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S1. Derivation of the log likelihood function

The log likelihood of the model parameter @ based on the n observations

can be written as

[, (0;data)

= 2{551125913 log Pr(Ty < wuyp,To < usy)
k=1

+ 65’1,2(53]2 lOg PI'(Tl < Uk, U g < T, < 1)27]{)
+ (55255’2 log Pl"(Tl < UL ks T2 > "U27k)
+635M 10g P
1 20sp log Pr(uyy < Th <wig, To < ugg)
(2)5(2)
+ 61,1@52,14: 10g Pr(ul,k <T < Vg, Uk < T, < 1)27]{)
(2) 5(3)
+ 51,k52,k log PI"(ULk <71 < 1.k, T > "U27k)
+ (55?,25;1]3 log Pl"(Tl > Ul,ka TQ S Ug’k)
(3)5(2)
+ 0y 4051 log Pr(Ty > vy g, usy < To < va)

+ ‘59255311 log Pr(T1 > vy 5, Ty > va )}



Then we have

l,(0;data)
= Z{5§1125§112 log Fo(u1 g, ua k)
k=1

+ 5%1,3652,3 log[Fo(u1 g, vax) — Fo(ur g, uag)]

+ 8005 log[Fy (ur k) — Folur g, vay,)]

+ 552125512 log[Fo (v k, ua k) — Fo(urk, us)]

+ 53355213 log[Fo(vik, var) — Fo(urk, var) — Fo(vik, vax) + Fo(urk, ua)]
+ 5?1355313 log[Fi(vik) — Fo(vie, vor) — Fi(uie) + Fo(uik, var)]

+ 612085 Log [ Fa(ua ) — Fo(vi g, uz)]

+ 5?]3‘55212 log[Fa(va ) — Fo(usk) — Fo(vik, Vo) + Fo(vik, tak)]

+ 61205 10g[1 = Fi(v1x) — Fa(vax) + Fo(vne, vas)]}.”

S2. Theorem Proofs

Proof of the consistency for Theorem 1

The key point for the proof is to find ©,, as described in Theorem 1.

First, for any element 0,, € ©,,, with a small positive number cg,,; two knot



sequences are selected as

{(&)fgj’ : (&)f;il € &, for & defined by (2.2) in the main paper ,

. S2.1
min;<i<p, (§iv1 — &) } (52.1)
> Cknot
max;i<i<p, (§i+1 — &)
and
{(77]-);1.’;{[ : (nj)?.:{l € n, for n defined by (2.3) in the main paper ,
(S2.2)

Ming<j<q, (Mj+1 — 1)
> Cknot ( -
max;j.<j<q, (Mj+1 — 7j)

Second, for any 6,, € ©,, we make conditions in (2.8) in the main paper a
little stronger by introducing a small ¢* > 0 and updating those conditions

to the following

e < Fro(ur, ug),

Foo(uy, uz) + ¢ < F,o(v1,u2),

Fo(ur, ug) + o < Fo(ug,va),

{Fno(v1,v2) — Fro(ur,v2)} — {Fno(vi, u2) — Foo(ur, ug)} > ¢,

Foi(uy) — Foo(ug, ve) > ¢, (52.3)
Foa(uz) — Foo(vr,ug) > ¢y,

{Foa(vi) — Foa(ur)} — {Fuo(vi, va) — Fro(ug, v2)} > e,

{Frn2(v2) — Fro(u2)} — {Fro(vi,v2) — Fo(vr,ug)} > ¢,

{1 = Foa(v)} = {Fap(v2) = Fro(vi,v2)} = e



That is, for

D :{(U17U1,U27U2) U € [7'1,1,7'1,h],v1 S [7_1,177—1,h]7

(52.4)

U € [T, Topn), V2 € [Toy, Top)s tr + Ta < U1, ug + 74 < Va}

we define
©, ={6,, : (S2.3) holds for (uy, vy, us,ve) € D for D defined by (S2.4),
knot sequences for 0,, by (S2.1)) and (52.2))},

(52.5)
where Then it is clear that ©,, C ¥,,. In what follows, we will show that
the above defined ©,, guarantees the consistency in Theorem 1.

We apply Theorem 5.7 in jvan der Vaart| (1998) to show the consistency.
By the proof of Theorem 5.7 in [van der Vaart| (1998), we need to find a

class containing both 6, and 6,,. For this purpose, © is constructed as

0={0=(Fy, Fi,F): holds for (uy, vy, us,v9) € D
with ¢, replaced by ¢, for 0 < é, < ¢, in (S2.3)}.
(S2.6)
Then it is easy to see ©,, C O. If ¢, is a sufficiently small positive number,
Condition C3 implies 8, € ©. Then by adjusting ¢,, we have © contains
both ©,, and 6y and hence © contains both én and 0.
For variable 8 € O, guarantees the log likelihood function {(8; X)

is uniformly bounded. We denote M(0) = PI(0; X ) and M,,(0) = P,1(0; X)
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with P, f(X) = £ 31", f(x;). First, we verify supgee |M,(8) — M(0)| —,

0. Denote £ = {l(0;x) : 8 € O}, then

sup [M,,(6) —M(0)| = sup |(P, — P)1(0; X)|.
0cO 1(B;x)el

Hence, it suffices to show L is a P-Glivenko-Cantelli. Let

A {log [Fo(v1, v2) — Fo(vi, ua) — Folur, v2) + Fo(ur, ug)]
log ¢ '

0= (Fo, Fl, Fg) S @, for (ul,vl,u2,v2) € D with D defined by },

where Fy(vy,v9) — Fo(v1, ua) — Fo(uy, ve) + Fo(ug, ug) > ¢ in D with ¢ < ¢*
for ¢* given in ((S2.3)), as discussed in the construction of ©. For (uy, us, v1,v3) €

D with D given by ([52.4)), define two classes of indicator functions

gl - {1[Tl,l,u1} X [71,1,01] X [T2,1,u2] X [T2,1,v2] }

and

Go = {1[71,z,u1]><[71,z,71,h} X [72,1,u2] ><[T2,z,72,h]}'

(S2.3) implies that each element in A is increasing in v; and vy but decreas-

ing in u; and wuy, then we have
A Csconv (Gy — Gy), (52.7)

where sconv (+) is the closure of symmetric convex hull (van der Vaart and

Wellner}, 1996). For G; and Gs, it is easily shown that they have V C-index



7

values (van der Vaart and Wellner} (1996) V (G;) = 5 and V (G2) = 3.

Therefore, Theorem 2.6.7 in van der Vaart and Wellner| (1996 implies

8
N (e,G1, Ly (Quyusviva)) < € (1> (52.8)

€
and

X
N (€,Gs, Lo (Quyusviva)) < € <—> ; (52.9)

€

for any probability measure Qu, 1,1 v, of (U, U2, Vi, V3). Since the envelop

functions of G; and G, are both 1, then by (S2.8)), (S2.9) and Theorem 2.6.9

in van der Vaart and Wellner| (1996) it follows that

1\ 8/
IOgN (Eam (gl) ) LQ ((QU17U2,V1,V2)>) <c <_)

€

and

1 4/3
10gN (E,W (gQ) ) L2 ((QU17U2,V1,V2)>) <c <_)

€

for any Qu, v,.14,1,- Hence for any Qu, v,.14 .14

log N (¢, 5conv (Gs) — sconv (G1) , La ((Quy vz, 14,12))) <c { (1)8/5 * (1>4/3}

By (S2.7), we have A C sconv (G,) — sconv (Gy), then

1\ 8/
log N (e, A, Ls (Quranana))) = ¢ (—) . (52.10)

€



Now let

A, = {5%2)(552) log [Fo(Ul, UQ) — Fo(Ul, UQ) — Fo(ul, UQ) + Fo(ul, UQ)]
10 = (Fo, F1, Fy) € O, (uy,v1,u2,v2) € D for D defined by (S2.4)) }.
We can find a positive number ¢, as the envelop function for A’. Based on

(52.10)), using the same arguments as those given on on page 1626-1627 of

Wu and Zhang| (2012)) leads to

1 1 1 4/5
/0 sgp Vg N (ecy, A7, Ly(Q))de < C/o (Z) de < o0,

where () can be any probability measure for X. Hence, by Theorem 2.5.2
in van der Vaart and Wellner| (1996), A’ is a P-Donsker. Similarly, we can
show all other items in £ are P-Donskers. Therefore £ is a P-Donsker as
well by the fact that a finite sum of Donskers is a Donkser. Since P-Donsker
is also P-Glivenko-Cantelli, then sup;g.z)e. [|(Pn — P)I(0; X)[| — 0.

Second, we verify M(6y) — M(0) > cd?(0,,0) for any 8 € O, which is
completed by Lemma

Finally, we verify M, (911) — M, (680) > op(1).

It follows by C1 and C2, Lemma 0.2 in [Wu and Zhang (2012) and
Jackson’s Theorem on page 149 in De Boor (2001) that there exists 6,, =
(Frn0, Fr1s Fr2) such that ||, o — Foolleo < ¢ (n™®F%) [ {|Foy — Foilloe <

c (n—(p”)“) and || Fy, 2 — Fozalleo < ¢ (n_(p”)"‘). Then we know that for large
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n, this 8, can be chosen from ©,, define by 1} Since 6, maximizes

M., (8,,) over ©,,, M, <én> — M, (8,,) > 0. Hence,

M, (én) ~ M,,(6,) = M, (én) — M,(6,) + M, (6,,) — M, (8,)
> M, (6,) — M, (60) = P {l(0,; X)} — P, {l(00; X)}
— (P, — P){I(68,; X) — 1(8; X)}

+ P{l(6,; X) — 1(00; X) }.
Define

£n == {l(enu CC) . on = (Fn,OaFn,ly Fn,2) S @m HFn,O - FO,OHoo S & (n—(p+r)n) )

||Fn,1 - Fo,l”oo S C (n_(P-i-r)fi) 7 ||Fn,1 - F0,1||oo S c (n—(p+r)n)} )

For APAWN 1og %;UU;) (the first term in [(0,; X) — 1(0y; X)), we have

Fro(Uy U — (1)
1/2 < ﬁ < 2 for large n by ||Fro — Foolle < c(n (p+7) ) Then

Fy 0(U1,U2) F,,0(U1,U2)
‘log Fooln D) | = €| Fooltr.0) _1" Hence,
F, (U1 Ug) 2 FO(Ul UZ) ?
P A(I)A(l)lo 0 FL 20 p log —— "1~ =27
{ Lo O80Ty [ = 08 (U, Uy)
Foo(Ur, Us) ?
< cP —_— 1
= U17U2{F0,0(U17U2)

< Py, v, { Fro(Ur,Uz) — Foo(Un, UQ)}2 — 0.

And we can show the similar results for other terms in {(0,,; X) —[(60; X).

Then, by (35_, ai)2 <937 a2, we have P{1(8,; X) —1(8p; X)}* — 0 as
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n — oo. Therefore,

1/2

var{l(8,; X) — 1(8; X)}]'* < [P{i(6,; X) — 1(80; X)}*]* — 0.

Since we already showed L is a P-Donsker, by the fact that both ((0,,;x)
and [(By; x) are in L, Corollary 2.3.12 of van der Vaart and Wellner| (1996])

results in that
(P, — P){1(8,; X) — 1(60; X)} = op (n'/?). (S2.11)
In addition, By Cauchy-Schwartz inequality,
[P{l(0,; X) — 1(60; X)} < P|I(6,; X) — 1(6o; X))

1/2—>O.

<c [P{Z(On; X)— l(OO;X)}Q]
Then P{l(0,;X) —1(6y; X)} > —o(1). Hence,
M, <9n> —M,, (6¢) > op (n_l/Q) —o(1) > —op(1).

The consistency is proved. [J

Proof of the rate of convergence for Theorem 1

We derive the rate of convergence by verifying the conditions of Theo-
rem 3.4.1 of van der Vaart and Wellner| (1996).
Let 0,, € O,, with 0,, satisfying d(6,,,0,) < ¢ (n*(p“)”). We verify that

for every n and any ¢ > §,, = n~ P+~

sup {M(0) —M(6,)} < —co*.
0/2<d(6,0,)<6,0€0,
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For x > M, > 0, we can show that there exists ¢y, > 0 such that x log(x) —
z+1 < cp(z —1)% With the similar arguments as in the proof of Lemma

[1 we can show that
M(0y) — M(8,,) < cd*(0y,0,) < cn 2P+~
Then by the result of Lemma [1} it follows that
M(0)—M(8,,) = M(8)—M(0,)+M(0y)—M(B,) < —cd>+en 2P = 52,
Next, we need to find a function ¥ (-), for G,, = /n(P, — P) such that
Ep sup [Gn{l(6; X) — 1(0n; X)}1 < cp(9)

6/2<d(0,0,,)<6,0c6,

and () /0% is decreasing in ¢, for some a < 2, and for 7, < §,!, it satisfies

V2ah(1/7,) < ev/n for every n.

Let L5 ={l(0;x) — (0,;x) : 0 = (Fy, F1, F3) € ©, and §/2 < d(0,6,) <}
C4 implies the density of the probability measure P has a positive lower

bound. Then d(0,8,) < § implies

1/2
/ (Fo(ti,ta) — Fnolty, ta))*dtadty < ¢,
[71,0,71,0] X [T2,1,72,1]

1/2
{/ (Fl(tl) — Fn,l(tl))thl} S C(S
[Tl,lle,h}

1/2
{/ (Fg(t2> — Fn72(t2))2dt2} S co.
[T2,1,72,1]

and
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Hence, we can use Lemma [2] and Lemma [3] with some algebra to show that
Ny (e Lo, || - lloo) < (0/€)F4

Then obviously,
Npj{e, Los, Lo(P)} < (6/e)Pmim. (52.12)

Next, for any 1(0;x) — [(0,;x) € L, 5, since d(0,6,) < . Lemma 4 and
Lemma 7.1 in Wellner and Zhang (2007) with Condition C1-C4, imply
that for small ¢ and sufficiently large n, 8 and 0,, are both very close to
0y in terms of || - || in the domain of censoring times, D as defined by
(S2.4). Hence, for any 1(0;x) — [(0,;x) € L5, it can be shown that
P{l(0;x)—1(0,;x)}* < cd®. Also by L, s being a uniformly bounded class,
Lemma 3.4.2 of van der Vaart and Wellner| (1996) indicates that

J 40, Los, La(P)}
52\/n ’

where J | {6, Lo, Lo(P)} = [ /T +10g N[ | {6, Lns, Lo(P)}de < c(pngn)'/2s,

by (52.12). Then Ep SUDs/2<d(0,0,)<5,0€0,, (G {l(0; X)—1(0,; X)}]+ < EP”Gn”En,a

Epl|Gyullz, s < i1 {6, Lns, La(P)} |1+

indicates that
U(8) = (Pngn)"?0 + (pngn) />

It is easy to see that ¥(9) /4 is a decreasing function of 4. Then p,, = ¢, = n”

implies that if r,, = p@M{P+re(=26)/2} . "< 51 and 724 (1/7,) < cn'/?.
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Since My, (6,) ~M,.(8,) > 0and d (6,,,6,) < d (8., 80)+d(60,6,) >
0 in probability. Therefore, it follows by Theorem 3.4.1 in|[van der Vaart and

Wellner| (1996) that r,,d (én, en) — Op(1). Hence, by d(8,,,0;) < en~ s
rod (én, 90> < rnd (én, en) 4 70d(0,,00) < Op(1) + rpen~ % = Op(1)

This establishes the convergence rate. [J

Proof of Theorem 2

First, we use Riesz representation theorem for Hilbert space (Halmos,
1982) to show some intermediate results for the proof.

By the regularity condition C4 and Cauchy-Schwarz inequality, it can
be shown that ‘%[’w]‘ < ¢d(0,w), where d(-,-) is defined by (3.1) in the
main paper. By C3 and C4 we can also show that d(0,w) < ¢|lw| with

|| - || being the Fisher information norm defined by (3.4) in the main paper.

dp(6o)
de

Hence we have [w]‘ < c||wl|, which results in

dp(0o)
dp(6y) 6 [w]’
= sup — < o0. (52.13)
H d0 ||, o wewjwi>o [wl

By (3.6) in the main paper we know that %['w] defined by (3.5) in the

main paper is linear in w, by Riesz representation theorem there exists

w* = (wg, wh,wi) € W with W being the completion of W, such that for
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any w € 20
) dp(6)
(w*, w) = 70 [w]. (52.14)
and
‘dp(Bo)[w]’
dp(0
lw' = sup L2 =H P(8o) (52.15)
we, ||w||>0 |w]| de ||, .
due to the fact that
ol o) 000 )
sup @ @—— = sup
weW, ||w||>0 |wl| wEW,||w||>0 [|wl|

Therefore, ||w*|| is bounded by (S2.13]).

In what follows we establish the asymptotic normality using ([S2.14))
and ([S2.15)).

We define 7(0, 8p; 2] = 1(8; ) — [(8g; ) — "®2)[0 — §;]. Lemma [j
shows that we can find small ¢, and the spline function vector w? (the

approximation for w*), such that

P (r[8,.00:X] ~ 1 [6, = cw;, 00: X)) s216)
= e (B0 — 00, w") + cop (n77%).

%Z W [w?] = (P, — P) {W [w*]} +op (nV?), (S2.17)

and

(P, — P) <r [én, 6o, X} -7 [9n £ e w,, Op; XD = +e,0p (n_l/Q) )

(S2.18)
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For 6, being the vector of sieve NPMLESs, we have

2 {t(0m) 1 (0 wiim)} 20
It immediately follows that

Fen ; g (Wil

+ (P, — P) (7’ [9,,“ 0o; X} —r [én + e w), O; XD (52.19)

+ P <r [én,Go;X] —r [én + enw;,GO;X]) > 0.

Hence by (52.17)), (S2.18)), (S2.16]) and (S2.19)),

iﬁn(]P)n - P) {% [w*]} + €n <én — 90, ’l,U*> + €,0p (nil/z) Z 0.

This leads to the conclusion that

'ﬁ@n -0, w) - va(e, - p) { LX) [w*]}\ < op(1)

and hence

\/ﬁ<én - 90,10*> = v/n(P, - P) {% [U’*]} +op(1).

Then by P {dl(%x) [w*]} = 0 and central limit theorem, we have

Jn <én — 8y, w*> —a N (0, [w|) (52.20)
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By (3.6) in the main paper, we can easily get

/:Lh {le(tl) - Fo71(t1)} dty /TT“ {Fmg(tz) — F072(t2)} dto

1,0 2,1

o , 1/2
<c / {Fn,1<t1) — F0,1(t1)} dty
71,1
1/2
Toh o 2
. [ / {Fn,Q(tQ)—FO,Q(tz)} dt2]

T2,1

< cd? (én, 90) ,

where the last inequality holds by C2 and C4. Hence by Theorem 1 and

p+7r >3 we have

(0.) 00~ 190 o, -

2(p+r)

< Op <n_2(p+r)+2> = op (n—1/2) .

It is easy to see that 6,, — 0, € 2. Then by (S2.14)), we have

‘p <én> —p(6p) — <9n — 0y, w*>‘ =op (n_l/Q) ) (52.21)

2
).D

For the first part, we prove that the proposed plug-in estimator p (9n>

Finally, by (52.15)), (S2.20) and (S2.21]), we obtain

dﬂ(eo)
do

ifo(0) - @} i (0

Proof of Theorem 3

is a path-wise regular estimator for p(8y).
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By (52.21)) in the proof of Theorem 2, we have

Vi{p(8.) = p(0n0) | = Vi {p(6.) = p(60) } = Vi {0 (6.) — p(60)}
= \/ﬁ<én — Oo,w*> — \/ﬁ<%w,w*> +op(1)
\/1_ Z di 00’ z) w*| — s,h (w, w*) + op(1)

On the other hand, for the directional derivatives %[ ] and %&m [w]|w]

defined, respectively, by (3.2) and (3.3) in the main paper, we can easily

derive the following local asymptotic normality (LAN):

" dP,,, dl 90 ;) $2h? < d21(80; x;)
1 o g Lg n g g
ogH dPeo Z w] + o ZZI 10 [w][w]
+ Rem,,
dl(0o; z; 2h2
Z °’”’ S w2 + 0p(1).

(52.22)
Then by multivariate central limit theorem, Slutsky’s Theorem and the

fact that s,, — 1, we have

Vnp én _p(en,h)
(o) wo}]
logHz 1 d](—:oo (X)
—h{w, w*) [w*]]? h{w, w")
N2 )
— 2wl |? hMw, w*)  B?||wl

Now Example 6.7 (Le Cam’s third lemma) in van der Vaart (1998)) implies
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that

~

Vi{p(8:) — @)} 5 NO o ),

P
h . . . . .
where —; means converging in distribution under the measure Py_,. By

the same argument, we also have

Vi{p (82) = 00,0} =250 N, ),

Hence,

lim sup Pry,, , {p <9n> <p (On,h)} <liminf Prg, _, {p <én> <p (en,—h)} )

which means that p (én) is a path-wise regular estimator for p(8y).
For the second part, we prove that the lower bound of the asymptotic

2
variances for all path-wise regular estimators for p(6y) equals t0 SUD,cqy |jw||=0 % [w] ‘ /lJwl]|?.

It is equivalent to show the following result about concentration prob-

abilities as

2
d’i&Z“[w](
lim sup Pr {\/ﬁ|Tn —p(6y)| < h} <Pr|[|NqO, sup | <h]|,
wew w>0  ||wl]

for any A > 0. It is also equivalent to show that for any w € 20 with

|lw|| >0and h >0

limsup Pr {/n|T}, — p(6o)| < h} < Pr ||N 0, ’
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If dpdzo)[ ] = 0 then it is obvious that (S2.23) holds, since the right

hand side equals to 1. In what follows we show that for any w € 20 with

[wl]| > 0 and 229 4y] £ 0 (S2.23) also holds.

(a)

For any fixed w € 20 with ||w| > 0 and dp(eo [w] # 0, it is true that
0 = 0y + sw and s are one-to-one locally. Then we re-parameterize Py
by s and denote Py = FPy. Let s, = so + % for so = 0, s, — 1 and
any h > 0. Then Py, = P, and P, , = P, ,. Hence by LAN ,

we have LAN

Sn ) dl 9 ,wz S h2
1ogH i Z : = wll? + or ().

By the regularity conditions C1-C3 and the construction of 27, for each
w there exists a small neighborhood of sy (so = 0), denoted as d5,, such

that for each s € d,,, 8y + sw corresponds to a joint distribution and

S0

1(0g + sw; X) is bounded. We denote Ay, (s) = p(0y + sw). It is easy

to see that X, (s) = %[w] is continuous function of s by (3.6) in

the main paper, for each s € d,. In addition, X, (s¢) = d”ézo) [w] # 0.

Since T,, is the path-wise regular estimator for p(6y). Then for any
fixed w € W with ||w| > 0 and dp 90 [ | # 0, T, is also the regular

estimator of Ay (so) (Wong, [1992). That is,

limsup Prg, , {1, < Aw(8nn)} < liminf Pre, _, {1 < Aw(Sn,—n)}-
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The preceding arguments (a), (b) and (c¢) justify the conditions for
Proposition 14 in [Wong (1992). Hence, by Proposition 14 in |Wong (1992)

we have that

limsup Pr {/n|T}, — A(50)| < h} < Pr [

oSt

It implies that for any fixed w € 20 with ||w]|| > 0 and %zo)[w] # 0 and
all h > 0, holds. This completes the second part of the proof.

By the first and the second parts of the proved result. We conclude
that the asymptotic variance for p <9n) reaches the lower bound for all

path-wise regular estimators for p(6y). O

S3. Technical lemmas and proofs

Lemma 1. Let M(6) = Pl(0; X) and O defined by contains 6.

Then we have

M(eo) - M(@) Z Cd2(00, 0),
for any 0 € O,

Proof of Lemma
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Note that

Mi(6y) — M(6)

=P{l(8; X) — 1(6; X)}

=P {A§”A§” log

Foo(U, Us)
Fo(Uy, Us)
Fo1(Uy) = Fo (U, Va)

Ur) — Fo(Ur, Va)

Vi,Usz) — Foo(Uy, Us)

Vi,Us) — Fo(Us, Uy)

Foo(V1, Va) — Foo(Vi,Usz) — Foo(Ur, Vo) + Fo (U, Us)
Fo(Vi, Vo) — Fo(Vi, Us) — Fo(Un, Va) + Fo(Uy, Us)

FO,O(Ulv ‘/2) - FO,O(Ula UZ)
Fo(Ur, Va) — Fo(Uy, Uy)

+ APAP 1og

o Fo1(V1) — Foo(Va, Va) — Fo1(Ur) + Foo(Us, Va)

Fy(V1) — Fo(Vi, Vo) — F1(Ur) + Fo(Un, Va)
Fo2(Uz) — Foo(Vi, Us)

Fy(Usy) — Fy(Vi, Us)
Foo(Va) — Fo2(Us) — Foo(Vi, Va) + Foo(Vi, Us)

Fy(Va) — F5(Us) — Fo(Vi, Va) + Fo(Vh, Us)

1 — Foo(Va) — Foa(Vi) + Foo(Va, Va) }
1 — F(Va) — F1(Vi) + Fo(V1, Va)
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Then by the independence between (Uy, Us, V1, V3) and (T3, T,), we have

Mi(6o) — M(8)

Foo(Uy, U
=P vy v {Fo(Ul, Uy)m {M}

FO(Ula UQ)

+{F0(U1a ‘/2) - FO(Ul, U2)}m { FO’O(Ul’ ‘/2> — F’O,O(Ui7 Ug) }

FO Ul?‘/2> - FO(U17 UQ)

HE () — R, Voo { a0 = P (310

(

)
(Uh) — Fo(Ur, Va)
Foo(Vi,Us) — Foo(Un, Uz)}
Fo(Vi,Us) = Fo(Uy, Us)

HFo(V1, Uz) — Fo(Uy, Us) }m {

+HFo(Vi, Vo) = Fo(Vi, Us) — Fo(Ur, Vo) + Fo (U, Us) }

{Fo,o(‘/l, Vo) — Foo(Va,Us) — Fo0(Ur, Va) + Fo0(U, Us) }
FO(‘/M ‘/2) - FO(‘/la U2> - FO(Ula ‘/2> + FO(U17 UQ)

HEW) = Fo(V1, V2) = Fu(Uy) + Fo (U, Va)

{Fo,l(vl) — Foo(Va, Vo) — Fo 1 (Ur) + Foo(Un, Va) }
(V1) — Fo(V1, Vo) — Fi(Uy) + Fo(Uy, Vs)

+HF2(Us) — Fo(Vi,Us)pm {FO’Q(UQ) — Foo(Wh, Us) }

Fy(Us) — Fo(Vi, Us)
+H{F>2 (Vo) — F>(Us) — Fo(Vi, Va) + Fo(Vi, Us) }

{FO,Q(VQ) — Fo2(Uz) — Foo(Vi, Vo) + Fo0(Vh, Us) }
Fy (Vo) — Fy(Us) — Fo(Vh, Vo) + Fo(Vi, Us)

+{1 = B(Va) — Fi(V)) + Fy(Vi, Va)}

{1 — Fo72(vz) - FO,1<V1) + FO,O(VD VQ)
1— (V) — Fi(Vh) + Fo(Va, Va) H ’

(S3.24)

where m(x) = zlog(z) — z + 1. For 0 < z < M), we can show that there

exists ¢y, > 0 such that m(z) > ey, (z — 1) Then by the fact that the
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distribution functions are bounded and ([S2.3)), we have

Foo(Uy, U
P vvavs {FO(UM Us)m {M}}

Fo(Ur, Us)

> Py vsive | Fo(Ur, Us) {

Fo(Ur, Us)

Foo(Ui,Us) 1}2]

Z CPU17U27V1,V2 {F0,0<U17 UQ) - FO(U17 UQ)}2 .

We can show the similar results as above for other terms of the right hand
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side in ([S3.24)). Hence,

M(6,) — M(6)
> Py, va i [Foo(Ur, Us) = Fo(Us, Ua))?

+ Py, v, v v, [{Foo(Un, V) = Fo(Ur, Va)} = {Foo(Ur, Us) — Fo(Ur, Up)}]?

+ cPuy e is {Foa(Uh) = Fy(U0)} = {Foo(Uh, Vo) — Fo(Uy, Vi)

+ Py, v vavs [{Foo(Vi, Uz) = Fo(Vi, U)} = {Foo(Us, Ua) — Fo(Ur, Un)}]?

+ cPo, o vi v [{Foo(Vi, Va) — Fo(Va, Vo)t — {Foo(Va, Us) — Fo(Va, U)}
—{Foo(U1,Va) = Fo(U1, Vo) } + {Foo(Ur, Us) — Fo(Un, Vo) )]

+ P, v v [{Foa (Vi) = Fi(V)} — {Foo(Va, Va) — Fo(V, Va)}
—{Fo1(U1) = Fy(U0)} + {Foo(Uh, V) = Fo(U, V)3

+ Py v v ve [{Fo2(Us) = Fa(Ua)} — {Foo(Vi, Us) — Fo(Vi, Ua)})”

+ cPuy s i v [{Foa(Va) = Fa(Va)} = {Fos(U) — Fa(Un)}
—{Foo(Vi, Vo) = Fo(Vi, Vo)) + {Foo(Va, Us) = Fo(V, Uz)})?

+ cPu e is [~{Fo2(Va) = Ba(Va)} — {Foa (Vi) — Fi(V)}
+H{Foo(V1,Va) = Fo(V3, Vo) })?

(S3.25)
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By a? 4+ b* > (a + b)?/2 we have

M(6,) — M(0)
>cPy, vyvi v L Fo0(Ur, Uz) — Fo(Uy, Uy}
+ cPuy vy vive [{F0,0(Ur, Vo) — Fo(Uy, Va) } — {Foo(Ur, Us) — Fo(Un, Uy)})°

>cPy, vy v { Foo (U, Va) — Fo(Ur, V) }? = || Foo — F0||%2(pU1,V2)-
By a* +b* + ¢* > (a+ b+ ¢)?/3 we have

M(6o) — M(6)
>cPy, vy i ve{ Fo0(Ur, Ua) — Fo(Uy, U2>}2
+ cPy, vy vive [{Fo0(Ur, Vo) — Fo(Ur, Va) } — {Fo0(Us, Us) — Fo(Un, U2)}]2
+ cPuy v, i v {Foa (Uh) — Fu(Uh)} = {Foo(Un, Vo) — Fo(Uy, Va)}?

>cPu, va e 1 F01 (Uh) — FL (U} = el Foa — Fillymy,)-

, : 2
By general relationship > 7_, a? > < T az-> /j and using similar argu-
ments as above for ((S3.25)), we can show that M(6,) —M(0) is greater than

the product of a positive constant and each of the terms in d?(6y, 8) defined
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by (3.1) in the main paper. This results in
Mi(6,) — M(0)
>c||Fop — F0||%2(PU1,U2) + | Foo — Fo”%z(PUl,vQ)
+ ¢l Foo = FollLapy, ) + CllFoo = Foll oy, v
+ || Foa — F1||%2(PU1) + |l Foa — F1||%2(PV1)
+c||Fo2 — FQH%Q(pUz) +cl|Fo2 — FQH%z(PVQ)

ZCCZz(OO, 0) 0

p

q
Lemma 2. Let {Bi(l)’l} and {B(Q)’l} be the two sets of B-spline basis
j=1

i=1 ‘
functions with the knot sequences & = (fl)fill andn = (77]-);1.2 satisfying 0 =

ming<i<p (§i+1—6i)

1= =8 <& < <& <G =G =11 with max;:i<i<p (§i+1—Ei) =

Chnot and 0 =y = -+ = < M1 < o0 < Ny < Ngg1 = Ngp1 = To with

minja<j<q (Mj+1—7;)
max;. < <q (Mj4+1—1;5)

> Crnot, Tespectively, for a small positive cipot. Define
: 1)l 2),1
Ds = {¢ Lo(s) = D@ B (9)B (o),

=1 j5=1

0<m i <s<mp<7,0< 1 <t <y < 7o

/ % (s, t)dtds < 62 .
[71,1,71,0]) X [T2,1,72, 1]

Then for e < §, we have
log Np (€, @5, || - ||oo) < cpglog(6/e).

Proof of Lemma [
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Denote (f,g) = f[ﬁ,z,n,h]X[Tz,z,Tz,h] f(s,t)g(s,t)dtds. The Gram-Schmidt
process based on (f, g) leads to the set of orthogonal basis functions {Oy (-, -) }H<
for @5, with K < pg and equal to the number of elements of {Bi(l)’lB](-Q)’l}(i et
where for each member (i,j) € Z, B(l) ZB]( M has a support on [7q, 71 5] X
(720, To.n]. S0 any ¢ € 5 can be written as ¢(s,t) = Son_ wpOk(s, t), where
(O, Op) > ¢ (%) for k = K’ because the construction of knot sequences
& and 7m implies that the support for every basis Bi(l)’lB(-Q)’l has an area

J

greater than ¢ () and (O, Oy) = 0 for k # k’. Then

K 1 K
> () = L wt0n00 = 0.0) <
k= k=1

Hence,
K
Zwi < cK§* < epgd®. (S3.26)
k=1

Let

K
S={w=(w, - ,wg) : Zwi < cpgd?l.

k=1
Lemma 0.4 of Wu and Zhang (2012) indicates that there exist e-balls

!/
By, By, -+, Bj(s/eyera) centered at wt) = (wgl), - ,wg)) ,w® = <w§2), - w}?) ,
w((E/P) (wg(«ve)cpﬂ) ((6/07) )’

e, Whe > , respectively, which cover S. For

m=1,---,[(d/€)"1], define

P (s,t) = Zwk Ok(s,1).
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On the other hand, we consider any ¢(s,t) = S 1 wpOx(s,t) € &5 with
its coefficients w = (wy,--+ ,wr)’ € S defined by (S53.26). Since e-balls
By, B, - -+, Bjs/e)era) cover S, there exists a d with 1 < d < [(0/€)®9], such
that

WD = _ (d)‘<
lw—w'Y||s k:{gggK‘wk w | <e

Then, for any (s,t) € [T14, T1n) X [T24, Ton)s

‘QS(S» t) - ¢(d)(3’ t)} =

EK: <wk - w,gd)> O (s, )

k=1

K

(d)
< _
< 5, o l?[ S 100650

() ~\ (1), (2),l
< o (1), 2),
< max, for - of \{02231 (98] <t>}

1= ]:

d
< ¢ max ‘wk —w,(c )‘ < ce,
k1<k<K

K 1)l 2),1
where we use the fact that >, |Ok(s, )] < e 7, >0, BY (s)Bj(. M)
with ¢ not related to p and ¢ due to the structure of O, by the Gram-
Schmidt process and the fact that each B-spline basis function only has

support on [ sub-intervals. It implies that

lé =]l < ce.
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For d =1,---,[(8/€)%], let W = {4 : [ — @ |, < ce,vp € U}, where
K
U= {1/} : ¢<87t) = ZWkOk(S,t),
k=1
0<7;<s<Mp<T,0< T <t< 1) < T}
(d) (d) [(6/€)°P9]
Then, ¢ € W for some 1 < d < [(§/€)]. Hence, {\I/E } cover Ps.
d=1

Therefore, e-covering number of ®; is bounded by [(6/€)??]. By the fact

N[ ](26,@5, H ’ HOO) < N(€7 CI>57 H ’ ”00)7 it is true that

log N j(€, @5, | - [[0) < cpglog(d/e). O

p

Lemma 3. Let {BZ-(I)’I} be a set of B-spline basis functions with the knot
i=1

sequence € satisfying 0 = & = - = & < &1 <+ <& <bpp1 = G =Ty

. mini;lgigp (&ir1—6i)
with max;<i<p (Ei+1—&)

> Crnot Jor a small positive number cpno. Define
- !
1 b
O = {cb Lo(s) =Y BB (),
i=1

0<7'1,l§5§7'1,h<7—17/

[T1,1,71,1]

P*(s)ds < 62} :

Then for e < §, we have
log N (€, s, || - [|loo) < cplog(d/e).

Proof of Lemma [3,
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The proof follows exactly the same lines as those for Lemma [2] so it is

not presented here. [

Lemma 4. Suppose Ay(s,t) and A(s,t) are both nondecreasing in s and in

t in the domain [T, T1p] X [Tog, Ton] satisfying ||A — Aol 2 < n. Then

sup |A(s,t) — Ao(s,t)| < c772/3

(s,t)€[T1,0,T1,n] X [T2,1,72, 1]
if

92 Mo (s,t)

(1) Ao(s,t) has mized derivative “52-

and there exits a constant 0 <

fo < 0o such that 1/ fy < % < fo on [Ti4, Tipl X [T20, T2n)-

(2) The probability measure p is absolute continuous with respect to Lebesgue

u(s,t)
0s0t

s e 92u(s,t
satisfying % > ¢p, for some

measure with mized derivative

positive cg.

Proof of Lemma [

Suppose that (s',t) € [T14, Tin] X [Toy, T2.n] satisfies

A(S#) = Aols' )] = (1/2) sup (s, £) = Aols,1)] = €/2.

(8:)€E[T1,1,m1,0] X [T2,1,72,1]
Then either A(s',t") > Ao(s',t") + /2 or Ao(s',t") > A(s',t') + &/2. In
the following, we only show the inequality for the first case, A(s',t') >

Ao(s',t') + &/2, as the arguments are parallel for the second case.
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There exists (s”,t") with s” > &', " >/, such that Ag(s”,t") = Ao(s', ')+

¢/2 by Condition (1).

Then
72 1A ) = A5, ) (st
> / /j{A(s,t) Aot ) D gy
> [ [ ) - a0y a(a Dasat
> ¢, / /t "o — Ao, ) dst,
where

Ao(s", ") — Ao(s, 1) / / s AO Tho@oY) 1o > (1) o) (5" — 5) (" — 1),

Hence

S" tll
220/ / (S//_S)Z(t//_t)stdtzC(S//_S/)S(t//_t/>3
s’ t’
3
S” t// 82/\0 S t
=c dsdt (c/f3) / / d dt

> cf{Ag(s", 1) — No(s', 1)} = c€3. O

Lemma 5. Given that C1-C} hold and p+r > 3 in C1 and C2. There exist

€n and spline function vector w}, such that (52.16), (S2.17), and

given in the proof of Theorem 2 hold.

Proof of Lemma[J
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Before proving the three main results given in the proof of Theorem 2,

we show some intermediate results that are imperative to the proof of the

lemma.
Since for any w € 20, (w*, w) = %[w], with (w*, w) given by the
Fisher information inner product and %[w] given by (3.6) in the main

paper. Using the regularity conditions C1-C4, it can be shown that w* =
(wg, wi,ws) is a vector of piecewise continuous functions with bounded
derivatives Owg(ty, ta)/0t1, Ow(t1, ta)/Ote, dwi(ty)/dt, and dwj(ts)/dts. Then
by Jackson’s Theorem in [De Boor| (2001)) with Lemma 0.2 in Wu and Zhang
(2012), there exist spline functions wy; o(-,-), wy;(+), w; 5(+), such that for

_ * * * \/
wy, = (w), g, w1, Wy ), we have

|lw: —w*|| < en ™™ =o (n_Z(p+1r)+2) 7 (S3.27)

by choosing x,, > 57 where n"" is the number of uniformly distributed

__ 1
p+r)+27
interior knots and we use the fact that Fisher information norm (3.4) in the

main paper is bounded by the infinity norm || - ||.

In what follows, we establish that for @ = {F,(-,-), Fu1(-), Fra(-)}’

)
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between 6, and 9n,

‘P{ME’% 0,16, — 0 - T XD g6, - 001}‘
de de

= op (n_l_“*) s
(S3.28)
for some small k* > 0. Taking the absolute value of the first term in

LUOX) 9, — 6,]0,, — 6] — LL29X) (G, — 0,]8,, — 6], we have

1 1

N 2
FLo(Up,Us) — Foo(Uy, U .
F,?Lo(U1,U2) + F&O(U1,U2) { ,0( 1 2) 0,0( 1 2)}

By Theorem 1, we have

n 2112 ptr
{PUl,UQ <Fn,O_FO,O> } :Op <7’L_W> .

Then for any small € > 0, there exists an M > 0 such that for all positive

integer n,

Pr

. 97 1/2 )
{PULUQ (Fn,o - Fo,o) } < Mn_2<pit>+2] >1—ce

R 2) /2 .
Given {PUhU2 (Fmo — F070> } < Mn~ 2<pi)+2, using Lemma |4] and
Conditions C3 and C4 together with the fact that 0 is between 0y and @n

leads to

~ 3

Toa < ey |Fno(U, Us) — Foo(Uy, Us)
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and by p+1r > 3,
. 3
Fruo = Fog|

Po v, Ty < eniPu, v,

~ 20 ~
< cm Py, {Fn,o — Fo,o} Fno— Fop

, _ _2(ptr) _(2/3)(p+r)
< cyn 2(p+r)+2 7 20p+n)+2 = ¢

e}

_ 2(p+1)+(2/3) (p+r)
2(p+r)+2

/
Syl

o —Kk: —1—kK*
= cyn "on ,

for some k& > 0 and k* > 0 . We also know for any small ¢ > 0, there

exists an integer N > 0 such that for n > N
dyn o < €.

In summary, for any € > 0 and € > 0, there exists an integer N, such that

forn > N

T, T, .
PI‘{PUI’U2 ( 1’1*) <€/} ZPr{PUl,UQ ( 171*> SCIJ\/[TL HO}
n-k n-ik

A 2 1/2 p+r
{PUl,Ug (Fn,O - Fo,o) } < Mn 2042 | > 1 —¢,

> Pr

by the fact that the event

{PUl,Uz <Fn,0 - F0,0>2}1/2 < Mn_m’p*t‘g“] is
contained in the event {PULU2 (ﬁ—fﬁ) < cﬁwn*’%}. Hence Py, v, Thy =
op (n™17%7).

Proceeding in the same manner for all other terms in

d21(0: X) . 5 d21(00; X) .- R
%[en - 00] [en - 90] - %[en - 90] [On — 00]
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results (53.28)).

Since w* is piecewise continuous, it is bounded in a finite interval. Then
for large n, w; is uniformly bounded. Hence, by similar arguments we can

show that for @ between 8, and @nien,ow; for any €, o with €, = 0 (n‘1/2)

‘P {%[e £ engw;, — 00][0, & en ], — o)
_ %[én + e, 0w’ — 0][0,, + €, ow’, — ) H
=op (n7'7).
Now if we let €, = n~"/*~" then ¢, = o(n™"/?) and €,0p (n7/?) =

op (e.n™?) = op (n717""). Hence, we have

2U(6; X) ; 160 X) A
Pq—5—[0, — 60][0, — 0] — — 5—=[6,, — 60][0,, — 0
‘ { 46> [ ol ol d6? | ol !

= €,0p (77/71/2)
($3.29)
and

27(0. . -

PLEOX) 5 s et — 0410, + o, — 04
do
2 . N 0
- PO ) g+ ], — 046, % e, — 6] H
do
— op (n7112).

(S3.30)
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Next, we use Corollary 19.35 in van der Vaart| (1998)) to establish

(P, — P) {%[u}; — 'w*]} = op(n~1/?). (S3.31)

The first term in 200X [4y* —ap*] is AEI)AS) (wp o — wg) (U1, Uz) [ Foo(Uy, Us).

de

Let

F) AV (wr — w) (U1, Un)
Foo(Ur,Uy)

be a single element set. Since there exists a positive constant ¢,,, such that

APAY (wp o — wg) (U1, Us)
Foo(Uy, Us)

< ¢y }w;O — w}

by Conditions C3 and C4. Then ¢, ‘w;’;o - w§| is an envelope function
for FM. As we mentioned previously, it can be shown by Conditions C3
and C4 that Fisher information distance ||@; — 62| defined by (3.4) in the
main paper can be bounded by the distance d(81,05) defined by (3.1) in
)2}1/2 -

cn”~ @972 . Then by Corollary 19.35 in [van der Vaart| (1998), we have

the main paper. Therefore, (53.27)) implies {PUI,U2 (Cw ‘wfw —wp

Ep||Gyllz0) < eJpy {cn_2<p+lr>+2,F(l),Lg(P)}

cn7 2(P+1T‘)+2
:/ V1 +10g Ny | {e, FO, Ly(P)}de
0

1
Cn_ 2(p+r)+2 L
= / v/ 1+ log lde = cn 2e++2
0

using the fact that F() is a single element set. Then it follows from
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Markov’s inequality that

WAL (s o
(]P’n—P){Al o G ) (Ul’UQ)}zopm—l/z).

Fo,o(Ul,Uz)

di(00;X) 1, .
i

Proceeding in the same manner for all other terms in — w?|

results in (S3.31)).
Similarly, in what follows we use Corollary 19.35 in|van der Vaart| (1998])

to establish

S {%[“’Z] - o [’wiﬂ} =op(n™?),  (8332)

where @ = (F0(-,-), Fu1(-), Fo(-)) is a spline function vector between 6,

and 0, £ e, w;.

1

The first term in %[w;]—% [wi] is A(ll)Agl)w:’O(Ul, Us) {

So we define

11
(Fro) = AMANwr o — —
f ( ,0) 1 2 wn,O Fn,(] F(LO

and let

1
f(2) = |:f* (Fn,o) : {PUl,UQ (Fn?o - FO’O)Z} /

2 ___pHr
<cn 2tn+2|

where F), ¢ is between F,E?g and Fé?g + e wy, o with 8, = (F © ) € 0, for

n,07

n

O,, defined by . Lemma |4| and the fact that HGnU’Z,o

. . _ _2(p+r)
uniformly bounded) imply ||Fy. o — Fool|, = cn” 5@+, Hence, we have

< *1
|OO < ce, (W is

_ _2(ptr)
Foo 2> Foo—cn 5@+,

1
Fr0(U1,U2) Fo,o(

U1,U2)

3
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It follows that

1 1
A(I)A(l)w* U, U. { - }’
A0 U e~ PG

i 1 1
= ‘wn,0| S N
F070 — cn S(+n)+6 0,0

_ _2(p+r) *
< cn 6+r+6 }wn()‘ ,

. _ _2(ptr) . .
by Conditions C3 and C4. Hence, cn= 8 +r+6 |w;§0‘ is an envelope function

for F®, with

911/2
__2(ptr) " __2(ptr)
Py, v, {cn 6(p+r)+6 ‘wn,o}} < cn SeFnT6,

On the other hand, Lemma [2[ implies that by choosing p, = ¢, = n”

and k = e-bracketing number with || - ||-norm for set

1
2(p+r)+27

Y 1/2 )
FSB : {PUl,U2 <F7E(,)g - FO,O) } < C’n,2(pi+r)+2]

2
__ ptr cn 2(p+r)+2
is equal to {cn p+r)+e /e}

, Where FTE?O) satisfies 0,, = (F,E(B, : ) €
0,, for ©,, defined by (S2.5). Then by Conditions C3 and C4 with some
algebra we can show that

ptr
T 2(pFr)F2
log N[ } {E,f(2)7 L2(P)} — CnQ(p+27")+2 log {u} X

€
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Now by Corollary 19.35 in van der Vaart| (1998), we have

_ _2(ptr) (2)
EPHGnH}‘(?) < CJ[ ] {Cn 6(p+r>+6,f ,LQ(P)}
_ _2(p+r)
cn 6(p+r)+6
= / V1 +10g Nj | {e, FO), Ly(P)}de
0

2(p+r)

~ 6(pFr)+6
en OSP4T 3 _324n) L,
< CcnFEEF6 66 ¢ /2 ¢
0

(S3.33)

3—5/2(p+r)
= cn 6(+n)+6 |

Since HEnw;,OHoo < ce, and €, = 0 (n‘1/2), Theorem 1 implies

n 2 1/2 p+r
{PUl»Uz (Fn,o - Fo,o) } =0Op <n’W) )

Then for any small ¢y > 0, there exists an M > 0 such that for all

positive integer n

3 2) 1/2 ptr
Pr {PUl,U2 (Fn,o - FO,O) } < Mn—z@ﬁm] S1-¢.  (S3.34)

- 2 1/2 ir ~
If {Pul,UQ (Fn,o - Fo,o) } < Mn~ =597, then f* (Fno> e F. So

we know that

S {7 (Fua)

n 2 1/2 p+r
Ep {PU17U2 (Fn,O - Fo,o) } < Mn™ 2e+n+2

< Ep||Gull @ -



40

Hence, by (S3.33) we have

o {r (20))

Ep

I 2 1/2 p+r
{PULUQ <Fn,0 - Fo,o) } < Mn 2@++2

3-=5/2(p+r)
< cpyn SpIn+6 = 0(1)7

since p+1r > 3. Then conditional Markov’s inequality implies that, for any

small €; and e, there exists an integer N > 0 such that for n > N we have

n—1/2

f <Fn,0> - 2 1/2 i
Pr (]P)n - P) — < € {PUl,UQ <Fn70 — F070> } < Mn 2+r)+2

>1—62‘

Now by (S3.34)) and the definition of conditional probability we have for

n>N

f* <Fn,0)
Pr | |(P, — P) —iE (| <@ > (1—e€)(1—¢€)>1—¢c —¢.
Finally, for any small €, €, if we let ¢g = €3 = €/2, by the preceding

display there exists an integer N > 0, such that for n > N

Pr | |(P, — P) @

<e€| >1—e
n-1/2 1

That is,

(P, — P) {f* (Fn())} = op (n_l/Q) :

Proceeding in the same manner for all other terms in % [w;] —% [w} ]

results in ([S3.32)).
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In what follows we establish the three main results for this lemma.

First, we verify (52.16)) given in the proof of Theorem 2 holds.

P<r [én,BO;XD:P l én;x)—z(eo;X)—M[én—eo}}

1 [ PU(6p; X)
_ 5p{ % X6, 010, - eo]}
1 [ a6, X) .
+5P { Lor— 10, — 6.][6, — 6
d*1(00; X) 0
- )6, oul6, — oul}.

where 0 is between 0, and én. Then by the definition of Fisher information

norm || - || and (S3.29)

A 2
en—aoH
2

P (r[6n, 60 X]) = - + enop (712 (S3.35)

Similarly, by (S3.30)

~ 2
Hn + an; — 00

2

P (r [én + e, w, Oy; XD = — ’ + €,0p (n712)

(S3.36)
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By (S3.35) and ([S3.36)), we have

P (7‘ [9n,00;X] —r [én + ean,HO;X])

6, = vy, — 04 H
= 5 + €,0p (n_1/2)
% (12
= *e, <én — 0, w;> + M + €,0p (n71/2)
112
— Zl:En <én — 007w*> Zl: En <én _ eovw;: o w*> _|_ ||€n,l;}n|| _|_ EnOP (n_l/Q) )
(S3.37)

By Theorem 1 and (S3.27)) we have
(0w
<Op (n’ﬁ> 0 <n72(p+71>+2> =op (nfl/z) _

(S3.38)

|, = w

In addition, since w}; is uniformly bounded, we have

%112
IIEnt;nII — oo (n2). (93.39)

Then, (S3.37)), (S3.38) and (S3.39) imply (S2.16)),

P (7“ [én,eo; X} —r [én + e w, Op; X})
= +te, <9n — 6, w*> + €,0p (n_1/2) )

Second, we verify (S2.17)) given in the proof of Theorem 2.

de

ks Z dl 00’ i) [w*] = (P, — P) {—d“%m [w*]} +op (n1?),

By (S3.31) and P {dl (B0:X) [w;]} =0, it is clear that ((52.17)),
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holds.

Finally, we verify ([S2.18|) given in the proof of Theorem 2. Note that

(P, — P) (7" [én, 0,; X] —r [9n + e, w;, Oo; X])

— (P, - P) {z (B:) 1 (00 + cqwis X)) — % [:Fen'w;i]}
— (B, - P) {—‘” 0% gy — 2O X [w;:]}

where 0 is between 6,, and énj:en'w;‘” then by (IS3.32)) it immediately follows

that (S2.18),
(P, — P) (7" [9n,00;X] -7 [9n + ean,OO;XD = €,0p (n_l/z) ,

holds. The proof is complete. []
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