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S1 Technical results

Proof of Theorem 1. We can directly apply the results shown in Wang et al. (2019)

for the partial sum process

[nb|—1 i

Sn(aa b) = Z Z XZFlXj‘

i=|na|+1 j=|[na|+1

The partial sum process

{ V2

%]

Sn(a,b)} @ in ([0, T]?)

(a,b)€[0,T]2
where () is a Gaussian process whose covariance structure is the following

2

(min(by, by) — max(aq, as))® if max(ay,az) < min(by,bs)

Cov(Q(ay, by), (az, b)) =

0 otherwise
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The test statistic is a continuous transformation of the Gaussian process and the

results stated follows. O

Proof of Theorem 2. We now analyze the power of the first proposed test. Suppose
the change point is at k*, where k* /n — r for some constant r € (1,7"). This assures
that the change point does not occur extremely early or late in the monitoring period.

Under the alternative hypothesis, define a new sequence of random vectors Y;,
X; 1=1,...,k"

X;—A i=k"+1,...,n
This sequence does not have a change point. Without loss of generosity, assume Y;’s
are centered.

Suppose that
nATA
1%]]r

—be [0+ 0).
When m < k < k*, Gi(m) statistic will not be affected. It suffices to consider the
case m < k* < k and k* < m < k. Following the decomposition in Wang et al.
(2019), under the fixed alternative when £* > m,

Gr(m) = Gy (m) + (k — k") (k — k" — )m(m — 1)||A[]3

—2(k — k") (k—m —2)(m —1) inTA

—4(m — 1) (m — 2)(k — k*) kz VIA.

j=m+1
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GY (m) is the statistic calculated for the Y; sequence. Let s, (k) = Zle Y"A. Then

1<I<k<nT 1<k<nT

k
sup | Y VA <2 sup [su(k)| = O,(n'*(ATEA)).
j=l

The last part is obtained by Kolmogorov’s inequality. This implies that when k* > m,

1 1 (k= k") (k — k* — D)m(m — 1) || Al nV2(ATSA)L/?
 Gum) = ——GY(m) +
e O = SR Cr () 3 e "
Similarly, we can show when k* > m

1 1 B — 1)k —m)(k—m—1) ||AllZ  nl/2(ATSA)Y?
. Gy(m) = GY (m)+ i) .
e ™ = sy Ok ) 3 TR

The last part is converging to 0 in probability. Therefore, the test statistic 7}, can be
viewed as an extension to the original process. The second terms are also a process

depend on m and k*. Under the fixed alternative, the G (m) converge to the process

1

———{ G (|ns]) }s — G(s,t) + bA(s,1),

where

0 otherwise

This implies that, when b = 0, the process is the same with the null process, and the
proposed monitoring scheme will have trivial power. When the b is not zero, since

the remainder term is positive, we will have non -trivial power.
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When

nATA

—— — OQ.
1paiive

Following above decomposition, we have

nllA[l3
127

1
max To(k) > T,(k")

= DY (k") + O

) = 00

Since the first term is pivotal and is bounded in probability, the test have power

converging to 1. O

Proof of Theorem 3. We can directly apply the results in Theorem 2.1 and 2.2 in

Zhang et al.(2020), which stated that for

* *

D c q—c
Sn,q,c(r; [a,0]) = Z Z Z H Xl H ngJ’
g=1

=1 |na|+1<iy,....ic<|nr) |nr | +1<j1,..jq—c<|nb) t=1

we have

1

V[ X[g

where ), is the Gaussian process stated in Theorem 4. The monitoring statistic is

Snqe(r3 @, 0]) ~ Qg e(r3 [a, ]),

a continuous transformation of process S, 4.’s and the asymptotic result follows. [J

n2| Al

Proof of Theorem 4. We first discuss the case when B
q

— v € [0,+00) and
the true change point is at location k* = |[nr]. Here we adopt the process conver-

gence results in Theorem 2.3 of Zhang et al.(2020), which stated that for (k,m) =
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([ns], [nt]),

*

1
— D, ,(s:]0,b Xipt = X;0) - (X,
ey e ol = Waquz,qz )DREED SENNC TS R

=1 0<i1,...,iqg<k k+1<j1,....Jg<m

~ Gy(s,t) +7J4(s:[0,¢])
where
ri(t—s)? r<s<t

Jq(5;10,]) = sit—r)? s<r<t

0 otherwise

Therefore, by continuous mapping theorem, when ~ € [0, +00), the results in the

theorem hold.

Al

For the case ———4¢
||z||q/2

— 100

nt/?|| All2

——— DYk + O——
() 1]]42

na(k) = Tog(K) =

max 71,
k

— X,

Jq>

1)
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Proof of Theorem 5. By straightforward calculation, we have

p— 1

IZ1E

(]

tr (X5, — X5,) (X5, — X5)" (X5, — X5,)(X5, — X5,)7)

o
—

n
4) 1<51<j2<j3<ja<n

(X — X5)" (X5 — X5))°

J J

.
| =

n
4) 1<j1<g2<g3<ja<n

(]

(n) [(X}:XJ?,)z + (X};XJB)Z + (X]?;Xj4>2 + (X]?;Xj4>2]
4/ 1<j1<j2<jz<ja<n

2

(]

[X}; XjSXj?;XM + X};stxng4 + XjTl XjBXJ?;ng + XjTlxﬂxj; X,

e~

n
4) 1<51<j2<jz<ja<n

2
+

(]

(XIX5, XD X5, + XX, X X,

W

n
<4) 1<51<g2<g3<ja<n

= [n,l + [n,2 + [n,3 + [n,4 - (In,5 + [n,G + In,? + In,8) + (In,g + [n,lo)-

For I,, 1,

1
Bllna] = > E[(X, X;s)"] = 7tr(B[X;, X5, X5 X5 ]) = [1Z]7/4.

n
(4) 1<51<j2<jz<ja<n

Thus E[I,,1/]|2||%] = 1/4. By similar arguments, it is obvious to see that E[I,,;/||3||%] =
1/4 for i = 1,2,3,4, and E[1,.;/[|S||2] = 0 for i = 5, ..., 10.

The outline of the proof is as following. We will show that 41, ;/||3|[% —, 1 for
i=1,2,3,4, and I,,;/||Z]|% —, 0, for i = 5, ..., 10. Since some of the I, ; share very
similar structures, we will only present the proof for (1) 41, 1/||2]|% —, 1 and (2)

L.5/||%]|% =, 0. Other terms can be proved by similar arguments.
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To show (1), it suffices to show that E[161; ,/||X[/%] — 1. To see this,

1
E[1615 /IS5 = oot > > E[(X}, X5) (X, X))
() IB1E 1<j1 <sr<gs<iosn 1<is<iomir<iosn
1 p
- Z Z Z E[XJl llXJ3» XJ'1J2XJ‘3 lQXJo, Xj7 l3X35 l4Xj7,l4]~

( ) ||Z||F 1<51<92<93<ga<n 1<j5<ge<gr<js<n ly,l2,l3,l4=1

As we know that the expectation of a product of random variables can be expressed

in terms of joint cumulants, we have

]E[X] st,hle 12XJ Xj5,13Xj7 I34X js, l4 J7, l4 Z H Cum Jl ]7 l) € B)

m Bemw

1,01 3,02

where 7 runs through the list of all partitions of {(j1,4), (j1,02), ..., (J7,13), (J7,l4)}
and B runs through the list of all blocks of the partition m. Since 7; < j3 and
Js < jr, it is impossible to have three or more indices in {ji, js, J5, j7} such that they
are identical. Thus for the right hand side of the above expression, we only need
to take the sum over all partitions with all block sizes smaller than 5, because for
joint cumulants with order greater than 5, it must contain at least 3 indices from
J1, 73, Js, J7 and at least one is not identical to the other two. And the joint cumulants
will equal to zero since it involves two or more independent random variables.

Also since the mean of all random variables included in the left hand side of the

above expression are all zero, we do not need to consider the partition with block
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size 1. Thus the expression can be simplified as

st,lz

X

J5,

E[X, 0 X0 XG0 15 X 7 15 X s s X jr 14

:ijl’jg’js’mE[Xo,llXo,ngo,ngo,u]Q + C'éjl’%’js’j?)E[Xo,zlXo,lQXo,ngo,u]211,12213,l4

+ 2@222

l3,la>

where C’fj 178,50 7), Céj 1:35:35:97) are finite positive constants purely based on the value

of j1, j3, Js, Jr. Cl(jl’j3’j5’j7) can only be nonzero if j; = j5 and j;3 = j7, and C’éjl’j3’j5’j7)

is nonzero if at least two of (j1, J3, js, j7) are equal. This implies that
(J1,93:35507) __ 8
2 > G = o(n®),
1<51<j2<g3<ja<n 1<j5<je<jr<js<n

and

Z Z 02(j1,j37j5,j7) _ 0(n8).

1<51<j2<g3<ja<n 1<j5<je<jr<js<n

Furthermore, according to Assumption 2, ZZ ol dael cum(Xo,, Xoy, Xoiss Xogy)? <

C|IZ||%- Tt can be verified that

p p
2 2
> EXonXonXonXon S Y, cum(Xou, Xot, Xots, Xou,)
l1,l2,l3,l4=1 l1,l2,l3,l4=1
p
2 2
+ z : Ell,l22137l4
l1,l2,l3,l4=1

< 121,



S1. TECHNICAL RESULTS

and by using the Cauchy-Schwartz inequaility,

p

> EXoun XouXous Xoa St Siy e
l1,l2,l3,l4=1
p p
<0 D0 EXeXonXonXowl? | D>, SR,ER, <VOIS[E (SLY)
l1,l2,l3,l4=1 l1,l2,l3,l4=1

This indicates that

E[1615,/[%IF]

1 . . . . p
- Z Z ¢ s:d5:77) Z E[Xo,1, X0, X0, Xo0.,)?

Wb
4 F 1<51<2<g3<ja<n 1<j5<je <j7r<js<n l1,l2,l3,l4=1

1 o Ld
+—— Z Z Céjl,]&j&‘j?) Z E[XO,llXO,l2X07l3XO,l4]El1,lQElg,l4

WRDIE
4 F 1<51<j2<j3<ja<n 1<j5<je<jr<js<n l1,l2,l3,l4=1

p
b > > > S LEhL =o(l)+o(l)+1 1.

Wb
4 F 1<51<g2<j3<ja<n 1<j5<je<jr<js<nli,l2,l3,l4=1

Thus, 47,,1/||2]|% —, 1, and (1) is proved. By similar arguments, 41,,;/||2[|% —, 1
holds for + = 2, 3, 4.
To show (2), we need to prove E[I7 ;/||Z[|%] — 0. To see this,
1
B/ 1205 = —— > > E[(X ] X5 X5 X5,) (X X5, X1 X )]

AN

F 1<51<j2<73<ja<n 1<j5<je<jr<js<n

1 p
=72 Z Z Z E[thhst,llle,12Xj4,l2Xj5713Xj7,13Xj5,l4Xj8,l4]'

BRI
4 F 1<51<72<g3<ja<n 1<5<jge <jr<js<nly,l2,l3,l4=1

By similar arguments for the joint cumulants we provided in the the proof for
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(1), it can be proved that

E[X5, 0 XG0 X 1. X

Ja,l2

X

Jsil3

X

J7,l3

X

Jssla

l2 Xj8714}

_ ~(J1,73,J4,35,57,38) (71,93,74,75,J7,J8)
=C} E[Xo,1, Xo,1, X015 X0, 20, 15 X104 + O Doy 0 20504 200 15 2l 1y -

If C§j1,j3,j4,j57j7,js) £ 0, then j; = js. And if O§j17j37j4,j5,j7,j8) £ 0, j3 = js and

74 = jg. These two properties guarantee that

} : 2 : (41,33:J4,05,97:98) __ 8
Cl - O(TL )a

1<51<G2<g3<ja<n 1<j5<je<jr<js<n
and

E : E ' 02(31733734735,37,%) :0(n8)'

1<j1<2<g3<ja<n 1<j5<je<jr<js<n

Furthermore we have shown the bound for 3 77 |, _ E[Xo 1, Xo,1, X015 X0,1,] %1, 15 X504

in (S1.2). And

p p p p
Z 220115 Dl g 241y 1y Dl g = Z 2211,122l2,l4 2211,13213714
l1,l2,l3,l4=1 l1,l4=1 \l2=1 I3=1
p
= D [(E)uul® = tr(2*) = o(|IZ]17),
I,la=1
by Assumption 1. Thus,
E[L5/|IZ1F]
1 o P
=—; - Z Z 0{117]57]47357]77]8) Z E[X07l1Xo,l2X0,l3X0,l4]Ell,lgzlg,l4
4(4) HEHF 1<51<y2<y3<ja<n 1<j5 <je <jr<js<n l1,l2,l3,l4=1
1 o P
+ - 5 1 Z Z C§j17]37.]47.75’.777]8) Z Ell’l22137l42l17l32l2714
4(4) HE”F 1<1<y2<y3<ja<n 1<j5 <je <jr<js<n li,l2,l3,l4=1

=o(1) + o(1) — 1.
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This indicates I,,5/||X]|% —, 0. And by similar arguments we can prove that
L.:/I|IZ||% —, 0, for alli = 6, ..., 10. Combine the above results, we have ||Z]|%./|%]|% —,

1. This completes the proof.

O
Proof of Theorem 6. We can rewrite H/ZE as
/\ 1 P q
1%l = > > T X+ X Xt = Xt Xy — X Xy 1,)

21(5,)
297 11,lo=11<i1 < <ig<j1 <-+<jq<n k=1

p q
:Qq(ln) Z Z Z ZH(—1)1{tk¢5k}th7l1Xsk,52

1<i1 < <ig<j1 < <jq<nt1,s16{i1,1}  tq,5q€{iq:iq} l1,l2=1 k=1

:Qq(ln) Z Z Z zp:ﬁth,llth,zg

1<ip < <ig<j1<—<je<ntie{it, 1} te€{ig.jq} l1,la=1k=1

+2q(1n) 3 Y %

29/ 1<i1<-+<ig<ji<--<je<n ty,s1€{i1,j1} tq,5q€{iq.dq}
P q
q {tp#sk}
> Ui {t # st (D) Xt Xoplo-
I lo=1 k=1

The second equality in the above expression is by calculating the cross products
among ¢ brackets, and the third equality is splitting the terms based on different
values of t;, s, for £k = 1,...,q. The first term in the third equality contains all
products with ¢, = s for all k = 1, ..., ¢, and the second term contains products with
at least one k =1, ..., ¢ such that ¢, # si.

The outline of the proof is as follows. We want to show:
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1. for every t; € {i1, j1}, ..., tq € {ig, Jq}

p q
I(ty,....tg) = (; > ST X Xuw = 1

o) 112114
2q 9 1<iy <o <igeji < <jq<n 1 Ja=1 k=1
2. for every t1,s1 € {i1, 71}, ., tg, Sq € {4y, Jg} and there exists at least one k =

1,...,q such that t; # sy,
1 pq
J(tl,Sl,...,tq,Sq) = W Z Z HthyllXSk:lz —p 0.
2q 9 1<y < <ig<ji<--<jg<n ly,lo=1 k=1
And it is easy to see that if these two results hold, then [[X||3/[|X]|Z —, 1. As we
observe that most of terms are structurally very similar, we shall only present the
proof for I(iy,...,i,) —, 1 and a general proof for (2).

It is trivial to see that E[Y 7, [Ti—y Xo0 Xeio /2] = 1. This indicates that

to show (1), it suffices to show that E[I(i1, ...,4,)?] — 1. To show this,

B[ (i1, ..., iq)"] :;Qq 2 2

2
n
(zq) HZHQ 1<y <o+ <ig<g1 <+ <Jg<n 1<) << <Gl << i <n

p q
E E H Xy K 1o Xt 15 Xt 1
l1,l2,l3,l4=1 k=1

Due to the special structure of our statistic,

q q
E HXilmllXik,ZQXi;wliiXi;wM] = ConE(Xog, Xo1 X015 X02)™ (S, Z05.0) ™
k=1

m=0

where C,, = Cy, (i1, ..., dg, 11, ..., i) > 0is a function of all indices for all m = 1,2, ..., q.

C, = 1 if there are exact m indices in {4y, ...,%,} which equal to m indices in
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{i}, .. iy}, and Cp, = 0 otherwise. These events are mutually exclusive which in-
dicates that )7 _, C,, = 1. This indicates that for all m =1, ..., q,

> > Con (i1, ooy e 1Y, ooy i) = 0(n7),

1<y <o <ig <1 <o <Jg $n 1<) <<l <Gy <--<jh<n

and

1 . o .
5 Z Z Colity v igy iy, ooy i) = 1.

n
(Zq) 1<y <o <ig <1 <o <fg <n 1<) <<l < << jh <
Furthermore, for any m = 1, ..., ¢, by Holder’s inequaility for vector spaces, we have

p
Z |E(X0711X0712X0713X0,l4) |m | El1,l2 E13714 ’q_m

l1,l2,l3,l4=1

p m/q p (a—m)/q
( Z |E(X0,Z1X0,12X0713X0,l4)m|q/m> ( Z (‘211,12 E13714 ’qm)q/(qM)>

l1,l2,l3,l4=1

IN

l1,l2,l3,l4=1

p m/q p (g—m)/q
=< > |E(X0,Z1XO,ZQX0,13X0J4)|q) ( > |le,z2|q|213,l4|q>

l1,l2,l3,l4=1 l1,l2,l3,l4=1

<ClBIF Il ™ = ClIIly,

where the last inequality is due to Assumption 5, and to see this,

P

Z | B (Xo,1, Xo,1, X0, Xo0,,)|?

l1,l2,l3,l4=1

p
<C Y leum(Xog, Xots Xogs Xoa)|? + [0 S04+ 15005 B0+ 120004 S0,

l1,l2,l3,l4=1

<C Y AV (L= )T 3C|E)2 < Cp? + 3C|IB2 < C|IS)2,

for some generic positive constant C, since ||S[2¢ = (327, %) > Cp* under
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Assumption (5.1). Therefore,

E[1(iy, ..., i4)°]

:; Z Z Z H i,01 Zk752X1;€7 Xi3€7l4

( ) ||E||q 1<y < <ig <1< <Jg <n 1<4) <<l <Gl <<l <n 11, la, U3, 14 =1

e >

( ) ”EHQ 1<) < <ig <1 <+ <jg<n 1<8) << <]1< <jg<n

Z ZCm]E(Xo,llXo,lQXo,ngo,u)m(211,12213,14)qim

l1,l2,l3,l4=1 m=0

p
1

. . . ., ., q q

= g g Co(in, vy ig, i1, oy Ty) E X

( ) ”ZHCI 1<i) < <ig <1 < <Jg<n 1<) << <]1< <jg<n l1,l2,l3,l4=1

1 m -m
+n2—2q0(n4q> Z Z ]E(X0711X0,l2X0,l3X0,l4) (Eh,lz El37l4)q
(2(1) ||E||q ll,l2,13,l4=1 m=1

—1+40(1) — 1.

This completes the proof for (1). To show (2), it suffices to show that E[J(t1, 51, ..., t4, 54)*] =

0. Specifically,

ELJ(tr 51, tgr 50)2] =g 3 3

( ) HE”q 1< < <ig <1 < <Gg<n 1<) << <_]1< <jg<n

p

E E Hth’llekleXt;gvliiXs;wl‘l )

l1,l2,13,l4=1 k=1

for t1,51 € {ilajl} t(bsq € {anjq} tlasl € {2,17.]1} £ Slq S {Zip.](/]}a and there

A b

exists at least one k = 1, ..., ¢ such that ty # si (¢}, # s},). Since the expectation of a
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product of random variables can be expressed in terms of joint cumulants, we have

q
E (] Xt Xooa X 0 X i | = > ][ cum(Xi: (i,1) € B),

k=1 w Beéem

where 7 runs through the list of all partitions of {(t1,1), (s1,12), ..., (t,,13), (s}, 14)}
and B runs thorough the list of all blocks of the partition 7w. Due to the special
structure of our statistic, there is a set of partitions S such that for every m € S, the
product of joint cumulants over all B € 7 is zero. And for each 7 € §¢ there are nice
properties related to the blocks B € w. Here we shall illustrate these properties as
follows. To be clear, since we are dealing with a double indexed array X;;, we call

“” as the temporal index and “[” as the spatial index. For V& € §¢,

1. The size of every block B € 7 cannot exceed 4. Since iy, ..., J1, ..., Jq
are all distinct, and 7, ..., 7, ji, ..., j, are all distinct, it is impossible to have any
three indices in {i1,..., %, j1, -+, Jgs 115 -+ Uy J15 > Jo} that are equal. And any
joint cumulants of order greater than or equal to 5 will include at least three

indices and they cannot be all equal.

2. There are no blocks with size 1. This is because the cumulant of a single

random variable with mean zero is also zero.

3. Every B € m must contain only one distinct temporal index. Otherwise

[15e, cum(Xiy : (i,1) € B) = 0.

The above properties imply that for V@ € S¢ and VB € 7, cum(X;,: (i,1) € B)
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has to be one of the followings: cum(Xo,,, X015, Xo.ts, Xo1,), cum(Xo s, Xot, Xois),

Cum(XO,ll ) X0,127 X07l4>7 Cum(XO,ll ) X0,137 X07l4)7 Cum(XO,lw X0J37 X07l4>7 Ell,

losy Ell,l;;?
Dililay Do lss Dlalsy Bls,ly-
If we assume [; < [y, <3 <4, it can be shown that
H cum(X;;: (i,1) € B) < C(AV (lo—1))"(AV (I —13)", (51.2)

Ber

for some generic positive constant C' and any partition 7. To see this, we notice that
at least one k = 1,...,q, say ko, such that ty, # sy, and ¢}, # s . For every m € §¢
there exists By, By € 7 such that (t4,,11) € By and (s}, ,ls) € By. Based on the third
property above, all other elements in By must have the same temporal index as tg,.
And because of the first property above, all iy, ji for k # ko and sy, are different
from t,. This implies that the spatial indices for all other elements in B; have to
be either I3 or I, not [; and l. For the same reason, the spatial indices for all other

elements in B, can only be either [; or l;. Therefore,

cum(Xi,l : (Z, l) c Bl) c {cum(Xo,ll,X07l3,X07l4), 211713, 211714},
and

cum(XiJ : (Z, l) c Bg) c {cum(X07l1,X07l2,X0,l4), Zl1,l47 El27l4}-

Under Assumption (5.2), cum(X;, : (i,1) € By) < C(1V (Iy —1;))™" and cum(X;; :
(1,1) € By) < C(1V (I4 —l3))7". And the joint cumulants are uniformly bounded

above for those B € w \ {By, By}. Thus Equation S1.2 is proved.
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Furthermore, define Ind(ty, s1, ..., 4, 84,17, 51, .-, 1y, 8,) as the indicator function
corresponding to the event that for every k = 1,2,..,q that ¢, # s, there exists
k' =1,...,q such that ¢, = t}, or t; = s}, then E [H,’z:l th,llXsk,lth;,lsXs;,l4] £ 0
only if

Ind(ty, $1, ..oy tyy Sy, 81, sty sh) = 1.

77Q g

It is also easy to see that

Z Z Ind(ty, s1, ..., g, Sq 11, 8, .y b, sh) = o(n™).

1< < <ig <1 << S 1K) << <Gy << <in

Combining all the results above, we have

E[J(tb S1y vy tlb SQ)Q]

p q
:;QQ Z Z Z E Hth,llek,lth;c,lz,»Xs

2
n
<2q) 1% 1<y <o <ig <1 <o <Jg SN 1<) <<l < <o <Gh<n lalala,la=1 Lk=1

e T ) >

— 2
n
(Zq) HZHQ 1< < <ig<g1 < <jg<n 1§7;,1<"'<i21<ji<"’<j(/1§n

> Ind(ty, s1, ity 5g, 85ty ) (LV (= 1) (LY (I — 1)

2

<L)< 3 <1v<zz—zl>>7">> < L o(1) = o(1) 50,

= 2 2 N 3
(o) I1B112" \s<ii sy 111"

where the last equality is because [|[X[]27 = (327, %7 ,)* 2 p*.

This completes the proof of (2), as well as the whole proof.

]

Table 1 shows additional simulation results for the size of the proposed monitor-

’
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ing statistics for n = 200. The size distortion problem has improved for almost all

settings.
Table 1: Size of different monitoring procedures
(n,p) = (200,200) T1 T2 T3
size a = 0.1 L2 L6 Comb L2 L6 Comb L2 L6 Comb
p=0.2 0.104 0.072 0.074 0.097 0.072 0.073 0.102 0.071 0.073
p=20.5 0.105 0.064 0.091 0.107 0.064 0.085 0.104 0.065 0.087
p=0.8 0.127 0.037 0.089 0.133 0.038 0.099 0.131 0.039 0.099
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