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S1. Theoretical Properties under Time Series Structures

We consider the performance of CLIPS classifier when observations within each set are

allowed to follow various time series structures, and extend the results obtained in Theorems

3, 4, 5 and 6 in these dependent settings.

We follow the assumption in Section 2 that both the N sets {(Xi,Yi)}Ni=1 and the new set

(X †,Y†) are generated in the same way as (X ,Y) independently. In this section, the generat-

ing process of (X ,Y) is generalized to allow both short-range and long-range dependent time

series. Specifically, while we still assume Y and M are independent with class probabilities

πk (k = 1, 2) and distribution pM respectively, here we assume that conditioned on M = m

and Y = y, observations X1, X2, . . . , Xm in the set X follow a vector linear process,

Xi = µy +
∞∑
t=0

Aytξi−t, (S1.1)

where Ayt are p × p dimensional coefficient matrices in class Y = y and ξt = (ξt1, . . . , ξtp)
T

with (ξtj)t∈Z,j=1,...,p being i.i.d. standard normal variables. Note that the covariance matrices

of individual observation from two classes are Σy := Σy0 =
∑∞

t=0AytA
T
yt for y = 1, 2. In

general, the auto-covariance matrices at lag k of all observations within each set, that is
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S1. THEORETICAL PROPERTIES UNDER TIME SERIES STRUCTURES

Cov(Xi, Xi+k) := Σyk =
∑∞

t=0AytA
T
y(t+k) for y = 1, 2. The above vector linear process is

flexible since the coefficient matrices Ayt can capture both spatial and temporal dependences.

One important example is the vector auto-regression (VAR) model. It has been widely used

in many fields, including functional Magnetic Resonance Imagine (fMRI) and microarray

data (Dinov et al., 2005; Posekany et al., 2011).

To characterize the dependence relationship of the time series, we impose conditions on

the coefficient matrices. Set Ayt = (ayt,ij)1≤i,j≤p. Then we assume the Gaussian linear

process satisfies the following decay condition on Ayt for both classes y = 1, 2, and all t ≥ 0,

max
1≤i≤p

(

p∑
j=1

a2
yt,ij)

1/2 ≤ CTS(1 + t)−ν , (S1.2)

where CTS > 0 is some constant and ν > 1/2 reflects the decay rate. The requirement

ν > 1/2 is needed to guarantee that the covariance matrix Σy =
∑∞

t=0 AtA
T
t is finite. In

particular, in the time series literature, when ν > 1, the corresponding linear process is

said to have a short-range dependence (SRD) because rows of the the corresponding auto-

covariance matrices Σyk are absolutely summable, which yields relatively weak dependence

among all observations within each set. When 1/2 < ν < 1, the corresponding auto-

covariance matrices may not be absolutely summable and thus the linear process is said

have a long-range dependence (LRD). See, for example Beran (2017); Wu et al. (2010) for

more details.

We investigate generalization errors for the CLIPS classifier φ̃(X †) in (3.8) under the

vector linear process model for both short-rang and long-range dependence. It is worthwhile

pointing out that φB in (2.2) is no longer the Bayes decision rule due to the time series

structure. In contrast, the full Bayes decision rule for model (S1.1) requires the knowledge
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of all coefficient matrices Ayt for t ∈ Z, y = 1, 2. However, in high-dimensional situations, it

is difficult to estimate all coefficient matrices Ayt accurately if not impossible at all. With

the decay condition (S1.2), it is still reasonable to apply some simplified quadratic classier

such as φB(X †) in (2.2) to predict Y† as if all observations in the test set X † are independent.

Indeed, under the independence case in which Ayt = 0 for all t ≥ 1, φB(X †) is the oracle of

our CLIPS classifier φ̃(X †). With the general time series structure (S1.1), we need to define

the oracle of our CLIPS first.

φ̃(X †) = 2− 1

{
log(π̂1/π̂2)

m
+ β̃0 + β̃T x̄+ x̄T ∇̃x̄/2 + tr(∇̃S)/2 > 0

}
.

Recall that the key estimation in our CLIPS classifier displayed above include quadratic term

∇̃, linear coefficient β̃ and an intercept coefficient β̃0. While the estimations ∇̃ in (3.4) and

β̃ in (3.5) are proposed to estimate their counterparts in our CLIPS classifier ∇ = Σ−1
2 −Σ−1

1

and β = β1−β2 where βy = Σ−1
y µy respectively, the constant coefficient estimator β̃0 in (3.6)

is obtained via a logistic regression model. Therefore, the oracle β0,TS of β̃0 in the current

setting is defined as the minimizer of the following population loss function, that is,

β0,TS = argmin
θ0∈R

E`(θ0 | {(Xi,Yi)}Ni=1, β,∇), (S1.3)

where `(θ0 | {(Xi,Yi)}Ni=1, β,∇) is defined in (3.7). We point out the interpretation of `(·)

is no longer the negative log-likelihood function and thus β0,TS is not always equal to the

quantity β0 = {− log(|Σ1|/|Σ2|) − µT1 Σ−1
1 µ1 + µT2 Σ−1

2 µ2}/2 defined in (2.2). However, the

oracle classifier φB,TS of CLIPS defined below is always no worse (i.e., has the same or

smaller generalization error) than φB in (2.2) due to its definition (S1.3). Again, for the

independence case, we have φB,TS = φB.

φB,TS(X †) = 2− 1

{
log(π1/π2)

m
+ β0,TS + βT x̄+ x̄T∇x̄/2 + tr(∇S)/2 > 0

}
. (S1.4)

3
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From now on, we denote by RB,TS the oracle risk although the subscript B no longer implies

the Bayes decision rule.

We first extend Theorem 3 and establish the statistical properties of the thresholded

CLIME difference estimator ∇̃ defined in (3.4). Again, we assume that the true quadratic

parameter ∇ = Σ−1
2 − Σ−1

1 ∈ FM0(sq) has sparsity no more than sq defined in (4.1).

Theorem 1. Consider the vector linear process defined in (S1.1) that satisfies the decay

condition (S1.2). Suppose Conditions 1-3 hold. Moreover, assume ∇ ∈ FM0(sq), ‖Σ−1
k ‖`1 ≤

C`1 with some constant C`1 > 0 for k = 1, 2 and log p ≤ c0N with some sufficiently small

constant c0 > 0. Then for any fixed L > 0, with probability at least 1−O(p−L), we have that

‖∇̃ − ∇‖∞ ≤ 2λ′1,N ,

‖∇̃ − ∇‖F ≤ 2
√
sqλ
′
1,N ,

‖∇̃ − ∇‖1 ≤ 2sqλ
′
1,N ,

as long as λ′1,N ≥ 8C`1λ1,N in (3.4) and

λ1,N ≥


CC`1

√
log p
Nm0

if ν > 3/4

CC`1
√

log p

Nm4ν−2
0

if 1/2 < ν < 3/4

,

where C depends on L,Ce, Cπ, CTS and cm. Moreover, we have pr(supp(∇̃) ⊂ supp(∇)) =

1−O(p−L).

Remark 1. The choice of tuning parameter λ1,N and the rates of convergence on the bound-

ary case ν = 3/4 can also be dealt. In particular, we require λ1,N ≥ CC`1

√
log p logm0

Nm0
if

ν = 3/4. See the proof of Theorem 1 for further details.

The results in Theorem 1 critically depend on the estimation accuracy of the sample co-

variance matrix under the supnorm in various time series dependence structures within each
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set. Such technical results are detailed in Lemma 6 in Appendix, where the corresponding

analysis requires an application of Hanson-Wright inequality. In particular, if ν > 3/4, then

the rates of convergence for estimating ∇ are the same as those under the independence

assumption. If n < 3/4, that is, the vector linear process has a long-range dependence, then

the rates can be affected and reduced correspondingly.

We turn to the statistical properties of the linear coefficient estimator β̃ defined in (3.5)

under time series structure. The following theorem is an extension of Theorem 4, in which

we assume that β = β1 − β2 belongs to the sl-sparse ball defined in (4.2).

Theorem 2. Consider the vector linear process defined in (S1.1) that satisfies the decay

condition (S1.2). Suppose Conditions 1-3 hold. Moreover, assume that β ∈ F0(sl), log p ≤

c0N , ‖βk‖1 ≤ Cβ and ‖µk‖ ≤ Cµ with some constants Cβ, Cµ > 0 for k = 1, 2 and some

sufficiently small constant c0 > 0. Then for any fixed L > 0, with probability at least

1−O(p−L), we have that

‖β̃ − β‖1 ≤ C ′′C`1slλ2,N ,

‖β̃ − β‖ ≤ C ′′C`1
√
slλ2,N ,

as long as the tuning parameter λ2,N in (3.5) satisfies

λ2,N ≥


C ′
√

log p
Nm0

if ν > 1

C ′
√

log p

Nm2ν−1
0

if 1/2 < ν < 1

,

where max{‖Σ−1
1 ‖`1 , ‖Σ−1

2 ‖`1} ≤ C`1 and C ′′, C ′ depend on L,Ce, cm, Cπ, Cβ, CTS and Cµ.

Remark 2. The choice of tuning parameter λ2,N and the rates of convergence on the bound-

ary case ν = 1 can also be dealt. In particular, we require λ2,N ≥ C ′
√

log p log2m0

Nm0
if ν = 1.

See the proof of Theorem 2 for further details.
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At a hight level, the estimation accuracy of linear coefficients are determined by both

estimation accuracy of the sample mean and that of the sample covariance matrix under the

supnorm. While under the short-range dependence structure both rates of convergence are

equal to
√

(log p/(Nm0)), the rate of convergence of sample mean dominates that of sample

covariance matrix when there is a long-range dependence among multiple observations within

each set.

Next, we derive the rate of convergence for estimating the oracle constant coefficient β0,TS

defined in (S1.3) under the general time series structure. The accuracy of our estimator β̃0

critically depends on the accuracy for estimating β and ∇. Theorem 3 extends Theorem 5

from the independent case to the general time series structure. We need one mild condition,

the population strong convexity of the loss function `(β0,TS | {(Xi,Yi)}Ni=1, β,∇) at the oracle

point β0,TS.

Condition 1. Set X̄ and S as the sample mean and variance of the set of observations

(X ,Y) with set size M . Define Zi = log(π1/π2)/M + X̄Tβ + X̄T∇X̄/2 + tr(∇S)/2. The

expectation of the variable exp(M(β0+Z))

(1+exp(M(β0+Z)))2
is bounded below by Clog > 0, where Clog is some

universal constant.

Remark 3. Strong convexity Condition 1 coincides with Condition 4 for the independent

case. Indeed, for the independent case we have Var(Y | X ) = exp(M(β0+Z))

(1+exp(M(β0+Z)))2
.

Theorem 3. Consider the vector linear process defined in (S1.1) that satisfies the decay

condition (S1.2). Suppose Conditions 1-4 and 1 hold, log p ≤ c0N with some sufficiently

small constant c0 > 0 and ‖µk‖ ≤ Cµ with some constant Cµ > 0 for k = 1, 2. Besides, we

have some initial estimators β̃, ∇̃, π̂1 and π̂2 such that m0(‖β̃ − β‖1)(1 + Uβ) + m0(‖∇̃ −
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∇‖1)(1 + U∇) + maxk=1,2 |πk − π̂k| ≤ Cp for some sufficiently small constant Cp > 0 with

probability at least 1−O(p−L). Then, with probability at least 1−O(p−L), we have

∣∣∣β̃0 − β0

∣∣∣ ≤ Cδ

(
(‖β̃ − β‖1)(1 + Uβ) + (‖∇̃ − ∇‖1)(1 + U∇) + max

k=1,2
|πk − π̂k|/m0 +

√
log p

Nm2
0

)
,

where Uβ satisfies

Uβ =


√

log p
m0

if ν > 1√
log p

m2ν−1
0

if 1/2 < ν < 1

,

U∇ satisfies

U∇ =


log p
m0

if ν > 1

log p

m2ν−1
0

if 1/2 < ν < 1

,

and constant Cδ depends on L,Ce, Cπ, Clog, Cµ, CTS, Cm, cm.

Remark 4. The rates of convergence on the boundary case ν = 1 can also be dealt. In

particular, we require Uβ =
√

log p log2m0

m0
and U∇ = log p log2m0

m0
if ν = 1. See the proof of

Theorem 3 for further details.

We point out that the rate of convergence for estimating β0,TS depends on the estimation

accuracy of the linear coefficient through a term ‖β̃ − β‖1 in Theorem 3 while it relies on a

potentially smaller term ‖β̃−β‖2 in Theorem 5 under independent assumption in Section 4.

This is due to a technical reason and the result cannot be improved (i.e., replacing ‖β̃− β‖1

by ‖β̃ − β‖2) if we only assume the decay condition (S1.2).

Theorems 1, 2 and 3 extend Theorems 3, 4 and 5 respectively, and demonstrate the

estimation accuracy for the quadratic, linear and constant coefficients in our CLIPS classifier

(3.8) under the general time series structure. Finally, we establish an oracle inequality for

its generalization error via providing a rate of convergence of the excess risk. Recall the
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generalization error of CLIPS classifier is R̃ = π1R̃1 + π2R̃2, where R̃k = pr(φ̃(X †) 6= k |

Y† = k). Again pr is the conditional probability given the training data {(Xi,Yi)}Ni=1 which

φ̃(X †) depends on. In addition, we define the generalization error of the oracle classifier

φB,TS as RB,TS = π1R1,TS + π2R2,TS, where Rk,TS = pr(φB,TS(X †) 6= k | Y† = k).

We need to introduce some notation dN,TS related to the oracle classifier in (S1.4), which

is similar to dN defined in Section 4 for independence case. Recall the oracle classifier

φB,TS(X †) solely depends on the sign of the function gTS(X †) = 1
m

log(π1/π2) + β0,TS +

βT x̄ + x̄T∇x̄/2 + tr(∇S)/2. We define by Fk,m,TS the conditional cumulative distribution

function of the oracle statistic gTS(X †) given that M † = m and Y† = k, and define by dN,TS

the upper bound of their first derivatives for all possible m near 0,

dN,TS = max
m∈[cmm0,Cmm0], k=1,2

{
sup

t∈[−δ0,δ0]

∣∣F ′k,m,TS(t)
∣∣} ,

where δ0 is any sufficiently small constant. The value of dN,TS is determined by the vector

linear process (S1.1) and performance of the oracle classifier. We define the counterparts of

ΞN and its statistical order κN defined in Section 4 under the general time series structure

below, which critically determine the excess risk. Indeed, one can show that Theorems 1, 2

and 3 imply that with probability at least 1−O(p−L),

ΞN,TS := (1 +Uβ)‖β̃ − β‖1 + (1 +U∇)‖∇̃ −∇‖1 + max
k=1,2

|π̂k − πk|
m0

+
∣∣∣β̃0 − β0,TS

∣∣∣ = O(κN,TS),

where κN,TS := (1+U∇)sqλ
′
1,N +(1+Uβ)C`1slλ2,N +

√
(log p)/(Nm2

0), and the key quantities

Uβ, U∇, λ
′
1,N and λ2,N are specified in the statement of Theorems 1, 2 and 3 for various value

of µ. The quantity κN,TSdN,TS is the leading rate of convergence in the oracle inequality.

We need one more condition to guarantee the assumptions of Theorem 3 are satisfied with

high probability, which is similar to Condition 5 for independence case.
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Condition 2. Suppose m0κN,TS ≤ c0 and κN,TSdN,TS ≤ c0 with some sufficiently small

constant c0 > 0.

Theorem 4 below reveals the oracle property of CLIPS classifier under the general time

series structure.

Theorem 4. Suppose that the assumptions of Theorems 1 and 2 hold and that Conditions

1–2 also hold. Then with probability at least 1−O(p−L), we have the oracle inequality

R̃ ≤ RB,TS + Cg(κN,TSdN,TS + p−L),

where constant Cg depends on L,Ce, Cπ, Clog, Cβ, Cm, cm, CTS and Cµ only.

S2. Proofs of Main Results

Proof of Theorem 1

Proof. We only prove that RB1 → 0 and the proof of RB2 → 0 is similar. In addition note

that

RBk = pr(φB(X †) 6= k | Y† = k)

=

Cmm0∑
m=cmm0

pr(φB(X †) 6= k | Y† = k,M † = m) · pM(m)

: =

Cmm0∑
m=cmm0

RBk,m · pM(m),

where the last equality is due to independence of Y† and M †, and Condition 2. Hence it is

sufficient for us to focus on any fixed m ∈ [cmm0, Cmm0].

Given that the set is from Class 1, we have X†i ∼ N(µ1,Σ1), i = 1, . . . ,m. The Bayes

decision rule classifies the set to Class 2, i.e., φB(X †) = 2 in (2.2) if g(X†1, . . . , X
†
m) < 0,

9



S2. PROOFS OF MAIN RESULTS

which is equivalent to

m∑
i=1

(
X†i − µ1

)T
∇
(
X†i − µ1

)
−2mδTΣ−1

2 (X̄−µ1)+mδTΣ−1
2 δ−m log

(
|Σ1|
|Σ2|

)
+2 log

(
π1

π2

)
< 0,

(S2.5)

where X̄ =
∑m

i=1 X
†
i /m is the sample mean.

Define V = Σ
1/2
1 Σ−1

2 Σ
1/2
1 −I where I is the identity matrix. We set Zi = Σ

−1/2
1 (X†i −µ1) ∼

N(0, I), Am,p =
∑m

i=1 Z
T
i V Zi − 2mδTΣ−1

2 Σ
1/2
1 Z̄ with Z̄ =

∑m
i=1 Zi/m. Then the Bayes risk

RB1,m can be written as, following from (S2.5),

RB1,m = pr (Am,p − EAm,p < −α) ,

where α = mtr(V ) + mδTΣ−1
2 δ − m log{|Σ1| / |Σ2|} + 2 log (π1/π2) since EAm,p = mtr(V ).

The strategy to bound RB1,m is to show that |Am,p − EAm,p| concentrates on
√
mDp but

α > 0 diverges at a faster rate of mD2
p.

We first give an upper bound of the magnitude of Am,p − EAm,p. Write the eigen-

decomposition of V as UΛUT and the diagonal matrix Λ = diag(λj) with λ1 ≥ λ2 ≥ . . . ≥ λp.

Moreover, set Z̃i = UTZi ∼ N(0, I) with Z̃i,j its jth entry. Note that

Am,p − EAm,p =
m∑
i=1

p∑
j=1

λj(Z̃
2
i,j − 1)− 2mδTΣ−1

2 Σ
1/2
1 Z̄.

The tail probability of normal distribution implies

pr(|2mδTΣ−1
2 Σ

1/2
1 Z̄| > t) ≤ 2 exp

−1

2

(
t

2
√
m‖δTΣ−1

2 Σ
1/2
1 ‖

)2
 ≤ 2 exp

(
− C−3

e t2

8m‖δ‖2

)
,

(S2.6)

where the last inequality is due to Condition 1. Since Z̃2
i,j−1 is sub-exponential, Bernstein’s

inequality (e.g. Vershynin, 2012, Proposition 5.16) implies that there exists some universal
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constant c1 > 0 such that

pr(|
m∑
i=1

p∑
j=1

λj(Z̃
2
i,j − 1)| > t) ≤ 2 exp

(
−c1 min(

t2

m‖Λ‖2
F

,
t

max{|λ1| , |λp|}
)

)
. (S2.7)

Now we focus on the lower bound of α. First of all, notice that mδTΣ−1
2 δ ≥ mC−1

e ‖δ‖2 by

Condition 1. Moreover, there exists some constant c2 > 0 depending on Ce only such that

mtr(V )−m log{|Σ1| / |Σ2|} = m (tr(V )− log |I + V |)

= m

p∑
j=1

(λj − log(1 + λj)) ≥ c2m‖Λ‖2
F (S2.8)

where the last inequality follows from that λj +1 ∈ [C−2
e , C2

e ] according to Condition 1. Note

that ‖Λ‖F = ‖V ‖F = ‖Σ1/2
1 ∇Σ

1/2
1 ‖F and C−1

e ≤ ‖V ‖F/‖∇‖F ≤ Ce according to Condition

1. Therefore by combining the above two results we conclude α ≥ c3mD
2
p + 2 log(π1/π2)

with c3 = min(c2C
−2
e , C−1

e ) > 0.

Note that by Conditions 1 and 3, λ1 in equation (S2.7) and 2 log(π1/π2) in the expression

of α are bounded. When mD2
p is large enough, we can pick t = cmD2

p for small enough

c > 0 in equations (S2.6) and (S2.7) such that Am,p − EAm,p > −α with probability at

least 1 − 4 exp
(
−c′mD2

p

)
. Therefore we complete our proof by seeing that for each fixed

m, RB1,m ≤ 4 exp
(
−c′mD2

p

)
for some small constant c′ > 0, together with the fact m ∈

[cmm0, Cmm0] from Condition 2.

Proof of Proposition 1

Proof. Note that instead of m observations with i.i.d. N(µk,Σk) from either class k = 1, 2,

in the current case, we only have one representative x̄ ∼ N(µk,Σk/m) with k = 1 or 2.

Therefore, the proof of upper bound, i.e., Rx̄ ≤ 4 exp (−c′(‖∇‖2
F +m0‖δ‖2)) for some small

constant c′ > 0, simply follows from the proof of Theorem 1 by replacing m0 and Σk by 1
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and Σk/m0 respectively.

To show the rate on the exponent cannot be further improved in general, we need a little

more efforts. Following the proof procedures for Theorem 1, it is sufficient to show the same

lower bound on each Rx̄k,m := pr(φB,x̄(X †) 6= k | Y† = k,M † = m) where m ∈ [cmm0, Cmm0].

Given that the set is from Class 1, we have X̄† ∼ N(µ1,Σ1/m). φB,x̄ classifies the set to

Class 2 if gQDA(X̄†) < 0, which is equivalent to

m
(
X̄† − µ1

)T ∇ (X̄† − µ1

)
−2mδTΣ−1

2 (X̄†−µ1)+mδTΣ−1
2 δ− log

(
|Σ1|
|Σ2|

)
+2 log

(
π1

π2

)
< 0.

Define V = Σ
1/2
1 Σ−1

2 Σ
1/2
1 − I where I is the identity matrix. Write the eigen-decomposition

of V as UΛUT and the diagonal matrix Λ = diag(λj) with λ1 ≥ λ2 ≥ . . . ≥ λp. Moreover,

set Z =
√
mUTΣ

−1/2
1 (X̄† − µ1) ∼ N(0, I) with Zj its jth entry, and Am,p =

∑p
j=1 λjZ

2
j −

2
√
mδTΣ−1

2 Σ
1/2
1 UZ. Then the risk Rx̄1,m can be written as Rx̄1,m = pr (Am,p − EAm,p < −α),

where α =
∑p

j=1 λj + mδTΣ−1
2 δ − log{|Σ1| / |Σ2|} + 2 log (π1/π2) since EAm,p =

∑p
j=1 λj.

We first upper bound the value of α. Notice that mC−1
e ‖δ‖2 ≤ mδTΣ−1

2 δ ≤ mCe‖δ‖2 by

Condition 1. Moreover, a similar argument to (S2.8) also provides an upper bound, i.e., for

two small constants c2 < c′2 < 1, we have c2‖Λ‖2
F ≤

∑p
j=1 λj− log{|Σ1| / |Σ2|} ≤ c′2‖Λ‖2

F . By

Condition 3, 2 log(π1/π2) in the expression of α is bounded. Therefore, under our assumption

on sufficiently large ‖∇‖2
F + m0‖δ‖2, we have that 0 < α < c(‖∇‖2

F + m0‖δ‖2) with some

small c > 0.

We show the rate on exponent cannot be further improved by showing a lower bound

for some special cases of µ1, µ2,Σ1,Σ2. Assume the support of vector (λ1, ..., λp)
T and the

support of vector δTΣ−1
2 Σ

1/2
1 U are disjoint (e.g., both Σk are diagonal matrices with difference

on the first p/2 diagonal entries, and only the last p/2 coordinates on mean difference δ
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are nonzero). For this scenario, the first term T1 :=
∑p

j=1 λjZ
2
j and second term T2 :=

−2
√
mδTΣ−1

2 Σ
1/2
1 UZ in Am,p are independent. To show that the term T1 is non-positive

with probability away from zero, we apply Proposition 2.4 in Johnstone (2001) to obtain

that pr (T1 < 0) > γ > 0 with some absolute constant γ > 0 by noting that the first term

is a weighted Chi-square variable. By tail probability of normal distribution and the upper

bound of α, we further obtain that pr (T2 < −α) > exp(c(‖∇‖2
F +m0‖δ‖2)) with some small

c > 0. In the end, by independence, we obtain that Rx̄1,m = pr (Am,p − EAm,p < −α) >

exp(c(‖∇‖2
F+m0‖δ‖2))γ > exp(c′′(‖∇‖2

F+m0‖δ‖2)) with some small c′′ > 0, which completes

our proof.

Proof of Theorem 2

Proof. We only prove that R̂1 → 0 with high probability and R̂2 → 0 can be shown by

symmetry. The strategy of the proof is similar to that for Theorem 1. We further focus on

each fixed m ∈ [cmm0, Cmm0] since

R̂k =

Cmm0∑
m=cmm0

pr(φ̂(X †) 6= k | Y† = k,M † = m) · pM(m)

: =

Cmm0∑
m=cmm0

R̂k,m · pM(m). (S2.9)

The quadratic set classifier classifies the set to 2, that is, φ̂(X †) = 2 in (3.2) if

m∑
i=1

(
X†i − µ̂1

)T
∇̂
(
X†i − µ̂1

)
−2mδ̂T Σ̂−1

2 (X̄−µ̂1)+mδ̂T Σ̂−1
2 δ̂−m log


∣∣∣Σ̂1

∣∣∣∣∣∣Σ̂2

∣∣∣
+2 log

(
π̂1

π̂2

)
< 0,

where δ̂ = µ̂2 − µ̂1 and X̄ =
∑m

i=1X
†
i /m. Define

Âm,p =
m∑
i=1

(
X†i − µ̂1

)T
∇̂
(
X†i − µ̂1

)
− 2mδ̂T Σ̂−1

2 (X̄ − µ̂1) := Â1,m,p + Â2,m,p.

13
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Then the generalization error R̂1,m, which is a random variable as a function of {(Xi,Yi)}Ni=1,

can be written as

R̂1 = R̂1((X ,Y)) = pr
(
Âm,p − EÂm,p < −α̂

)
, (S2.10)

where pr and E are understood as the conditional expectation given {(Xi,Yi)}Ni=1 and

α̂ = E(Â1,m,p + Â2,m,p) +mδ̂T Σ̂−1
2 δ̂ −m log

(∣∣∣Σ̂1

∣∣∣ / ∣∣∣Σ̂2

∣∣∣)+ 2 log

(
π̂1

π̂2

)
.

The following lemma facilitates our analysis.

Lemma 1. For any fixed L > 0, under the assumptions p ≤ c0Nm0 and log p ≤ c0N

with sufficiently small c0 > 0, we have that (i) C ′−1 ≤ λmin(Σ̂k) ≤ λmax(Σ̂k) ≤ C ′; (ii)

‖µk − µ̂k‖ ≤ C ′
√

p
Nm0

; (iii) ‖Σk − Σ̂k‖F ≤ C ′
√

p2

Nm0
and (iv) |πk − π̂k| ≤ C ′

√
log p
N

, k = 1, 2

with probability at least 1− O(p−L), where positive constant C ′ depend on Ce, cm, L and Cπ

only.

From now on, we condition on the event E in which results (i)-(iv) of Lemma 1 hold for

training data {(Xi,Yi)}Ni=1. All positive constants used hereafter only depend on Ce and c0.

Clearly, since p2/(Nm0D
2
p) is sufficiently small, Lemma 1 (ii) and (iii) imply that

D̂p =
(
‖∇̂‖2

F + ‖δ̂‖2
)1/2

� Dp. (S2.11)

We show the concentration radius of Âm,p − EÂm,p is much smaller than α̂ under our as-

sumptions.

First of all, we analyze the left side Âm,p − EÂm,p = Σ2
k=1(Âk,m,p − EÂk,m,p). Note that

Â2,m,p − EÂ2,m,p = −2
∑m

i=1 δ̂
T Σ̂−1

2 Σ
1/2
1 Zi, where Zi = Σ

−1/2
1 (X†i − µ1)

i.i.d∼ N(0, I). Note

Lemma 1 implies the spectral norm
∥∥∥Σ̂−1

2 Σ
1/2
1

∥∥∥
`2
≤ C ′C

1/2
e . The tail probability of normal

distribution implies (similarly as in equation (S2.6)) there exists some constant C1 > 0 such

14
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that,

pr(|Â2,m,p − EÂ2,m,p| > t) ≤ 2 exp

(
− C1t

2

m‖δ̂‖2

)
. (S2.12)

Besides, Â1,m,p − EÂ1,m,p = W1 +W2, where

W1 : = tr[∇̂(
m∑
i=1

(
X†i − µ1

)(
X†i − µ1

)T
)]− tr[∇̂mΣ1],

W2 := 2 (µ1 − µ̂1)T ∇̂Σ
1/2
1

m∑
i=1

Zi.

Set V̂ = Σ
1/2
1 ∇̂Σ

1/2
1 and its eigen-values {λ̂j}pj=1. By a similar argument using Bernstein’s

inequality like (S2.7), we have that there exists some constant c1 > 0 such that

pr(|W1| > t) ≤ 2 exp

−c1 min(
t2

m‖V̂ ‖2
F

,
t

max{
∣∣∣λ̂1

∣∣∣ , ∣∣∣λ̂p∣∣∣})

 . (S2.13)

To control W2, we apply again the tail probability of normal distribution to obtain that for

some constants C2, C3 > 0,

pr(|W2| > t) ≤ 2 exp

(
− C2t

2

m‖∇̂‖2
`2
· ‖µ1 − µ̂1‖2

)
≤ 2 exp

(
− C3t

2

m‖∇̂‖2
F

)
, (S2.14)

since ‖µ1 − µ̂1‖ ≤ C ′
√

p
Nm0

≤ C ′c
1/2
0 by Lemma 1. Therefore equations (S2.12)-(S2.14),

together with (S2.11), imply that for some C4 > 0,

pr(|Âm,p − EÂm,p| > t) ≤ 6 exp

(
− C4t

2

mD2
p

)
. (S2.15)

Now we lower bound the right side α̂. This term can be decomposed into six terms.

α̂ = mδ̂T Σ̂−1
2 δ̂ +

[
mtr(∇̂Σ̂1)−m log

(∣∣∣Σ̂1

∣∣∣ / ∣∣∣Σ̂2

∣∣∣)]+ 2 log

(
π̂1

π̂2

)
+

mtr(∇̂(Σ1 − Σ̂1))− 2mδ̂T Σ̂−1
2 (µ1 − µ̂1) +m (µ1 − µ̂1) ∇̂ (µ1 − µ̂1)T .

These terms have the following bounds respectively with some constant C5, C6, C7, C8, C9 >

15
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0,

mδ̂T Σ̂−1
2 δ̂ ≥ C5m‖δ̂‖2, (S2.16)

mtr(∇̂Σ̂1)−m log
(∣∣∣Σ̂1

∣∣∣ / ∣∣∣Σ̂2

∣∣∣) ≥ C5m‖∇̂‖2
F , (S2.17)∣∣∣mtr(∇̂(Σ1 − Σ̂1))

∣∣∣ ≤ C6m‖∇̂‖F‖Σ1 − Σ̂1‖F ≤ C7m‖∇̂‖F (p2/Nm0)1/2,(S2.18)∣∣∣2mδ̂T Σ̂−1
2 (µ1 − µ̂1)

∣∣∣ ≤ C6m‖δ̂‖‖µ1 − µ̂1‖ ≤ C7m‖δ̂‖(p/Nm0)1/2, (S2.19)

|2 log (π̂1/π̂2)| ≤ C6, (S2.20)∣∣∣m (µ1 − µ̂1) ∇̂ (µ1 − µ̂1)T
∣∣∣ ≤ C8m‖∇̂‖`2‖µ1 − µ̂1‖2 ≤ C9m (p/Nm0) . (S2.21)

Equations (S2.16) and (S2.17) are due to (i) of Lemma 1. In particular, (S2.17) follows from

a similar argument as (S2.8). Equations (S2.18) and (S2.19) follow from (iii) and (ii) of

Lemma 1 respectively while equation (S2.20) is due to (iv) of Lemma 1 and Condition 3.

Equation (S2.21) follows from (i) and (ii) of Lemma 1. Furthermore, notice that p2/(Nm0D
2
p)

is sufficiently small and m0D
2
p is sufficiently large, equations (S2.16)-(S2.21) as well as (S2.11)

yield that α̂ ≥ C10mD
2
p for some small constant C10 > 0.

Finally, the lower bound of α̂ and concentration of Âm,p−EÂm,p in (S2.15) with t = c′′mD2
p

for small enough c′′ > 0, together with the assumption D2
pm is sufficiently large, imply that

the generalization error of the quadratic set classification rule R̂1,m ≤ 2 exp
(
−c′mD2

p

)
for

each m ∈ [cmm0, Cmm0] on the event E . Hence we complete our proof by applying Lemma 1

and equation (S2.9), that is, R̂ ≤ 4 exp
(
−c′m0D

2
p

)
with probability at least 1−O(p−L).

Proof of Theorem 3

Proof. First we show that Σ−1
k is feasible for the optimization problem (3.3), that is ‖Σ̂kΣ

−1
k −

I‖∞ < λ1,N . It suffices to show that ‖Σ̂k − Σk‖∞ < C−1
`1 λ1,N because ‖Σ̂kΣ

−1
k − I‖∞ ≤

16
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‖Σ̂k − Σk‖∞‖Σ−1
k ‖`1 ≤ ‖Σ̂k − Σk‖∞C`1. The following lemma establishes this result, given

our choice of λ1,N ≥ CC`1
√

(log p)/(Nm0) and the assumption log p ≤ c0N with some

sufficiently small c0 > 0.

Lemma 2. Recall the number of set from class k is denoted as Nk =
∑N

i=1 1{Yi = k}.

Then given any positive integer N1 and N2, we have that with probability at least 1 −

O(p−L) (i) ‖µ̂k − µk‖∞ ≤ C ′
√

(log p)/(Nkm0) and (ii) ‖Σ̂k−Σk‖∞ ≤ C ′(
√

(log p)/(Nkm0)+

(log p)/(Nkm0)), k = 1, 2, where positive constant C ′ depends on Ce, cm and L only. Under

the assumption log p ≤ c0N with some sufficiently small c0 > 0, we further have that (i)

‖µ̂k − µk‖∞ ≤ C
√

(log p)/(Nm0) and (ii) ‖Σ̂k − Σk‖∞ ≤ C
√

(log p)/(Nm0), k = 1, 2 with

probability at least 1−O(p−L), where the constant C also depends Cπ besides Ce, cm, L.

From now on, we condition on the event in which both results of the second part in

Lemma 2 hold. We next control the supnorm bound
∥∥∥Σ−1

k − Ω̃k

∥∥∥
∞
. Since both Σ−1

k and Ω̃k

are feasible for (3.3), we have ‖Σ̂k(Σ
−1
k − Ω̃k)‖∞ = ‖Σ̂kΣ

−1
k − I − (Σ̂kΩ̃k − I)‖∞ ≤ 2λ1,N .

Moreover,

‖Σk(Σ
−1
k − Ω̃k)‖∞ ≤ ‖(Σ̂k − Σk)(Σ

−1
k − Ω̃k)‖∞ + ‖Σ̂k(Σ

−1
k − Ω̃k)‖∞

≤ ‖Σ−1
k − Ω̃k‖`1‖Σ̂k − Σk‖∞ + 2λ1,N

≤
(∥∥Σ−1

k

∥∥
`1

+ ‖Ω̃k‖`1
)
C−1
`1 λ1,N + 2λ1,N

≤ 2C`1C
−1
`1 λ1,N + 2λ1,N = 4λ1,N ,

where we have used the fact Ω̃k is the solution of CLIME which implies for each j = 1, . . . , p,

‖(Ω̃k)j‖1 ≤
∥∥(Σ−1

k )j
∥∥

1
and hence ‖Ω̃k‖`1 ≤

∥∥Σ−1
k

∥∥
`1

, where (Ω̃k)j and (Σ−1
k )j denote the jth

column of Ω̃k and Σ−1
k respectively. We conclude with ‖Σ−1

k − Ω̃k‖∞ ≤ ‖Σ−1
k ‖`1‖Σk(Σ

−1
k −

Ω̃k)‖∞ ≤ 4M0λ1,N .

17
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Based on the supnorm bound obtained above, we have

‖(Ω̃2 − Ω̃1)−∇‖∞ ≤ ‖Σ−1
1 − Ω̃1‖∞ + ‖Σ−1

2 − Ω̃2‖∞ ≤ 8C`1λ1,N . (S2.22)

Recall that supp(∇) is the support of the matrix ∇. The thresholding step (3.4), together

with (S2.22), guarantees that ∇̃ij = 0 for any (i, j) /∈ supp(∇), noting that λ′1,N ≥ 8C`1λ1,N .

Therefore we have shown the subset selection result, that is, pr(supp(∇̃) ⊂ supp(∇)) =

1 − O(p−L). Moreover, we have that ‖∇̃ − ∇‖∞ ≤ 8C`1λ1,N + λ′1,N ≤ 2λ′1,N . In the end,

we complete the proof by noting that the Frobenius norm bound and vector `1 norm bound

are the consequences of supnorm bound and subset selection result, that is, pr(‖∇̃−∇‖F ≤

2λ′1,N
√
sq) = 1−O(p−L) and pr(‖∇̃ − ∇‖1 ≤ 2λ′1,Nsq) = 1−O(p−L).

Proof of Theorem 4

Proof. We first show that (β1, β2) = (Σ−1
1 µ1,Σ

−1
2 µ2) is feasible in (3.5) with the constant L1

set as Cβ. Note since ‖βk‖1 ≤ Cβ, The pair (β1, β2) satisfies the `1 norm constraint. This

fact, together with the following lemma, implies that (β1, β2) is feasible with probability at

least 1−O(p−L) and hence ‖β̂‖1 ≤ ‖β‖1.

Lemma 3. Under the assumption log p ≤ c0N with some sufficiently small constant c0 > 0,

we have that pr(‖Σ̂kβk−µ̂k‖∞ ≥ C
√

log p
Nm0

) ≤ C ′p−L, k = 1, 2, where C ′ > 0 is some universal

constant and constant C > 0 depends on Ce, cm, Cπ, Cβ, Cµ and L only.

Next we show that ‖β̃ − β‖∞ ≤ 6C`1λ2,N . Notice that for k = 1, 2, there exists some

18
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constant C > 0 such that with probability at least 1−O(p−L),

‖Σk

(
β̃k − βk

)
‖∞ ≤ ‖Σ̂k

(
β̃k − βk

)
‖∞ + ‖

(
Σk − Σ̂k

)(
β̃k − βk

)
‖∞

≤ ‖Σ̂kβk − µ̂k‖∞ + ‖Σ̂kβ̃k − µ̂k‖∞ + ‖Σk − Σ̂k‖∞
(
‖βk‖1 + ‖β̃k‖1

)
≤ 2λ2,N + 2CβC

√
log p

Nm0

≤ 3λ2,N ,

where we have used assumption on ‖βk‖1, constraints on estimators, the choice of our λ2,N

and the result (ii) of the second part in Lemma 2. Therefore we further have,

‖β̃ − β‖∞ ≤
2∑

k=1

‖β̃k − βk‖∞ ≤
2∑

k=1

‖Σ−1
k ‖`1‖Σk

(
β̃k − βk

)
‖∞ ≤ 6C`1λ2,N . (S2.23)

In the end, we condition on the event in which both (S2.23) and the fact that (β1, β2)

is feasible hold. The arguments above imply this event holds with probability at least

1 − O(p−L). We are ready to prove the rates of convergence of β̃ under `1 and `2 norm

losses. Denote the support of β by T . Set t = 6C`1λ2,N and the thresholded version of β̃

as β̃thr = (β̃thrj ), where β̃thrj = β̃j1
{
|β̃j| ≥ 2t

}
. Since β = β1 − β2 is feasible, we have that

‖β‖1 ≥ ‖β̃‖1 = ‖β̃thr‖1 + ‖β̃ − β̃thr‖1 ≥ ‖β̃ − β̃thr‖1 + ‖β‖1 − ‖β̃thr − β‖1. Therefore we

obtain that ‖β̃ − β̃thr‖1 ≤ ‖β̃thr − β‖1, which further implies that ‖β̃ − β‖1 ≤ 2‖β̃thr − β‖1.

To show the bound of ‖β̃ − β‖1, it suffices to bound ‖β̃thr − β‖1. Indeed, we bound its `2

norm as an intermediate step,

‖β̃thr − β‖2 = ‖
(
β̃thr − β

)
T
‖2

=
∑
j∈T

(
β̃thrj − βj

)2

1

{
β̃thrj = 0

}
+
∑
j∈T

(
β̃j − βj

)2

1

{
β̃thrj 6= 0

}
≤

∑
j∈T

β2
j1{βj ≤ 3t}+ slt

2 ≤ 10slt
2, (S2.24)

where we have used supnorm bound (S2.23) in the first and third equations and the fact
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|T | ≤ sl due to β ∈ F0(sl) in the third and fourth equations. Consequently,

‖β̃thr − β‖1 = ‖
(
β̃thr − β

)
T
‖1 ≤

√
sl‖β̃thr − β‖ =

√
10slt,

which completes our first desired result ‖β̃ − β‖1 ≤ 2
√

10slt = 12
√

10C`1slλ2,N .

To show the bound of ‖β̃ − β‖ ≤ ‖β̃thr − β‖+ ‖β̃ − β̃thr‖, it suffices to bound ‖β̃ − β̃thr‖

given (S2.24). To this end, we note ‖β‖1 ≥ ‖β̃‖1 implies that ‖β̃T c‖1 ≤ ‖β̃− β‖1 ≤ 2
√

10slt.

Moreover,

‖β̃ − β̃thr‖2 = ‖
(
β̃thr − β̃

)
T
‖2 + ‖

(
β̃thr − β̃

)
T c
‖2

≤ 4t2sl +
∑
j∈T c

β̃2
j1

{
|β̃j| < 2t

}
≤ 4t2sl + ‖β̃T c‖1 max

j∈T c
{|β̃j|1

{
|β̃j| < 2t

}
} ≤ (4 + 4

√
10)t2sl, (S2.25)

where the first inequality follows from |β̃thrj − β̃j| < 2t and |T | ≤ sl, and the second one is

due to Hölder’s inequality. Therefore combining (S2.24) and (S2.25), we obtained the second

desired result ‖β̃ − β‖ ≤ √slt(
√

10 + (4 + 4
√

10)1/2).

Proof of Theorem 5

Proof. Since we use sample splitting technique, estimators β̃ and ∇̃ are independent with

the second batch of the training data used in (3.6). We assume fixed β̃ and ∇̃, which satisfy

our assumptions throughout the analysis. With a slight abuse of notation, we still use N to

denote the number of sample sets, although only half of the sample sets are applied to count

nk and π̂k, k = 1, 2.

Recall that X̄i and Si are the sample mean and variance of the ith set of observations.

Define Z̃i = log(π̂1/π̂2)/Mi + X̄T
i β̃ + X̄T

i ∇̃X̄i/2 + tr(∇̃Si)/2, which is used to approximate

Zi = log(π1/π2)/Mi + X̄T
i β + X̄T

i ∇X̄i/2 + tr(∇Si)/2. To facilitate analysis, we denote
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`(θ0|{(Xi,Yi)}Ni=1, β̃, ∇̃) as `(θ0) for short. Rewrite our estimator in the following way,

β̃0 = argmin
θ0∈R

`(θ0),where

`(θ0) =
1

N
ΣN
i=1[log

(
1 + exp(Mi(θ0 + Z̃i))

)
− (2− Yi)Mi

(
θ0 + Z̃i

)
].

We start our analysis by conditioning on {Xi}Ni=1. Define `0(θ0, Z̃) = E(`(θ0)|{Xi}Ni=1)

where the expectation is understood as the conditional expectation given {Xi}Ni=1. Note

that the function `0(θ0, Z̃) depends on θ0, {Mi}Ni=1 and {Z̃i}Ni=1 only. Then the difference

`(θ0) − `0(θ0, Z̃) = 1
N

ΣN
i=1(Yi − E(Yi|Xi))Mi(θ0 + Z̃i) := Eθ0 . Recall β0 is the true constant

coefficient. Since β̃0 is the minimizer, we have `(β̃0) ≤ `(β0), i.e.,

`0(β̃0, Z̃) ≤ `0(β0, Z̃) + Eβ0 − Eβ̃0

≤ `0(β0, Z̃) +m0R1

∣∣∣β̃0 − β0

∣∣∣ . (S2.26)

In the end, we need to bound the term R1 = | 1
Nm0

ΣN
i=1(Yi−E(Yi|Xi))Mi|. By applying Ho-

effding’s inequality (e.g. Vershynin, 2012, Proposition 5.10), we obtain R1 ≤ Cr
√

(log p)/N

with probability at least 1−O(p−L), where constant Cr depends on L and Cm only, noting

that Mi ≤ Cmm0 by Condition 2. This probabilistic statement on bounding R1 is valid

conditioning on any realization of {Xi}Ni=1 and thus is also valid unconditionally.

Next we apply the Taylor expansion to the function `0(θ0, Z̃) to analyze our estimator.

Here due to misspecified values Z̃i, we need a refined version of Taylor expansion (Bach

et al., 2010, Proposition 1).

Lemma 4 (Bach et al. (2010)). Let g(t) : R→ R be a convex three times differentiable

function such that it satisfies for all t ∈ R, |g′′′(t)| ≤ Lg′′(t) for some L > 0. Then we have
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for any t and v ∈ R,

g(t+ v) ≥ g(t) + vg′(t) +
g′′(t)

L2
(e−L|v| + L |v| − 1).

It is not hard to see that the third derivative of `0(θ0, Z̃) w.r.t. θ0 is bounded by its second

derivative up to a multiplicative factor maxiMi, i.e.,

max
θ0

∣∣∣`′′′0 (θ0, Z̃)/`′′0(θ0, Z̃)
∣∣∣ ≤ max

i
Mi,

where hereafter `′0(·, ·), `′′0(·, ·) and `′′′0 (·, ·) are defined as the first, second and third derivative

of `0(·, ·) w.r.t. the first argument respectively. Applying Lemma 4 to `0(θ0, Z̃) at point β0

and by Condition 2, we obtain that

`0(β̃0, Z̃)− `0(β0, Z̃) ≥ `′0(β0, Z̃)(β̃0 − β0) +
`′′0(β0, Z̃)

C2
mm

2
0

(e−Cmm0|β̃0−β0| + Cmm0

∣∣∣β̃0 − β0

∣∣∣− 1).

(S2.27)

Note that with misspecified values Z̃i, in general `′0(β0, Z̃) 6= 0. To finish our proof, we need

an upper bound for `′0(β0, Z̃) and a lower bound for `′′0(β0, Z̃) with misspecified values Z̃i.

Thus the term |Z̃i − Zi| critically determines the estimation accuracy. The following bound

of |Z̃i − Zi| is helpful for our later analysis.

Lemma 5. Under the assumptions of Theorem 5, there exists some constant Cz > 0 depend-

ing on cm, Cm, Cπ, Cµ and Ce such that with probability at least 1−O(p−L) we have uniformly

for all i = 1, . . . , N∣∣∣Z̃i − Zi∣∣∣ ≤ 1

Mi

∣∣∣∣log

(
π̂1π2

π̂2π1

)∣∣∣∣+
∣∣∣X̄T

i

(
β̃ − β

)∣∣∣+
1

Mi

∣∣∣∣∣
Mi∑
j=1

XT
ij

(
∇̃ − ∇

)
Xij/2

∣∣∣∣∣
≤ Cz

(
(1 +

√
log p

m0

)‖β̃ − β‖+ (1 +
log p

m0

)‖∇̃ − ∇‖1 + max
k=1,2

|πk − π̂k|
m0

)
.(S2.28)

Indeed, the conclusion (S2.28) is valid with the same probability 1−O(p−L) conditioning on

any realization of {Yi}Ni=1 and {Mi}Ni=1.
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Lemma 5 and our assumption imply that with probability at least 1 − O(p−L) we have

m0 maxi |Z̃i − Zi| := R2 is sufficiently small.

Note that the expectation of the score function `′0(β0, Z) = 0 where `′0(β0, Z) is obtained

by replacing Z̃i by Zi in `′0(β0, Z̃), i = 1, . . . , N . We are ready to bound the magnitude of

`′0(β0, Z̃),

∣∣∣`′0(β0, Z̃)
∣∣∣ =

∣∣∣∣∣ 1

N
ΣN
i=1

(
Mi exp(Mi(β0 + Z̃i))

1 + exp(Mi(β0 + Z̃i))
− Mi exp(Mi(β0 + Zi))

1 + exp(Mi(β0 + Zi))

)∣∣∣∣∣
≤ 1

N
ΣN
i=1M

2
i

∣∣∣Z̃i − Zi∣∣∣
≤ C2

mm0R2, (S2.29)

where the first inequality follows from that the derivative of exp(Mi(β0+Z̃i))

1+exp(Mi(β0+Z̃i))
w.r.t. Z̃i is

always bounded by Mi and the second inequality is due to Condition 2, Mi ≤ Cmm0 and

definition of R2.

Moreover, by Condition 4, we have that the expectation of the i.i.d. bounded random

variable Var(Yi | Xi) = exp(Mi(β0+Zi))

(1+exp(Mi(β0+Zi)))
2 , i = 1, . . . , N , is bounded away from Clog. We

apply Hoeffding’s inequality and the fact log p ≤ c0N to obtain that with probability at

least 1−O(p−L), we have

1

N
ΣN
i=1M

2
i

(
exp (Mi(β0 + Zi))

1 + exp (Mi(β0 + Zi))

)(
1

1 + exp (Mi(β0 + Zi))

)
≥ C ′lowm

2
0,

where the positive constant C ′low > 0 depends on Clog and L. Since m0 maxi |Z̃i − Zi| := R2

is sufficiently small with probability at least 1−O(p−L), the union bound argument further

implies that

`′′0(β0, Z̃) =
1

N
ΣN
i=1M

2
i

 exp
(
Mi(β0 + Z̃i)

)
1 + exp

(
Mi(β0 + Z̃i)

)
 1

1 + exp
(
Mi(β0 + Z̃i)

)


≥ Clowm
2
0, (S2.30)
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with probability at least 1−O(p−L) for some positive constant Clow > 0.

In the end, plugging (S2.26), (S2.29) and (S2.30) into (S2.27) and applying the union

bound argument, we obtain that with probability 1−O(p−L),

ClowC
−2
m (e−Cmm0|β̃0−β0| + Cmm0

∣∣∣β̃0 − β0

∣∣∣− 1) ≤ m0

(
C2
mR2 +R1

) ∣∣∣β̃0 − β0

∣∣∣ . (S2.31)

We apply the following fact

e−2γ/(1−γ) + (1− γ)
2γ

1− γ
− 1 ≥ 0 for γ ∈ (0, 1),

to (S2.31) and obtain that

Cmm0

∣∣∣β̃0 − β0

∣∣∣ ≤ 2Cm(C2
mR2 +R1)/Clog

1− Cm(C2
mR2 +R1)/Clog

.

Since C2
mR2+R1 are sufficiently small, we have that Cm(C2

mR2+R1)/Clog < 1/2 which implies

Cmm0|β̃0−β0| < 2. This fact itself further implies that (e−Cmm0|β̃0−β0|+Cmm0|β̃0−β0|−1) ≥

(Cmm0|β̃0 − β0|)2/2. Consequently, (S2.31) implies that

∣∣∣β̃0 − β0

∣∣∣ ≤ 2C−1
lowm

−1
0

(
C2
mR2 +R1

)
,

which further completes our proof, together with Lemma 5 (bound of R2) and the bound of

R1,

∣∣∣β̃0 − β0

∣∣∣ ≤ Cδ

(
(1 +

√
log p

m0

)‖β̃ − β‖+ (1 +
log p

m0

)‖∇̃ − ∇‖1 + max
k=1,2

|πk − π̂k|
m0

+

√
log p

Nm2
0

)
,

where the constant Cδ = 2C−1
low(C2

mCz + Cr).
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Proof of Theorem 6

Proof. Recall that for each k = 1, 2, the corresponding Bayes risk and generalization error

of CLIPS classifier can be decomposed as

RBk =

Cmm0∑
m=cmm0

pr(φB(X †) 6= k | Y† = k,M † = m)pM(m) :=
∑
m

RBk,mpM(m),

R̃k =

Cmm0∑
m=cmm0

pr(φ̃(X †) 6= k | Y† = k,M † = m)pM(m) :=
∑
m

R̃k,mpM(m).

Therefore, it is sufficient to bound the difference R̃k,m − RBk,m for each fixed k = 1, 2 and

fixed m ∈ [cmm0, Cmm0].

Recall that ΞN = (1 +
√

log p
m0

)‖β̃− β‖+ (1 + log p
m0

)‖∇̃−∇‖1 + maxk=1,2
|π̂k−πk|
m0

+ |β̃0− β0|.

Define the event E0 = {ΞN ≤ CΞκN}, where κN = (1+ log p
m0

)sqλ
′
1,N +(1+

√
log p
m0

)C`1
√
slλ2,N +√

log p
Nm2

0
, the constant CΞ = 2(2 + C ′′)(Cδ + 1) and other constants C ′′, Cδ can be tracked

back from Theorems 3-5. We first show that our estimators satisfy that pr(E0) = 1−O(p−L)

by Theorems 3-5. Indeed, Theorems 3 and 4 provides bounds of ‖β̃ − β‖ and ‖∇̃ − ∇‖1

respectively. The estimation error of maxk=1,2 |π̂k−πk|/m0 follows from Lemma 1. Assuming

these bounds hold, the first part of Condition 5 implies that the assumption in Theorem 5 is

satisfied with the initial estimators being our quadratic and linear estimators. Thus Theorem

5 further implies the upper bound for |β̃0 − β0|. Hereafter, we assume event E0 holds.

We follow the notation introduced in the proof of Theorem 5 on the set of observations

(X †,Y†) and define Z̃ = log(π̂1/π̂2)/M † + x̄T β̃ + x̄T ∇̃x̄/2 + tr(∇̃S)/2, which is used to

approximate Z = log(π1/π2)/M †+ x̄Tβ+ x̄T∇x̄/2+tr(∇S)/2, where x̄ and S are the sample

mean and covariance of the set X †. Then we define the event Ez = {|Z̃−Z| ≤ CzΞN}. Lemma

5 applied to (X †,Y†) and the second part of Condition 5 imply that on event E0 uniformly

for all k = 1, 2 and m ∈ [cmm0, Cmm0], we have pr(Ez|Y† = k,M † = m) ≥ 1− C ′gp−L.
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Without loss of generality, we focus on the case k = 1. Recall R̃k,m relies on the estimators

β̃0, β̃, ∇̃, π̂1 and π̂2 and hence is random. On the event E0, we have that

R̃1,m = pr
(
Z̃ + β̃0 ≤ 0|Y† = 1,M † = m

)
= pr

(
Z + β0 ≤ Z − Z̃ + β0 − β̃0|Y† = 1,M † = m

)
= pr

(
Z + β0 ≤ Z − Z̃ + β0 − β̃0, Ez|Y† = 1,M † = m

)
+ pr(Ecz |Y† = 1,M † = m)

≤ C ′gp
−L + pr

(
Z + β0 ≤ (Cz + 1) ΞN , Ez|Y† = 1,M † = m

)
≤ C ′gp

−L + pr
(
Z + β0 ≤ (Cz + 1)CΞκN |Y† = 1,M † = m

)
= C ′gp

−L + F1,m((Cz + 1)CΞκN), (S2.32)

where the first inequality follows from the conditional probability pr(Ez|Y† = k,M † = m) ≥

1−C ′gp−L and the definition of the event Ez, the second inequality is due to the event E0, and

the last equality follows from the definition of the cumulative distribution function F1,m (t).

In addition, by the definition of the deterministic value RBk,m, we have

RB1,m = pr
(
Z + β0 ≤ 0|Y† = 1,M † = m

)
= F1,m(0). (S2.33)

By our assumption, the quantity (Cz + 1)CΞκN is sufficiently small and hence less than δ0.

It follows from (S2.32)-(S2.33) and definition of dN that on the event E0, we have that

R̃1,m −RB1,m ≤ C ′gp
−L + sup

t∈[−δ0,δ0]

∣∣F ′1,m(t)
∣∣ (Cz + 1)CΞκN

≤ C ′gp
−L + (Cz + 1)CΞκNdN .

Similarly we can show that same upper bound applies to R̃2,m − RB2,m uniformly for all

m ∈ [cmm0, Cmm0]. Therefore on the event E0, we obtain that R̃ ≤ RB + C ′gp
−L +

(Cz + 1)CΞκNdN , which completes our proof.
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Proof of Theorem 1

Proof. By inspecting the proof of Theorem 3, one realizes that the proof of Theorem 1

is almost identical to that of Theorem 3 except that the role of Lemma 2 is replaced by

the following important lemma under time series structures for different values of ν. More

specifically, one only need to show that ‖Σ̂k − Σk‖∞ < C−1
`1 λ1,N with probability at least

1− O(p−L) and the choice of λ1,N under time series structures is determined by (result (ii)

of the second part in) Lemma 6. Therefore, we omit the proof details.

Lemma 6. Consider the vector linear process defined in (S1.1) that satisfies the decay con-

dition (S1.2). Suppose Conditions 1-3 hold. Recall the number of set from class k is denoted

as Nk =
∑N

i=1 1{Yi = k}. Then given any positive integer N1 and N2, we have that (i)

‖µ̂k − µk‖∞ ≤


C ′
√

log p
Nkm0

if ν > 1

C ′
√

log p log2m0

Nkm0
if ν = 1

C ′
√

log p

Nkm
2ν−1
0

if 1/2 < ν < 1

,

and (ii)

‖Σ̂k − Σk‖∞ ≤



C ′
(√

log p
Nkm0

+ log p
Nkm0

)
if ν > 1

C ′
(√

log p
Nkm0

+ log p log2m0

Nkm0

)
if ν = 1

C ′
(√

log p
Nkm0

+ log p

Nkm
2ν−1
0

)
if 3/4 < ν < 1

C ′
(√

log p logm0

Nkm0
+ log p

Nkm
1/2
0

)
if ν = 3/4

C ′
(√

log p

Nkm
4ν−2
0

+ log p

Nkm
2ν−1
0

)
if 1/2 < ν < 3/4

,

for k = 1, 2 with probability at least 1 − O(p−L), where positive constant C ′ depends on

Ce, cm, CTS and L only.

In addition, under the assumption log p ≤ c0N with some sufficiently small c0 > 0, we
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have that (i)

‖µ̂k − µk‖∞ ≤


C
√

log p
Nm0

if ν > 1

C
√

log p log2m0

Nm0
if ν = 1

C
√

log p

Nm2ν−1
0

if 1/2 < ν < 1

,

and (ii)

‖Σ̂k − Σk‖∞ ≤


C
√

log p
Nm0

if ν > 3/4

C
√

log p logm0

Nm0
if ν = 3/4

C
√

log p

Nm4ν−2
0

if 1/2 < ν < 3/4

,

for k = 1, 2 with probability at least 1− O(p−L), where positive constant C also depends on

Cπ besides Ce, cm, CTS and L.

Proof of Theorem 2

Proof. By inspecting the proof of Theorem 4, one realizes that the proof of Theorem 2 is

almost identical to that of Theorem 4 except that the role of Lemma 3 is replaced by the

following important lemma (Lemma 7) under time series structures for different values of ν.

More specifically, the results follow from some algebra (deterministically) on the event

that both ‖β̃ − β‖∞ ≤ 6C`1λ2,N and that (β1, β2) is feasible hold. To this end, Lemma 7

implies that (β1, β2) is feasible with probability at least 1−O(p−L). In addition, we show that

the choice of λ2,N and Lemma 7 together imply that ‖β̃ − β‖∞ ≤ 6C`1λ2,N with probability
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at least 1−O(p−L). Indeed, on the event that (β1, β2) is feasible, we have

‖Σk

(
β̃k − βk

)
‖∞ ≤ ‖Σ̂k

(
β̃k − βk

)
‖∞ + ‖

(
Σk − Σ̂k

)(
β̃k − βk

)
‖∞

≤ ‖Σ̂kβk − µ̂k‖∞ + ‖Σ̂kβ̃k − µ̂k‖∞ + ‖Σk − Σ̂k‖∞
(
‖βk‖1 + ‖β̃k‖1

)
≤ 2λ2,N + 2CβCκΣ ≤ 3λ2,N ,

where κΣ =
√

log p
Nm0

(
√

log p logm0

Nm0
,
√

log p

Nm4ν−2
0

) when ν > 3/4 (ν = 3/4, 1/2 < ν < 3/4)

respectively. In the above derivation, we have used assumption on ‖βk‖1, constraints on

estimators, the choice of our λ2,N (i.e., 2CβCκΣ ≤ λ2,N) and the result (ii) of the second

part in Lemma 6. Therefore we further have,

‖β̃ − β‖∞ ≤
2∑

k=1

‖β̃k − βk‖∞ ≤
2∑

k=1

‖Σ−1
k ‖`1‖Σk

(
β̃k − βk

)
‖∞ ≤ 6C`1λ2,N .

Therefore, we complete the proof.

Lemma 7. Consider the vector linear process defined in (S1.1) that satisfies the decay con-

dition (S1.2). Suppose Conditions 1-3 hold. Under the assumptions ‖βk‖1 ≤ Cβ, k = 1, 2

with some constants Cβ > 0 and log p ≤ c0N with some sufficiently small constant c0 > 0,

we have that

‖Σ̂kβk − µ̂k‖∞ ≤


C
√

log p
Nm0

if ν > 1

C
√

log p log2m0

Nm0
if ν = 1

C
√

log p

Nm2ν−1
0

if 1/2 < ν < 1

,

for k = 1, 2 with probability at least 1−O(p−L), where constant C > 0 depends on Ce, cm, Cπ, Cβ, Cµ, CTS

and L only.
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Proof of Theorem 3

Proof. By inspecting the proof of Theorem 5, one realizes that the proof of Theorem 3 is

very similar to that of Theorem 4. The major differences are that β0 is replaced by β0,TS and

that the role of Lemma 5 is replaced by Lemma 8 under time series structures for different

values of ν, which is provided at the end of this proof.

We only highlight the differences from the proof of Theorem 3 below briefly.

We still define Z̃i = log(π̂1/π̂2)/Mi + X̄T
i β̃ + X̄T

i ∇̃X̄i/2 + tr(∇̃Si)/2, which is used to

approximate Zi = log(π1/π2)/Mi + X̄T
i β + X̄T

i ∇X̄i/2 + tr(∇Si)/2. Note that under the

general time series structures, β0,TS is the population minimizer of the loss function. Thus,

we can still obtain the inequality similar to (S2.26), i.e.,

`0(β̃0, Z̃) ≤ `0(β0,TS, Z̃) + Eβ0,TS − Eβ̃0

≤ `0(β0,TS, Z̃) +m0R1

∣∣∣β̃0 − β0,TS

∣∣∣ , (S2.34)

whereR1 = | 1
Nm0

ΣN
i=1(Yi−E(Yi|Xi))Mi| ≤ Cr

√
(log p)/N with probability at least 1−O(p−L)

by Hoeffding’s inequality. Again, this statement is valid conditioning on any realization of

{Xi}Ni=1 and thus is also valid unconditionally.

In addition, applying Lemma 4 to `0(θ0, Z̃) at point β0,TS and by Condition 2, we still

have (S2.27) with β0 being replaced by β0,TS, i.e.,

`0(β̃0, Z̃)− `0(β0,TS, Z̃) (S2.35)

≥ `′0(β0,TS, Z̃)(β̃0 − β0,TS) +
`′′0(β0,TS, Z̃)

C2
mm

2
0

(e−Cmm0|β̃0−β0,TS| + Cmm0

∣∣∣β̃0 − β0,TS

∣∣∣− 1).

We next bound `′0(β0,TS, Z̃) from above and bound `′′0(β0,TS, Z̃) from below.

By applying Lemma 8 and our assumption, we have that with probability at least 1 −

O(p−L), m0 maxi |Z̃i−Zi| := R2 is sufficiently small. Therefore, with the fact that `′0(β0,TS, Z) =
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0 where `′0(β0,TS, Z) is obtained by replacing Z̃i by Zi in `′0(β0,TS, Z̃), i = 1, . . . , N , we can

still obtain an upper bound |`′0(β0,TS, Z̃)| similar to (S2.29), i.e.,

∣∣∣`′0(β0,TS, Z̃)
∣∣∣ =

∣∣∣∣∣ 1

N
ΣN
i=1

(
Mi exp(Mi(β0,TS + Z̃i))

1 + exp(Mi(β0,TS + Z̃i))
− Mi exp(Mi(β0,TS + Zi))

1 + exp(Mi(β0,TS + Zi))

)∣∣∣∣∣
≤ C2

mm0R2, (S2.36)

Moreover, by Condition 1, we have that the expectation of the i.i.d. bounded random variable

exp(Mi(β0+Zi))

(1+exp(Mi(β0+Zi)))
2 , i = 1, . . . , N , is bounded away from Clog. Following a similar argument,

we are able to obtain a similar result to (S2.30), i.e., with probability at least 1−O(p−L),

`′′0(β0,TS, Z̃) =
1

N
ΣN
i=1M

2
i

 exp
(
Mi(β0,TS + Z̃i)

)
1 + exp

(
Mi(β0,TS + Z̃i)

)
 1

1 + exp
(
Mi(β0,TS + Z̃i)

)


≥ Clowm
2
0. (S2.37)

In the end, plugging (S2.34), (S2.36) and (S2.37) into (S2.35) and applying the union

bound argument, we obtain that with probability 1−O(p−L),

ClowC
−2
m (e−Cmm0|β̃0−β0,TS|+Cmm0

∣∣∣β̃0 − β0,TS

∣∣∣−1) ≤ m0,TS

(
C2
mR2 +R1

) ∣∣∣β̃0 − β0

∣∣∣ . (S2.38)

Then following a similar deterministic argument, we obtain that with probability 1−O(p−L),

∣∣∣β̃0 − β0,TS

∣∣∣ ≤ 2C−1
lowm

−1
0

(
C2
mR2 +R1

)
,

which further completes our proof, together with Lemma 8 and the bound of R1,

∣∣∣β̃0 − β0,TS

∣∣∣ ≤ Cδ

(
(1 + Uβ)‖β̃ − β‖1 + (1 + U∇)‖∇̃ − ∇‖1 + max

k=1,2

|πk − π̂k|
m0

+

√
log p

Nm2
0

)
.

Lemma 8. Under the assumptions of Theorem 3, there exists some constant Cz > 0 de-

pending on cm, Cm, Cπ, Cµ, CTS and Ce such that with probability at least 1−O(p−L) we have
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uniformly for all i = 1, . . . , N

∣∣∣Z̃i − Zi∣∣∣ ≤ 1

Mi

∣∣∣∣log

(
π̂1π2

π̂2π1

)∣∣∣∣+
∣∣∣X̄T

i

(
β̃ − β

)∣∣∣+
1

Mi

∣∣∣∣∣
Mi∑
j=1

XT
ij

(
∇̃ − ∇

)
Xij/2

∣∣∣∣∣
≤ Cz

(
(1 + Uβ)‖β̃ − β‖1 + (1 + U∇)‖∇̃ − ∇‖1 + max

k=1,2

|πk − π̂k|
m0

)
, (S2.39)

where Uβ satisfies

Uβ =



√
log p
m0

if ν > 1√
log p log2m0

m0
if ν = 1√

log p

m2ν−1
0

if 1/2 < ν < 1

,

and U∇ satisfies

U∇ =



log p
m0

if ν > 1

log p log2m0

m0
if ν = 1

log p

m2ν−1
0

if 1/2 < ν < 1

.

Indeed, the conclusion (S2.39) is valid with the same probability 1−O(p−L) conditioning on

any realization of {Yi}Ni=1 and {Mi}Ni=1.

Proof of Theorem 4

Proof. By inspecting the proof of Theorem 6, one realizes that the proof of Theorem 4 is

almost identical to that of Theorem 6 with φB, β0, ΞN , κN , Fk,m and RB being replaced

by their counterparts φB,TS, β0,TS, ΞN,TS, κN,TS, Fk,m,TS and RB,TS under the time series

structure respectively. Therefore, we omit the proof details.
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S3. Proofs of Supporting Lemmas

Proof of Lemma 1

Proof. Recall n1 =
∑N

i=1Mi1{Yi = 1} with 1{Yi = 1} i.i.d. Bernoulli with probability

π1 ∈ [Cπ, 1 − Cπ] and Mi ∈ [cmm0, Cmm0] with probability 1. Hoeffding’s inequality (e.g.

Vershynin, 2012, Proposition 5.10) implies that there exists some constant C ′ depending

on Cπ and L only such that (iv) holds, i.e. |π1 − π̂1| ≤ C ′
√

log p
N

with probability at least

1 − p−L. Consequently, n1 ≥ cNm0 for some constant c depending on cm, Cπ and L with

probability at least 1− p−L given log p ≤ c0N and Condition 3. Similar results apply to π̂2

and n2. From now on, we condition on the above event and only need to show (i)-(iii) hold

with probability at least 1− p−L.

Since Σ
−1/2
k (µ̂k − µk) ∼ N(0, 1

nk
Ip), the tail probability of Chi-squared distribution (Lau-

rent and Massart, 2000, e.g.) implies that for any 0 < t < 1, pr(|‖√nkΣ−1/2
k (µ̂k − µk)‖2/p−

1| ≥ t) ≤ 2 exp(pt2/8). Hence, by picking a small t (e.g. t = 0.1) as well as Condition 1 and

nk > cNm0, we obtain the result (ii) holds with probability at least 1−O(p−L).

In addition, it follows from the Davidson-Szarek bound (e.g. Davidson and Szarek, 2001,

Theorem II.7) that for each k, there exists some constant C > 0 depending on Ce, L such

that ‖Σk − Σ̂k‖`2 < C
√
p/(Nm0) with probability at least 1− 2p−L, given Condition 1 and

the fact p < c0Nm0 with a sufficiently small c0. Here ‖·‖`2 denotes the matrix spectral norm.

Consequently, the assumption p < c0Nm0 and Condition 1, together with a union bound

argument, implies the result (i). Result (iv) also follows, noting that ‖ · ‖F ≤
√
p‖ · ‖`2 .
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Proof of Lemma 2

Proof. Recall that nk =
∑N

i=1Mi1{Yi = k} denote the total sample size for Class k = 1, 2.

From now on, we condition on n1 and n2. Write Xij = EXij + Uij, where Uij ∼ N(0,ΣYi).

Then we have Σ̂k = ( 1
nk

∑
(i,j):Yi=k UijU

T
ij )− (µk− µ̂k)(µk− µ̂k)T . Since µ̂k−µk ∼ N(0, 1

nk
Σk),

tail probability of normal distribution with union bound implies that for any L > 0, there

exists some constant C1 > 0 depending on L only such that for k = 1, 2,

pr(‖µ̂k − µk‖∞ ≥ C1

√
(maxj σk,jj) log p

nk
) ≤ p−L. (S3.40)

Moreover, since E 1
nk

∑
(i,j):Yi=k UijU

T
ij = Σk and each entry of UijU

T
ij is sub-exponentially

distributed, Bernstein’s inequality (e.g. Vershynin, 2012, Proposition 5.16) with union bound

implies that there exists some constant C2 > 0 depending on L such that

pr(‖ 1

nk

∑
(i,j):Yi=k

UijU
T
ij − Σk‖∞ ≥ C2 max

j
σk,jj(

√
log p

nk
+

log p

nk
)) ≤ p−L. (S3.41)

Combining (S3.40) and (S3.41) and the fact that Mi ∈ [cmm0, Cmm0], we have obtained

both results (i) and (ii) of the first part of Lemma 2 with probability at least 1−4p−L, where

the constant C ′ > 0 depends on cm, Ce and L only.

We move to the second part of Lemma 2. Note the distribution of each Xij is independent

ofNk and nk. We follow the same argument on bounding n1 and n2 as that at the beginning of

the proof of Lemma 1. In particular, given log p ≤ c0N , we have pr(nk ≥ cNm0) = 1−p−L for

k = 1, 2 and some constant c > 0. Then both results (i) and (ii) of the second part of Lemma

2 immediately follow from the first part of Lemma 2 and a union bound argument.
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Proof of Lemma 3

Proof. We follow the same argument on bounding n1 and n2 as that at the beginning of the

proof of Lemma 1. In particular, given log p ≤ c0N , we have pr(nk ≥ cNm0) = 1− p−L for

k = 1, 2 and some constant c > 0.

Write Xij = EXij + Uij, where Uij ∼ N(0,ΣYi). We have Σ̂k = ( 1
nk

∑
(i,j):Yi=k UijU

T
ij ) −

(µk − µ̂k)(µk − µ̂k)T . Result (i) of Lemma 2 implies that there exists some constant C1 > 0

such that

pr(‖µ̂k − µk‖∞ ≥ C1

√
log p

Nm0

) = O(p−L). (S3.42)

According to our assumptions, we have ‖Σ−1
k µk‖ ≤ λ−1

min(Σk)‖µk‖ ≤ CeCµ. We condition on

n1 and n2. Then the normality of µ̂k − µk ∼ N(0,Σk/nk) yields that for k = 1, 2 and some

constant C ′′ depending on L only, we have
∣∣∣(µk − µ̂k)T Σ−1

k µk

∣∣∣ ≥ C ′′λmax(Σk)CeCµ

√
log p
nk

with probability at most p−L. Taking union bound with the event nk ≥ cNm0, we obtain

that there exists some constant C ′2 > 0 such that

pr(
∣∣∣(µk − µ̂k)T Σ−1

k µk

∣∣∣ ≥ C ′2

√
log p

Nm0

) ≤ 2p−L. (S3.43)

Therefore, equations (S3.42)-(S3.43) imply that here exists some constant C2 > 0 such that

with probability 1−O(p−L),

‖(µk − µ̂k)(µk − µ̂k)Tβk‖∞ < C2
log p

Nm0

. (S3.44)

By our choice of λ2,N , we have that λ2,N/2 > (C1 +C2 +C ′2)
√

(log p)/ (Nm0). Consequently,

given equations (S3.42)-(S3.44), decomposition of Σk and log p = o(N), to conclude (β1, β2)

is feasible, i.e.
∥∥∥Σ̂kβk − µ̂k

∥∥∥
∞
< λ2,N , k = 1, 2, we only need to show with probability
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1−O(p−L) that

‖( 1

nk

∑
(i,j):Yi=k

UijU
T
ij )Σ

−1
k µk − µk‖∞ <

1

2
λ2,N . (S3.45)

Note that the rth coordinate is 1
nk

∑
(i,j):Yi=k

(
Uij,rU

T
ijΣ
−1
k µk − µk,r

)
, the sum of i.i.d. cen-

tered sub-exponential variable since each summand is the product of two normal variables

Ui,j and UT
i Σ−1

k µk. Moreover, the sub-exponential variable has constant parameter since

UT
ijΣ
−1
k µk and Uij,r have bounded variance. Thus Bernstein’s inequality (e.g. Vershynin,

2012, Proposition 5.16) with union bound over all coordinates and the event nk ≥ cNm0

implies that there exists some constant C3 > 0 such that (we also used that log p ≤ c0N

when applying the Bernstein’s inequality)

pr(‖( 1

nk

∑
(i,j):Yi=k

UijU
T
ij )Σ

−1
k µk − µk‖∞ > C3

√
log p

Nm0

) ≤ 2p−L. (S3.46)

By picking a large constant C ′ in our choice of λ2,N , we obtain λ2,N/2 > C3

√
(log p)/ (Nm0),

which completes the proof of (S3.45).

Proof of Lemma 5

Proof. It is sufficient to show that for any realization of {Yi}Ni=1 and {Mi}Ni=1, equation

(S2.28) is valid for each i with probability at least 1−O(p−L−1). Indeed, this fact, together

with the union bound argument and p ≥ N implies the desired result. The first inequality

of (S2.28) follows from the definitions of Z̃i and Zi directly. We show the second inequality

holds in the remaining of proof with probability at least 1−O(p−L−1) for the fixed i. Without

loss of generality, we assume Yi = 1 and Mi = m0cm.

Recall that the initial estimators satisfy maxk=1,2 |πk − π̂k| ≤ Cp with a sufficiently small

constant Cp. Consequently, we have that π̂1, π̂2 ∈ [Cπ/2, 1 − Cπ/2] by Condition 3, which
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further yields 1
m0cm

∣∣∣log
(
π̂1π2
π̂2π1

)∣∣∣ ≤ Cz1 maxk=1,2 |πk − π̂k|/m0 with some universal constant

Cz1 depending on cm and Cπ only by the boundedness of π̂1/π̂2.

To deal with the term |X̄T
i (β̃ − β)|, we note that X̄i ∼ N(µ1,Σ1/(m0cm)), which implies

that |X̄T
i (β̃−β)| ≤ ‖β̃−β‖·‖µ1‖+‖β̃−β‖ (Ce/(m0cm))1/2 |D|, where D ∼ N(0, 1). According

to the tail probability of standard normal distribution, we obtain that with probability at

least 1−O(p−L−1), that |D| ≤ C ′z
√

log p where C ′z only depends on L. This fact, together with

the assumption ‖µ1‖ ≤ Cµ further implies that |X̄T
i (β̃−β)| ≤ Cz2‖β̃−β‖(1 +

√
(log p)/m0)

with probability 1−O(p−L−1), where Cz2 = ((Ce/cm)1/2C ′z + Cµ).

Finally, we provide an upper bound for 1
Mi

∣∣∣∑Mi

j=1 X
T
ij(∇̃ − ∇)Xij/2

∣∣∣. Since Xi1, . . . , XiMi

are i.i.d. copies of N(µ1,Σ1), we naturally decompose it into three terms as follows with

Uij := Xij − µ1 ∼ N(0,Σ1)

1

Mi

∣∣∣∣∣
Mi∑
j=1

XT
ij

(
∇̃ − ∇

)
Xij/2

∣∣∣∣∣
≤ 1

Mi

∣∣∣∣∣
Mi∑
j=1

UT
ij

(
∇̃ − ∇

)
Uij/2

∣∣∣∣∣+
∣∣∣µT1 (∇̃ − ∇)µ1/2

∣∣∣+
1

Mi

∣∣∣∣∣
Mi∑
j=1

µT1

(
∇̃ − ∇

)
Uij

∣∣∣∣∣ .(S3.47)

We deal with these three terms individually. First of all, |µT1 (∇̃ − ∇)µ1/2| ≤ C2
µ‖∇̃ −

∇‖1/2 by the assumption ‖µ1‖ ≤ Cµ. Second, the term (
∑Mi

j=1 µ
T
1 (∇̃ − ∇)Uij)/Mi follows a

distribution of N(0, µT1 (∇̃−∇)Σ1(∇̃−∇)µ1/(m0cm)), which yields that with probability at

least 1−O(p−L−1) that

1

Mi

∣∣∣∣∣
Mi∑
j=1

µT1

(
∇̃ − ∇

)
Uij

∣∣∣∣∣ ≤ (
µT1

(
∇̃ − ∇

)
Σ1

(
∇̃ − ∇

)
µ1/(m0cm)

)1/2

C ′′z
√

log p

≤ CµC
′
z (Ce/cm)1/2 ‖∇̃ − ∇‖1

√
log p

m0

,

where we have used tail probability of standard normal distribution and the last inequality
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follows from Condition 1. Third, by Hölder’s inequality, we have

1

Mi

∣∣∣∣∣
Mi∑
j=1

UT
ij

(
∇̃ − ∇

)
Uij/2

∣∣∣∣∣ =

∣∣∣∣∣tr((∇̃ − ∇)
Mi∑
j=1

UT
ijUij/Mi)/2

∣∣∣∣∣
≤ 1

2

∥∥∥∇̃ − ∇∥∥∥
1

∥∥∥∥∥
Mi∑
j=1

UT
ijUij/Mi

∥∥∥∥∥
∞

.

Since each entry of
∑Mi

j=1 U
T
ijUij/Mi−Σ1 is the sum of centered sub-exponential variable with

bounded parameter. The Bernstein’s inequality (e.g. Vershynin, 2012, Proposition 5.16) with

union bound over all p2 entries implies that there exists some constant C ′′z > 0 depending on

L and Ce only such that
∥∥∥∑Mi

j=1 U
T
ijUij/Mi − Σ1

∥∥∥
∞
≤ C ′′z (

√
log p
cmm0

+ log p
cmm0

) with probability

at least 1−O(p−L−1). Therefore, we obtain that with probability 1−O(p−L−1),

1

Mi

∣∣∣∣∣
Mi∑
j=1

UT
ij

(
∇̃ − ∇

)
Uij/2

∣∣∣∣∣ ≤ (C ′′z (

√
log p

cmm0

+
log p

cmm0

) + Ce)‖∇̃ − ∇‖1/2,

where we have used ‖Σ1‖∞ ≤ Ce by Condition 1. Combining the upper bounds of three

terms above, we finally obtain that with probability 1−O(p−L−1),

1

Mi

∣∣∣∣∣
Mi∑
j=1

XT
ij

(
∇̃ − ∇

)
Xij/2

∣∣∣∣∣ ≤ C ′z3(

√
log p

m0

+
log p

m0

+ 1)‖∇̃ − ∇‖1

≤ Cz3(
log p

m0

+ 1)‖∇̃ − ∇‖1,

where constant C ′z3 = C2
µ/2 +CµC

′
z (Ce/cm)1/2 + (Ce +C ′′z /

√
cm +C ′′z /cm)/2 and Cz3 = 2C ′z3.

To complete our proof, we combine all bounds for 1
m0cm

∣∣∣log
(
π̂1π2
π̂2π1

)∣∣∣, |X̄T
i (β̃ − β)| and

1
Mi
|
∑Mi

j=1 X
T
ij(∇̃ − ∇)Xij/2| with Cz = Cz1 + Cz2 + Cz3.

Proof of Lemma 6

Proof. We show the first part of Lemma 6 in this proof. The second part of Lemma 6

immediately follows from the first part, that log p ≤ c0N , and the fact that pr(nk ≥ cNm0) =
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1 − p−L for k = 1, 2 and some constant c > 0, which is obtained from the argument at the

beginning of the proof of Lemma 1.

In this proof, we need the following technical result, which is a direct consequence of

Lemma VI.1 in Chen et al. (2016).

Lemma 9 (Chen et al. (2016)). Let ν > 1/2 and (at)t∈Z be a real sequence such that

at ≤ CTS(1 + t)−ν for t ≥ 0 and at = 0 if t < 0. Let γl =
∑∞

t=0 |atat+l|. Then (i) γl = O(l−ν)

(O(l−1 log l) and O(l1−2ν)) and
∑l

k=0 γk = O(1) (O(log2 l) and O(l2−2ν)) hold for ν > 1

(ν = 1 and 1/2 < ν < 1 respectively); (ii)
∑l

k=0 γ
2
k = O(1) (O(log l) and O(l3−4ν)) hold for

ν > 3/4 (ν = 3/4 and 1/2 < ν < 3/4 respectively).

Without loss of generality, we assume that the first N1 sets are from Class 1 (i.e., Yi = 1

for i = 1, ..., N1) and only prove results (i)-(ii) for Class 1. We first show result (i), i.e.,

bound the term ‖µ1 − µ̂1‖∞. In the following, we bound each entry of µ1 − µ̂1 and then

take a union bound argument to finish the proof. To bound the lth entry (l = 1, ..., p), i.e.,

|µ1l − µ̂1l|, we collect the lth entry Xij,l of each observation Xij, i = 1, ..., N1, j = 1, ...,Mi

and observe that its centered version can be denoted according to the vector linear process

(S1.1) as

(X1M1,l, ..., X11,l;X2M2,l, ..., X21,l; ...;XN1MN1
,l, ..., XN11,l)

T − (µ1l, ..., µ1l)
T = A(l)ξ, (S3.48)

where ξ = (ξ1M1 , ξ1(M1−1)...; ξ2M2 , ξ2(M2−1)...; ...; ξN1MN1
, ξN1(MN1−1)...)

T with i.i.d. N(0, 1) en-
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tries, and A(l) is a block diagonal matrix,

A(l) =



A(l),1 0 0 0

0 A(l),2 0 0

...
...

. . .

0 0 0 A(l),N1


,

in which the i the block (i = 1, ..., N1) A(l),i has the following form

A(l),i =



A10,l· A11,l· A12,l· . . . A1(Mi−1),l· A1Mi,l· . . .

0 A10,l· A11,l· . . . A1(Mi−2),l· A1(Mi−1),l· . . .

0 0 A10,l· . . . A1(Mi−3),l· A1(Mi−2),l· . . .

...
...

...
. . .

...
...

...

0 0 0 . . . A10,l· A11,l· . . .


.

In the above representation, A1t,l· denotes the lth row of the coefficient matrix A1t defined

in our vector linear process (S1.1). Given (S3.48), one immediately obtains that

µ1 − µ̂1 ∼ N
(

0,1TA(l)
(
A(l)

)T
1/n2

1

)
, (S3.49)

where n1 =
∑N1

i=1Mi denote the total sample size for Class 1, and 1 denotes the n1-

dimensional vector with each entry being 1.

It remains to bound the variance in (S3.49) for different value of ν > 1/2. To this end,

we note that

1TA(l)
(
A(l)

)T
1 =

N1∑
i=1

1TA(l),i
(
A(l),i

)T
1 :=

N1∑
i=1

1TΓ(l),i1,

where we set Γ(l),i = A(l),i
(
A(l),i

)T
and 1 in the ith summand denotes the Mi-dimensional

vector with each entry being 1 respectively. Due to the time series structure, the matrix
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Γ(l),i is a Mi-dimensional Toeplitz matrix with elements (γlj)
Mi−1
j=0 , where

|γlj| =

∣∣∣∣∣
∞∑
t=0

A1t,l·
(
A1(t+j),l·

)T ∣∣∣∣∣
≤

∞∑
t=0

( p∑
k=1

a2
1t,lk

)1/2( p∑
k=1

a2
1(t+j),lk

)1/2


≤ Cζj, (S3.50)

where C > 0 is some constant, ζj = j−ν (j−1 log j and j1−2ν) for ν > 1 (ν = 1 and

1/2 < ν < 1 respectively). The first inequality above follows from Cauchy-Schwarz inequality

and the second inequality is due to the decay condition of the coefficient matrix in (S1.2) and

Lemma 9 (i). Consequently, we can bound the variance as follows, noting that n1 > cmN1m0

by Condition 3,

1TA(l)
(
A(l)

)T
1

n2
1

≤
∑N1

i=1Mi

∑Mi−1
j=0 ζj

(cmN1m0)2

≤
CmN1m0

∑Cmm0−1
j=0 ζj

(cmN1m0)2
≤


C 1
N1m0

if ν > 1

C log2m0

N1m0
if ν = 1

C 1
N1m

2ν−1
0

if 1/2 < ν < 1

,

where the last inequality follows from Lemma 9 (i). In the end, the result (i) of the first part

immediately follows from the above variance bound and the the tail probability of normal

distribution with a union bound argument.

Now we turn to the result (ii). In the following, we bound each entry of Σ1− Σ̂1 and then

take a union bound argument to finish the proof. To bound the lkth entry (l, k = 1, ..., p),

i.e., |σ1,lk − σ̂1,lk|, we note that

σ1,lk− σ̂1,lk =
1

n1

(
ξT
(
A(l)

)T
A(k)ξ − EξT

(
A(l)

)T
A(k)ξ

)
− (µ1l− µ̂1l)(µ1k− µ̂1k) := T1 +T2,

(S3.51)
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where the second term can be bounded with probability at least 1 − O(p−(L+2)) using the

result (i) shown above, that is,

|T2| ≤


C log p
N1m0

if ν > 1

C log p log2m0

N1m0
if ν = 1

C log p

N1m
2ν−1
0

if 1/2 < ν < 1

.

It remains to bound the first term |T1|. To this end, we apply the Hanson-Wright inequality

(e.g. Rudelson and Vershynin, 2013, Theorem 1.1) since ξ contains i.i.d N(0, 1) entries. Note

that by Condition 3, we have cmm0 ≤Mi ≤ Cmm0. Therefore,

pr (|T1| ≥ x) (S3.52)

≤ 2 exp
(
−C min

{
‖
(
A(l)

)T
A(k)‖)−2

F x2N2
1m

2
0, λ
−1
max

((
A(l)

)T
A(k)

)
xN1m0

})
,

where λmax(·) denotes the largest singular value. In what follows, we bound ‖
(
A(l)

)T
A(k)‖2

F

and λmax

((
A(l)

)T
A(k)

)
separately.

To bound the first term, we note that by Cauchy-Schwarz inequality,

‖
(
A(l)

)T
A(k)‖2

F = trace
(
A(l)

(
A(l)

)T
A(k)

(
A(k)

)T) ≤ ‖Γ(l)‖F‖Γ(k)‖F , (S3.53)

where we set Γ(l) = A(l)
(
A(l)

)T
. In addition, we have

‖Γ(l)‖2
F =

N1∑
i=1

‖Γ(l),i‖2
F

=

N1∑
i=1

(Mi(γ
l
0)2 + 2(Mi − 1)(γl1)2 + . . .+ 2(γlMi−1)2)

≤ CN1m0

Cmm0−1∑
j=0

(γlj)
2 ≤


CN1m0 if ν > 3/4

CN1m0 logm0 if ν = 3/4

CN1m
4−4ν
0 if 1/2 < ν < 3/4

, (S3.54)
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where the last inequality follows from Lemma 9 (ii).

To bound the second term, we note that

λmax

((
A(l)

)T
A(k)

)
≤ λmax

(
Γ(l)
)1/2

λmax

(
Γ(k)

)1/2
. (S3.55)

In addition, due to the block structure of Γ(l), we have

λmax

(
Γ(l)
)

= max
i=1,...,N1

{
λmax

(
Γ(l),i

)}
≤ 2

Cmm0∑
j=0

γ
(l)
j ≤


C if ν > 1

C logm0 if ν = 1

Cm2−2ν
0 if 1/2 < ν < 1

, (S3.56)

where the last inequality is due to Lemma 9 (i).

Plugging equations (S3.53)-(S3.56) into equation (S3.52), we obtain that with probability

at least 1−O(p−(L+2)),

|T1| ≤



C
(√

log p
Nkm0

+ log p
Nkm0

)
if ν > 1

C
(√

log p
Nkm0

+ log p log2m0

Nkm0

)
if ν = 1

C
(√

log p
Nkm0

+ log p

Nkm
2ν−1
0

)
if 3/4 < ν < 1

C

(√
log p logm0

Nkm0
+ log p

Nkm
1/2
0

)
if ν = 3/4

C
(√

log p

Nkm
4ν−2
0

+ log p

Nkm
2ν−1
0

)
if 1/2 < ν < 3/4

.

In the end, the result (ii) of the first part immediately follows from a union bound argu-

ment by plugging the bounds of T1 and T2 above into equation (S3.51). We point out that

the upper bound of T1 dominates that of T2. Therefore, we complete the proof.
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Proof of Lemma 7

Proof. The proof of this lemma is essentially similar to that of Lemma 3. Recall that ‖βk‖1 ≤

Cβ for k = 1, 2. Therefore, by Hölder’s inequality we have∥∥∥Σ̂kβk − µ̂k
∥∥∥
∞

≤
∥∥∥Σ̂k − Σk

∥∥∥
∞
‖βk‖1 + ‖µk − µ̂k‖∞

≤
∥∥∥Σ̂k − Σk

∥∥∥
∞
Cβ + ‖µk − µ̂k‖∞ .

Consequently, the fact that (β1, β2) is feasible with probability at least 1−O(p−L) immedi-

ately follows from our choice of λ2,N , the fact that log p ≤ c0N and results (i)-(ii) in the second

part of Lemma 6. It is worthwhile to point out that according to the fact log p ≤ c0N and

the bounds provided in Lemma 6,
∥∥∥Σ̂kβk − µ̂k

∥∥∥
∞

is dominated by the term ‖µk − µ̂k‖∞.

Proof of Lemma 8

Proof. The proof of this lemma is similar to that of Lemma 5. We only highlight the main

differences briefly below. The first inequality follows from the definitions of Z̃i and Zi directly.

We show the second inequality holds below with probability at least 1− O(p−(L+1)) for the

fixed i. Without loss of generality, we assume Yi = 1 and Mi = m0cm.

Following the lines in the proof of Lemma 5, we still can show that 1
m0cm

∣∣∣log
(
π̂1π2
π̂2π1

)∣∣∣ ≤
Cz1 maxk=1,2 |πk − π̂k|/m0 with some constant Cz1.

To deal with the term |X̄T
i (β̃ − β)|, we note that with probability at least 1−O(p−L−1)

|X̄T
i (β̃ − β)| ≤ ‖X̄i‖∞‖β̃ − β‖1

≤ (‖µ1‖∞ + Uβ)‖β̃ − β‖1

≤ C(1 + Uβ)‖β̃ − β‖1, (S3.57)
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where the first inequity is due to Cauchy-Schwarz inequality, the second one follows from

result (i) in the first part of Lemma 6 with N1 = 1, and the last one is due to the fact that

‖µ1‖ ≤ Cµ.

Finally, we provide an upper bound for 1
Mi

∣∣∣∑Mi

j=1X
T
ij(∇̃ − ∇)Xij/2

∣∣∣. Set Uij := Xij −µ1.

We still decompose it as we did in the proof of Lemma 5,

1

Mi

∣∣∣∣∣
Mi∑
j=1

XT
ij

(
∇̃ − ∇

)
Xij/2

∣∣∣∣∣
≤ 1

Mi

∣∣∣∣∣
Mi∑
j=1

UT
ij

(
∇̃ − ∇

)
Uij/2

∣∣∣∣∣+
∣∣∣µT1 (∇̃ − ∇)µ1/2

∣∣∣+
1

Mi

∣∣∣∣∣
Mi∑
j=1

µT1

(
∇̃ − ∇

)
Uij

∣∣∣∣∣ .

The second term still can be bounded as |µT1 (∇̃−∇)µ1/2| ≤ C2
µ‖∇̃−∇‖1/2 by the assumption

‖µ1‖ ≤ Cµ. To bound the first term (
∑Mi

j=1 µ
T
1 (∇̃−∇)Uij)/Mi, we note that with probability

at least 1−O(p−L−1),

1

Mi

∣∣∣∣∣
Mi∑
j=1

µT1

(
∇̃ − ∇

)
Uij

∣∣∣∣∣ ≤ ‖ 1

Mi

Mi∑
j=1

Uij‖∞‖µT1
(
∇̃ − ∇

)
‖1

≤ CUβCµ‖∇̃ − ∇‖1,

where we used result (i) in the first part of Lemma 6 with N1 = 1 during the last inequality

above. To bound the third term, by Hölder’s inequality, we have with probability at least
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1−O(p−L−1),

1

Mi

∣∣∣∣∣
Mi∑
j=1

UT
ij

(
∇̃ − ∇

)
Uij/2

∣∣∣∣∣ =

∣∣∣∣∣tr((∇̃ − ∇)
Mi∑
j=1

UT
ijUij/Mi)/2

∣∣∣∣∣
≤ 1

2

∥∥∥∇̃ − ∇∥∥∥
1

∥∥∥∥∥
Mi∑
j=1

UT
ijUij/Mi

∥∥∥∥∥
∞

≤



C
∥∥∥∇̃ − ∇∥∥∥

1

(√
log p
m0

+ log p
m0

)
if ν > 1

C
∥∥∥∇̃ − ∇∥∥∥

1

(√
log p
m0

+ log p log2m0

m0

)
if ν = 1

C
∥∥∥∇̃ − ∇∥∥∥

1

(√
log p
m0

+ log p

m2ν−1
0

)
if 3/4 < ν < 1

C
∥∥∥∇̃ − ∇∥∥∥

1

(√
log p logm0

m0
+ log p

m
1/2
0

)
if ν = 3/4

C
∥∥∥∇̃ − ∇∥∥∥

1

(√
log p

m4ν−2
0

+ log p

m2ν−1
0

)
if 1/2 < ν < 3/4

,

where we have applied the bound of |T1| in the proof of Lemma 6 with N1 = 1 in the last

inequality above.

Combining the upper bounds of three terms above, we finally obtain that with probability

1−O(p−L−1),

1

Mi

∣∣∣∣∣
Mi∑
j=1

XT
ij

(
∇̃ − ∇

)
Xij/2

∣∣∣∣∣ ≤ C(1 + U∇)‖∇̃ − ∇‖1.

To complete our proof, we combine all bounds for 1
m0cm

∣∣∣log
(
π̂1π2
π̂2π1

)∣∣∣, |X̄T
i (β̃ − β)| and

1
Mi
|
∑Mi

j=1 X
T
ij(∇̃ − ∇)Xij/2|.

S4. Additional Numerical Studies

S4.1 Comparison between CLIPS and QDA-MV with true parameter values

plugged in

We verify that the improvement is not simply due to (potentially) poor estimation applied

to the QDA-MV. To this end, in Fig. S.1, we compared the set-classification Bayes classifier
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(Eq. 2.3, same as the CLIPS with true parameter value) with the QDA-MV classifier (Eq

2.4), both with true parameters plugged in. One important insight is that the size of the test

sets matters. When M = 1, that is, when each set to be classified is a single observation, the

set-classification reduces to the traditional classification, and the CLIPS classifier and the

QDA-MV are the same. This can be seen in the top-left figure in each panel of Fig. S.1. When

M is a relatively large value, that is, when a set with many observations is to be classified as

a whole, then though CLIPS and QDA-MV are different classifiers, they both lead to almost

perfect set classification performance. See the bottom-right figure in each panel of Fig. S.1

The sweat spot for CLIPS occurs when M is in between these two extremes. For example,

we showed the cases for M = 3 and M = 10. In these two settings, CLIPS has significant

better performance due to a smart use of the covariance information in the set-classification

task.
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Figure S.1: The comparison of the Bayes classifier (Eq. 2.3, same as the CLIPS with true parameter value) and the majority

voting classifier (Eq 2.4, same as the QDA-MV with true parameter value). The true error rates are estimated using 100 test sets

with the setting specified in Scenario 1 (defined in p. 26, and used for Fig. 1). The size of the test set varies: M = 1, 3, 10, 30.

When M = 1, the two methods are the same; when M is large, both give perfect prediction. CLIPS outperforms QDA-MV

with a moderate set size.
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S4.2 Liver image data with different numbers of principal components

We have conducted a small study in which we repeat the same analysis for the liver cell

nucleus image data except with varying p = 10, 30, 90. The results are shown in Table

S.1. The middle column of the table corresponds to the analysis done in the main paper.

Shown in the table are average number of sets misclassified (out of 10 sets in total) over 10

replications with different training-tuning-testing splittings. In addition to using SVM and

DWD on the summary statistics as the features for each set (which was what we have done

in the main paper), we also include the comparison with DWD and SVM with the majority

voting scheme (as one reviewer suggested.) It is clear that the performance of the DWD

or SVM approaches are not comparable to the covariance-engaged approaches. Plugin(d)

performs well for p = 10 and p = 30 but is disappointing for higher dimensional data like

p = 90. Recall that there are only 16 images in each set. The proposed CLIPS method is

always the best performing method in all three settings. Note that p = 30 seems to be a

sweet spot for QDA-MV. Its performance for p = 10 and p = 90 was not as good as that in

p = 30.
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