ﬁ By (B.36), b, is sub-

polynomial in n, and d, = n~*, for u > d,,

erin 51, e =0, P,(X <qp) =0,
and (B.40) follows from (B.41). O
ProOOF oF LEMMA 6. By (B.18), for y small,
Pu = EMXQ = EM(X21{X<1}) + EM<X2]—{X21})

< EX+EX"=0(u).
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Hence to show (B.6) and (B.7), we proceed as in the proof of Lemma 6 for

discrete rewards, applying (B.38) in place of (B.16), with any fixed § > 0
in place of 05 in (B.27) and (B.28). O

Proor oF LEMMA 7. It follows from (B.37) with § = - and Markov’s

inequality [see (B.31) and (B.32)] that for n large,

P,(S; > tb,(, for some t > 1)

< sup[e‘eb"C”Mu(Q)]t < e bnCn=2) o O
t>1

PrOOF OF LEMMA 8. Let > 0 and choose § > 0 such that (146)(1—

€) < L. It follows from (B.37) with § = 7> and Markov’s inequality that for

u large,
P,(S; > t, + c,0,\/t for some t > u) (B.42)
< P,(S; > t¢, for some t > u)
< Sup[e_GC”MH(Q)]t < e~ u0[¢n—(140)p] < e—umsl(1=6) "1 =(1+9)] <.

t>u

By (B.39), we can select v > 0 such that for n large (so that p <

(1 —€)¢n < minjcy<y &),

> PuG7 <) <. (B.43)
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Let 6 = 3. By (B.37), (B.43) and Bonferroni’s inequality,

P,(S; > t{ + ¢,04V/t for some t < u) (B.44)

IN

P,(S; > ¢, 04Vt for some t < u)

IA

n + Z P’LL(St Z Cnﬂﬁ)
t=1

Nty el (6)

t=1

Ny eVt oy
t=1

IN

IN

Lemma 8 follows from (B.42) and (B.44) since 7 can be chosen arbitrarily

small. O

C Proof of Theorem 2

The idealized algorithm in the beginning of Section 5.1 of the main
manuscript captures the essence of how CBT behaves. We reveal u; when
the first positive loss of arm k appears. If py > ¢ [with optimality when
¢ = (u, see (5.3) of the main manuscript] then we stop sampling from arm
k and sample the next arm k+ 1. If pp < ( then we exploit arm k a further
n times before stopping.

In the idealized version of empirical CBT, we reveal p; when the first

positive loss of arm k appears and stop exploring the arm. Since the first
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positive loss of an arm has mean A, the sum of losses after & arms have been

kA

played has mean kA. When ming << pt; < Zk( *2) we stop exploring, and

exploit the best arm a further n times. More specifically:

Idealized empirical CBT

1. For k =1,2,...: Draw nj rewards from arm k, where

ng = mf{t >1: Xy > 0}

2. Stop when there are K arms, where

Kzinf{k‘Zl: minuig%}.

1<i<k

3. Draw n additional rewards from arm j satisfying p; = mini<jp<g fiz.

The regret of this algorithm is R, = AEK + nFE(miny <<k k).

Theorem 2. The idealized empirical CBT has regret R], ~ C’Ign%, where
A = 1
€ = () and 1 = (54) 712 — k) T2 — 24).

ProOOF. We stop exploring after K arms, where

il h s min . < GV O KA
K =inf{k: min g1 < (e}, G=T (C.1)
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Let

1 F_A : - 2 : - -
Dy ={G—13 < 1<IJI,1<111€171M3' <G}, Dp= {1<I]¥1<1}€171Mj > Gy ik < Cr}-

We check that D}, D? are disjoint, and that DUD? = {K = k}. Essentially
D} is the event that K = k and the best arm is not %k, and D7 the event
that K = k and the best arm is k.

For any fixed k € Z™*,

~

PO = [L=p(G= P = L= p(G) (©2)
= {1-p(G) +[1+oD)]2g(G) "t — [1 - p(G)]F
~ {l1- p(gk)]k_l}%g(fk)

~ exp(—%kmln’ﬁ)a)\ﬁkﬁn’ﬁ.

Moreover
E(R.|D) ~ kX +n(%) = 2k (C.3)

n

Likewise,

P(D}) = {[1-p()" " Ip(G) (C.4)
~ exp(—%kﬂﬂn_ﬁ)a‘%ﬁkﬂn_ﬂ,
E(R,|D}) = kXA +nE(ulp < ) (C.5)

_ o) 9 1
= 2kA o) (2 VE.
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Combining (C.2)—(C.5) gives us

R, = Y [E(Re|DL)P(D}) + E(Rg| D) P(D})] (C.6)
k=1
~ ZeXp(_%kﬁﬂn—ﬁ)(%“kﬁﬂn—ﬁ)@ﬁ+2_ ﬁ)’
k=1

It follows from (C.6) and a change of variables x = O‘T?‘Bkﬁﬂn_ﬁ that
R, ~ (28+2-— ﬁ)/ exp(— 3 k70 0) (AT k0 P dk
0

S 1 B L
= 32— i) [ P gl
0

B8

1 8
= (2- @) G P2 — g)nfH,

and Theorem 2 holds. O

D Verifications of (A2), (B1) and (B2)

The optimality of CBT in Theorem 1 holds under the assumption:

(A2) There exists a; > 0 such that P,(X > 0) > a; min(u, 1) for all p.

In addition, optimality for discrete rewards requires assumption (B1) [i.e.

(B.15)-(B.18)] and optimality for continuous rewards requires assumption

(B2) [i.e. (B.36)—(B.39)]. In the following examples we check that these

assumptions hold in specific discrete and continuous distributions.

EXAMPLE 3. Let F, be a distribution with support on 0,. .., I for some
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positive integer I > 1 and having mean p. Let p; = P,(X =1i). We check
that P,(X > 0) > uI~" and therefore (A2) holds with a; = I

Let 65 > 0 be such that
e —1<if(1+0)and e —1 < —if(1 —6) for 0 <if < Ih5. (D.1)

By (D.1) for 0 < 6 < 65,

I
My(0) = > pie? <1+ (1406)ub,

=0

I
M, (=0) = > pie” <1—(1-0)ub,
1=0

and (B.15), (B.16) follow from 1+ x < e”. Moreover (B.17) holds with
az = 1 and (B.18) holds because E, X* = Zfzopiz"‘ < Ppu.

ExAMPLE 4. If X < Poisson(p), then
M, (6) = explu(e” — 1)),
and both (B.15) and (B.16) hold for 65 > 0 satisfying
e’ —1<0s5(1+0)and e — 1 < —05(1 —6).

Since P,(X > 0) =1—e*, (A2) holds with a; = 1—e"!, and (B.17) holds

with as = 1. The relation in (B.18) holds because

oo

- 4, ke—p _ _
E“X4:Z—k“k! =pue t+e “O(Zuk>.
k=1

k=2
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EXAMPLE 5. Let Z be a continuous non-negative random variable with

T0Z

mean 1, and with EFe™” < oo for some 75 > 0. Consider X distributed as

wZ. Condition (A2) holds with a; = 1. We conclude (B.36) from

sup P, (X <yu)=P(Z<vy)—=0asy—0.

©>0
Let 0 < 6 < 1. Since lim, o7 'log Ee™ = EZ = 1, there exists 75 > 0

such that for 0 < 7 < 73,
EeTZ < 6(1+5)T and Ee*‘rZ < 67(176)7" (D2>

Since M, (0) = E,e* = Fe’Z and M, (—0) = Fe=%Z we conclude (B.37)
and (B.38) from (D.2) with 7 = Ou. We conclude (B.18) from E,X* =

p*EZ* and (B.39), for arbitrary & > 0, from
P,(6} <yu®) = P(Gj; <7) = 0asy =0,

where 62, =t 3! _ (Z, — Z;)?, for iid. Z and Z,.



