Statistica Sinica: Supplement

MI Likelihood Ratio Tests

MULTIPLE IMPROVEMENTS OF
MULTIPLE IMPUTATION LIKELIHOOD RATIO TESTS

Kin Wai Chan! and Xiao-Li Meng?

Department of Statistics, The Chinese University of Hong Kong'

Department of Statistics, Harvard University?

Supplementary Material

A Supplementary Results

A.1 A Complication Caused by Nuisance Parameter

This section supplement the discussion of Section in the main article.

Recall that the likelihood function L®) (+) is based on both observed data X
(0

and imputed data X/, which varies across . Hence, each imputed likelihood
L®)(.) is associated with a (imputation-specific) pseudo parameter ¢), may
vary across £ =1,...,m.
To see the source of the negativity of 7, we extend L(v)) in to
IO, . ™) = L3 [0(0), (A1)
mio
Using the “log-likelihood” L(x™), ... (™)) we can construct, at least con-
ceptually, four hypotheses H, H}, HY, H{ defined in Table Each of
them consists of zero, one or two of the constraints &, : 0 = ... = (™ = g,
and €° : v = ... = ™ where 0 = (¢p¥)) is the interested part of
Y for each £. The constraint €, is equivalent to Hy, and the constraint €°
means that all /(s are equal, and hence it is effectively equivalent to » = 0,
i.e., no missing information. The relationships among HY, H}, HY, H{ can
be visualized in Figure . Define the maximized value of L(y®), ... (™)
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Figure A.1: A schematic illustration of the sign of . The contour lines of f(z/)m, e ,1/)<m))
are plotted. The two straight lines refer to constraints €, and %°. Since ]L(Hll) = 0.082,
L(Hj) = L(H?) = 0.08, and L(HJ) = 0.01, we have {L(H{) — L(H?)} — {L(H;) — L(Hg)} =
0.002 — 0.007 < 0. Note that the function f(w(l), e ,w(m)) in is at least 4-dimensional (i.e.,

9(1), 9<2), 77(1), 77(2)) generally, so this illustration in a 2-dimension space is just conceptual.

Table A.1: The definitions of hypotheses HS, HS, HY, HY.

%Ozwﬂ({:---:&(m)e\p %1;¢(§1>7...,>¢$>e\1:
ie., » = ie., » >
Go: 0D =...=9") =9, 0 0 _ 0 1_ 1
(i.e., Ho-constrained) Hy=%0n% Hy =% n®
@, 00, ... 0m e 0_ 0 1_ 1
(i.e., not Hp-constrained) Hi =%n% Hi=%n%

under hypothesis H € {HJ, H}, H), H{} by L(H). Then we can re-express
(dr, — dy)/2 as

(dr — dv)/2 = {L(H}) = L(HY)} — {L(H;) — L(H)} (A.2)

Whereas the two bracketed terms in are non-negative as they correspond
to two LRT statistics, their difference can be negative.

A simple example illustrates this well. For the regression model [V |
X1, Xo] ~ N (Bo + B1 X1 + B2 Xo,0?%), the LRT statistic for testing HY : 31 =
0,32 € R against H{ : 31,32 € R is not necessarily larger (or smaller) than
that for testing H{ : 81 = B2 = 0 against H : 31 € R, 5 = 0; see Figure
for a schematic illustration.

The decomposition (A.2]) provides another interpretation of 7. The test
statistic L(H]) — L(HY) seeks evidence for detecting the falsity of » = 0 in
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Figure A.2: The relationships between the four hypotheses HS, Hi, HY, Hi. Each arrow denotes

an implication, e.g., HY = H3 means that HY implies H}.

both # and 7, whereas L(H}) — L(H{)) seeks evidence only in 7. For cases
where 6 and 7 are orthogonal (at least locally), the left-hand side of
can be viewed as a measure of evidence against 7 = 0 solely from 6; Proposi-
tion |1 already hinted this possibility. However, the “test statistic” has
a fatal flaw. Because @, requires all #®)s to coincide with a specific 8y, €, is
not nested within €9, i.e., €° = ;. Hence 7, is guaranteed to consistently
estimate 7+, only under Hy. This explains Corollary [I} and leads to an im-
provement in Section . In it not hard to see that our new estimator 7

simply drops the second term in (A.2)).

A.2 Another Motivation for ?ﬁ

The definition of ?ﬁ can also be motivated by the following observation. First,
observe that one simple method to construct an always non-negative estimator
of »,, is to perturb ng and 1%2) by a suitable amount, say A, so that the
perturbed version of 7, is always non-negative, and is still asymptotically
equivalent to the original 77,. We show, in Theorem below, that the right

amount of A is A = QZJ\* — 726* Using the perturbed version of 71,, we obtain
?A . m+1 SA
L km—1)"

~ 9 I FXO | 9O) F(XO | g% + A) NN R
58 — 2\ ~ 0 - —N'g A, DO | X©).
) f; Og{ FXO19%) f(XO |4 + A) m; LW A, [ X

Then we have the following result.

Theorem A.l. Suppose RCy. Under Hy, we have (i) ?f > 0 for all m,n;

and (i) P2 = 7y, as n — o for each m.
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Although ?LA > 0, it is only invariant to affine transformations, and not
robust against 6, and less computational feasible than 71,; see Section [3] How-
ever, it gives us some insights on how to construct a potentially better esti-
mator. Note that, in (A.3)), the constrained MLE is not used in d(-,- | X)),
but it is still always non-negative. We call this a “pseudo” LRT statistics.
Then, gLA is just a multiple of an average of many “pseudo” LRT statistics.
In order to find a good estimator of #,,, we may seek for an estimator which

admits this form. Indeed, our estimator 7 also takes the same form:
o _ m_ﬂi N <
o= = Dm Z (9 | X10).

A.3 Additional result for Section 2.3

This section presents the additional simulation result for Section The per-

formance of different approximations to the reference null distribution when
a = 5% is shown in Figure [A.3]

A.4 Results for Dependent Data

This is a supplement for Section If the data are not independent, then
1} is no longer true. In other words, L(v) # fs(w), where L(¢)) =

St LO () /m is defined in (2.1)), and

T°(9) = 1o fyn (X1 | ). (A3)

o - . . =S
In principle, L(1) should be used instead of the “stacked version” L™ (1),
however, the stacked one is much easier to compute. Because of this reason,
it is of interest to see whether the stacked version can be used generally.

To begin with, we define the stacked version of all MI statistics when
ZS(¢) is used instead of L(v)). Let

158 = argmax fs(w), JS = arg maxzs(¢); (A.4)
YeW : §(yp)=06¢ el
Sos = 20" (%), 5 = 20 (0°). (A.5)
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A.4 Results for Dependent Data

Nominal sizea = 5%
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k=2 [
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Flgure A.3: The performance of two approximate null distributions when the nominal size is

a = 5%. The vertical axis denotes @ or &, and the horizontal axis denotes the value of £,,. The

number attached to each line denotes the value of 7 =

h/k. The proposed approximation & is

denoted by thick solid lines with triangles, and the existing approximation & is denoted by thin

dashed lines with circles.

and
Ds(#m)
rs
7’:3
and g =

k(4 )]
m+1 - ~
m+1 - -

with js = S\S — S\O,S of ;

with dg = dy, of ;
with dg = 0p, of ;

max(0,7s). The stacked counterparts of 158 and its existing coun-

terparts Dy, and D (see (2.11)) then are given by

BO = ﬁs(?g)v

Ds = Ds(7s),

D¢ = Ds(7Y).

(A.6)
(A7)

(A.8)

(A.9)

The approximation C,l\L =~ c?s is still true under the following conditions.
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Assumption A.1. (a) Define R(v) = Zs(w) — L(¢)), where

|~

() = (mn) S log F(XO | 4) and I3() = (mn)~log F(X5 | ).

For each m, as n — oo,

0
A0 = 0,0/

(b) For each m, there exists a continuous function 1) — £ (1), which is free

sup [R(¢)| = Op(1/n), ~ sup

pev el

of n but may depend on m, such that, as n — o0,

sup |L(v) — Z ()] = 0,(1).

Pev

(c) Let ¥§ = argmaxycy . y(9)-0, Z(¢) and ¢* = arg MaAX ey Z (). For any
fired m, and for all € > 0, there exists d > 0 such that

sup  {Z(Wg) — L)} =4, sup {ZWY) - Z()} = 4.
wewg:(%(i;;j;be PYEW : [Ph* —1p|>e

Conditions (b) and (c¢) in Assumption are standard RCs that are
usually assumed for M-estimators (see Section 5 of van der Vaart| (2000)));
whereas condition (a) is satisfied by many models (see Example below).

Theorem A.2. Suppose RCy and Assumption[A.1. Under both Hy and Hy,
we have (1) JS, rs = 0 for allm,n; (ii) C/i\s, T's are invariant to the parametriza-
tion of 1 for all m,n; and (iii) di, = ds and 7, = 75 as n — o for each

m.

Theorem implies that the handy test statistics lA)S and ﬁ; approxi-
mate Dy, and ZA?{Jr for dependent data, provided that Assumption holds.

Example A.1. Consider a stationary autoregressive model of order one. Sup-
pose the complete data X = (Xi,...,X,)T is generated as following: X; ~
./V(O, U2) and [Xz’Xz—l] ~ ./V(¢Xi_1, 0'2) for i = 2, where ?}2 = O'2<1 + ¢)/<1 — ¢)
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Then ¢ = (¢,0%)7, and

(0)
_ 1 1 1 oxY ono1
L(y) = —Qlog(27r) — 2—logv - — W = log o
m n ) (@)
1 — X, )

Sy
=S 1 1 (Xfl))2 mn — 1 )
L — —Zlog(21) — —— o - 1
L) 2 og(27) 2 n 08 Y 2mmnu? 2mn 08¢

S L KT 0XE) 1§ (K7 - oxTy
mn =< 202 mn = 202 ’

Then, it is easy to see that condition (a) of Assumption is satisfied.

A.5 Other existing MI tests

First, We list some existing estimators of 7,. Let SW . be the sample variances
of {( ) }rq for a > 0. Rubin| (2004) and Li et al.| (1991) proposed

14+ 1/m)s?
Twa = (L Lm)sivy : (A.10)

2dw + \/max {0, Ady, — 2ks%m}

FWJ/Q = (1+1/m)s%v71/2, (All)

respectively. When £ is large and m is small, using (|A.10]) or (A.11]) may lead

to power loss. A trivial modification of 7, of (1.8), i.e., 7{" = max(0,77), is a
better alternative.
Second, we list some alternative MI combining rules. Having the above

estimators of 7,,, we can insert them into the following combining rules:

N d. - dy. - - +
Dy (rm) = 7, Dilrm) = i Dy () = { Diom) |
W) = pias Do) = g D) = {Dutr)
(A.12)
Using (1.3) and (1.8)), we can also define the following combining rules:
o a’ . k(m—l)# o dL - k(m 1)
Dy(#m) = ———m L " Dy (s,) = = A13
wim) = =gy Dl =g ()
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see, e.g., |Li et al| (1991)). The combining rule ﬁlw(#m) is useful when com-
puting E;v and estimating #,, are simple, but the resulting power may de-
teriorate. If w1 or Tw 12 is used for estimating 7, the null distribution
of (A.12)) and (A.13) can be approximated by F) ’ where ch,(#m, k) =
(m — 1)(1 + ».1)2k=%™; see|Li et al| (1991).

Next, we introduce and recall some notation: (a) standard complete-data

,de,(rm k

moments estimation (M, 1) and testing procedures (Dw, Dy,), and (b)

non-standard complete-data procedures (@L, D1, D1, Dr,1), where
ar(X) = {600, U0}, (X) = {D(X), Do(X)

F(X) = dw(0X). VX)), TualX) = 2 3 log F(X1 | (%)),

_ 1 .
L(1h) = —10g frun (X 1™ | ).
m
Table [A2]is the full version of Table [Tl in the main text. It summarizes

the statistical and computational properties of different MI tests; see Section
3.2 for details.



Table A.2: Computational requirements and statistical properties of MI test statistics, their associated combining rules and estimators of

FMI 7p,. The symbols “4+” and “—” mean that the test statistic (or estimator) is equipped and not equipped with the indicated property,
respectively; see the end of Section for heading descriptions. The reference papers/book are abbreviated as follows: (2004) (RO4),
Li et al.|(1991) (LMRRI1) and [Meng and Rubin|(1992) (MR92).

Combining Rule

Estimator of 7,

Approx. null distributiorﬂ

Properties

Test No. Formula Routine Formula Routine Original Proposed  Reference Inv Con >0 Pow Def Sca EFMI

WT WT-1 Dw(Tf|  tw Py Dw  Fpgig . Fedton. RO -+ o+ - - - ]
WT-2 Dy (rm)  Mw oy M Fy g k)h Fydipma ~ RO4 - + - - - 8
WT-3 Dy (rm )E| My . D B at ) NA RO4 )
WT-4 Dy (#m) My w172 Dw o (o ) NA LMRR91 - - + — — - 0
WT-5 Dy (#m) Dw o Iw  Fyvi NA RO4 - - - - - 4 0
WT-6 Dy (#m) Dw Fov 12 9w Fy v NA LMRR91 - — — — — 4 0

LRT LRT-1 Dy(rm) ,9. 7 M,90 Fogo. ) Fedione  MR2  — = —  — 4 0
LRT-2 ﬁL(f‘m) 9L ?E' D1, Fk,de(rm,k) Fkygf(,‘m’k) Proposal  + - + — + + 0
LRT-3 Dr(rm) DL 7o D11 Fy Gttmony  Frodi(om,ny Proposal 4+ 4 + + + o+ P
LRT-4  Df(rm) Mi,9u 7 9L Fygign s Fogiome MR - -+ - 4+ - 0
LRT-5 DL (#m DL, rL L Fy Gttemk) Fhod@i(em.ky Eroposal 4 — — — + o+ )

%In actual computation, the 74, in the denominator degree of freedom of F' is replaced by its corresponding estimator.

bComputing the test statistic Dw (T') = dw (0, T)/k does not require estimating #,.
¢EFMI is not required for the test statistic Dw (T"), but it is required for its approximate null distribution.
(1991). This also applies to WT-2,4,5.

4The approximate null distribution documented in
“The estimator 745 does not depend on 6, but its MSE may be inflated under H; if a bad

2004) was modified by |Li et al.

parametrization of 6 is used.

fThe originally proposed combining rule is 5?;\,(7*7,1); see I . Although ﬁlw(rm) is more computational feasible, the power loss is more significant

than E{N(rm) after inserting an inefficient estimator 7, ; for #4,. This footnote also applies to WT-3.
9Averaging and processing vector estimators of 1, but not their covariance matrixes, is needed. This footnote also applies to LRT-2.

"1t is a trivial modification of the original proposal in MR92 by replacing 71, with Fﬁ = max{0, 7L }.

§989, 013y POOUI[IT TIN

9509 TIN SUSIX0 IOYI) C'V
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Table A.3: The values of parameters used in the simulation experiment in Section

Experiment Fixed Parameters Variable Parameter
No. Variable Parameter 0 D /£ Casel Case2 Case3 Cased Caseb
I Correlation p - 2 0.5 -0.8 —-0.4 0 0.4 0.8
11 Dimension p 0.4 - 0.5 2 3 4 5 6
111 FMI / 0.4 2 - 0.1 0.3 0.5 0.7 0.9

A.6 Supplement for Section 4.1

Let Xobe and Sops be the sample mean and sample covariance matrix based
on X,ps. Then, the ¢th imputed missing data set can be produced by the

following procedure, for £ = 1,...,m.

1. Draw (2®))~! from a Wishart distribution with (ng,s — 1) degrees of
freedom and scale matrix Seps.

2. Draw p® from ./Vp(yobs, YO nops).

3. Draw (n — neps) imputed missing values {Xi(g) 20 =Neps + 1,...,n} from
N, (19, 2O independently.

Also, denote Xi(z) = X; fori=1,...,nqs. With the fth completed data set,
the unconstrained MLEs for y and ¥ are

~ RS- & 1< 0~ 0 ~0\"
“(E)ZgZXi()’ gw):ﬁz(){f)_u(@) (Xf)— (e)) '
i=1 i=1

Whereas we generate data using a covariance matrix with common variance
and correlation, our model does not assume any structure for . The only
restriction we can impose is the common-mean assumption under the null, for
which the constrained MLEs are

1T(§](€))—1/j(f) } R R T
~(0) _ P 0 _ (0 ~) _ 5O [~ _ )
0 = [BEOTROY, s s (50 a0) (300"
{ 1E0) 1,

We first study the distribution of p-values of each test under Hy. We use
n =100, m = 3, 0> = 5 and p = 1, with various values of p, p and /£ specified
in Table The results under parametrizations (i), (i) and (iii) are shown

10
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A.6 Supplement for Section

in Figures [A 4], [A5] and [A.6] respectively. Note that, for Wald tests under

parametrization (ii), the matrix U® is singular in 0.25% of the replications,

and those cases are removed from the analysis (which should favor the Wald

tests).

Parametrizatiofi)

Casel (Smap,p,f) |

Case 2

Case 3

Case 4

Case5 (Largp,p,f) |

Nominal sizex
1% 2% 3% 4% 5% 1% 2% 3%

4%

5% 1%

2% 3% 4% 5%
1 1 1 1 |

1% 2% 3%
1 1 1

4%

5% 1% 2% 3% 4% 5%
1 1 1 1 1 1 1

g on- 8 8 4
g 73 73" 9 ?é ?%
T o 4% g?g/ 349/ a?é/ g%é/ %é/
| 8 L8 A 87 7 A
1 = = S J7° . 2
I ¥ ¥ ¥ ¥
& 0% - . . . Test statistics
¥ WT-1
= 20% WT-2
§ WT-3
~ 15% - WT-4
- 1 LRT-1
5| %1 . : 4 _o o/o/o 2 LRT-2 (Proposal)
= . —g=4 =1 _a=f=1- =3 9~ =% 3LRT-3(P I
g .,lsgg!’gf .44!""—26 .,léizggi xi/g,ggi"! 3;»!2523’3 2GR
; 0% - 5 LRT-5 (Proposal)
3 10% o _° o LRT-0 (CCA)
S| s o~
a ~
=| e _§ e 4 A28 7 %
IS =Y 12¥ /3537‘5‘/ ¥ 315
5| 2% l;i’ !/l g%g/ 4= -~ 3/5 g—37
& 0% - ) T

Figure A.4: The comparison between empirical size and nominal size « under parametrization
(ii) for a € (0,5%)]. Our most recommended proposal is LRT-3, which is highlighted red.

The empirical sizes (i.e., type-I errors) of the MI Wald tests generally

deviate from the nominal size o under parametrization (ii). In contrast, the

sizes of all LRTs are closer to a. However, the original -1 and its trivial

modification 1-2 do not have accurate sizes when |p| or £ is large. They

can be over-sized or under-sized depending on which parametrization is used.

Moreover, the trivial modification L-2 does not help to correct the size, and

it may even worsen the test. For our test statistics L-3 and L-4, they are in-

variant to parametrizations and have quite accurate sizes, although they are

under-sized in challenging cases where both p and £ are large. For our recom-

mended statistic L-5, it gives the most satisfactory overall results. It generally

has very accurate size, except that it is slightly over-sized for large p, a prob-

lem that should diminish when we use m beyond the smallest recommended

11
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Parametrizationii)

Casel (Smap,p.f) | Case 2 | Case 3 | Case 4 Case5 (Largp,p.f) |
Nominal sizex

1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5%
R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i~ 4
S 6% -
S a. 8. . 4 .
] - - - .
s ~3 ~4 4 _ /5 ad
- g 4% B/gfl /§/ /S/ - / 4/a?§/
HE 7 4 zY Pz Iz
£ md A A 7 ¥ Z
g ¥ ¥ ¥ L -
& 0% Test statistics
— WT-1
&l 6% WT-2
> WT-3
T 12% o WT-4
= o o 1 LRT-1
g 8% 7 =9 o7 o~ 2 LRT-2 (Proposal
E =4 —8 —=1 0o 0 _a—d- (Proposal)
< 4% | ;QEQ" ;_j,-i“ e=g—4— —o= —=§=% ,— — :ﬁ, 3 LRT- 3(Pr0p0'=‘a|)
& 0% _,,‘25/ a=h ,i"'/‘ﬁ’ §-8 : 'igi’i g tET -5 (Proposal)
= _4—4—4—4%4| o LRT-0(CCA
E 12% 4 4—4 (CCA)
= o]

—

= 8% | /o/o
E =4 =1 =41 4 4/4/§;§ 0 3+
£ 4% | /ggi ’géj _ ;Q;Q/ /3/ o /3/3/
z = =t =47 g:aﬁ g=iza-i-1
0] 0% ’ ’ ’

Figure A.5: The comparison between empirical size and nominal size a under parametrization (i)
for a € (0,5%)]. The legend in Figure also applies here.

m = 3.

Interestingly, as seen clearly in Figure [A.5] the benchmark L-0 performs
very badly for large p and £. This is because the sample size per parameter,
n/h, is small; for p > 4, n/h < 100/14 < 8. The asymptotic null distribu-
tion x%/k then can fail badly under arbitrary or even all parametrizations;
(ii) apparently falls into this category. An F approximation would be more
appropriate (see Barnard and Rubin) |1999)). But this is exactly what is being
used for MI tests, albeit with different choices of the denominator degrees of
freedom. Note also that, in some cases, nearly half of the simulated values of
7. and Dy, are negative; see Table . In contrast, 7g is always non-negative
in our simulation, despite the fact that it can be negative in theory.

The power curves under nominal size 0.5% and 5% are shown in Figure[2|of
the main text and Figure|A.7] respectively. Note that the trivial modifications
LRT-2 of LRT-1 cannot retrieve all the power it should have. Tables |A.5| and
show the minimum and maximum of the empirical sizes over the three

parametrizations considered in each test — and only one value is needed for

12
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Parametrizatioiiii)
Casel (Smap,p,f) | Case 2 | Case 3 | Case 4 Case5 (Largp,p.f) |

Nominal sizex
1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5%

(=] 10%

B

g 8% 4 4 _14 4

Tl e 6% /4/4 1/* i%i/ ) 4i/ /ﬁ?i

e e I i R e R e R o

£ g2t |1 =¥ | =¥ @;@/ 1287

5 2% o p 28 Z = 5 3/

& 0%‘:—"/ &~ & &~ &~ Test statistics
= WT-1

& 16% WT-2

s WT-3

~ 12% - a WT-4

= - -

5| ®* =4 /é P - 4/%;8/0 2 CRT- E(Proposal)
E —4=4_8 a—5_ Jea"g-8=51 45~ =3 a=5— 3

5] 4% Zp=8= ~4” =8 4~ q—g—8 Q_Rg=8" —~ —g= 3 LRT- 3 Proposal
- ’ éigz - a_g=0" 3,2353 E/Q‘Q 8 ngr’% 3 2 LRT- (Proposal)
HEEE 5 =
E 40% -

—| s0%

E 20% 4—a4—4—4—4

K 10% - _4—4—4—7 | _o—0—9 |

i 0% ,I_l—l—-l—l' .,g—l-—l—l ‘_,_G:.——é—! ﬁsgggﬁg—g iéigg:ﬁzg

Figure A.6: The comparison between empirical size and nominal size @ under parametrization
(iii) for o € (0,5%)]. The legend in Figure also applies here.

Table A.4: The empirical proportions of negative 71, and Dy. The results under parametrizations

(i) and (iii) are shown. For parametrization (i), 7, > 0 and Dy, > 0 in the experiments.

Case
1 2 3 4 5 1 2 3 4 5

Experiment Parametrization % of 71, < 0 % of Dy, < 0
I (id) 1 2 3 4 5 26 16 13 12 12
(iii) 6 6 7 7 7 1 1 1 1 2
1 (ii) 4 1000 12 5 3 4 3
(iii) 7 3111 1 0 0 0 0
111 (ii) 13 6 4 4 3 55 25 12 5 2
(iii) 18 9 7 5 4 20 5 1 1 0

those tests that are invariant to parametrization — when the nominal size is
0.5% and 5%, respectively. We see the deviations from the nominal o can
be noticeable, especially when m = 3. To take that into account, we report
the empirical size adjusted power, that is, O = power/&, which also has the

interpretation as (an approximated) posterior odds of H; to Hy (Bayarri et al.,

13
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Table A.5: The range of empirical size [min &, max @] in percentage, where max and min are taken
over the three parametrizations. Only one value is recorded for parametrization-invariant tests.

The nominal size is @ = 0.5%. The results under nominal size o = 5% are shown in Figure [A.6

Range of empirical size: [min &, max a]/%
(n,m)  (1600,3)  (400,3)  (100,3)  (100,10)  (100,30)

W-1  [0.90,1.05] [0.76,1.05] [0.20,1.22] [0.07,0.56] [0.02,0.49]
W-2  [0.90,1.05] [0.98,1.22] [0.93,1.25] [0.32,0.73] [0.20,0.85]
W-3  [0.98,1.05] [0.98,1.25] [0.90,1.29] [0.34,0.71] [0.22,0.73]
W-4  [0.90,1.05] [0.76,1.05] [0.20,1.22] [0.07,0.56] [0.02,0.49]
L-1  [0.90,1.03] [1.10,1.64] [1.15,1.49] [0.37,1.05] [0.10,0.46]
L-2  [0.90,1.05] [1.10,1.76] [1.15,2.37] [0.37,0.98] [0.10,0.49]
L-3 0.90 1.10 0.83 0.24 0.07
L-4 0.90 1.10 0.83 0.24 0.07
L-5 0.46 0.44 0.68 0.46 0.42
L-0 0.39 0.66 0.66 0.66 0.66

2016). Figures and plot the result for nominal size 0.5% and 5%,
respectively. Compared with the benchmark L-0, the odds O of the proposed
robust MI test (L-5) is closer to the nominal value 1/ as § — c0. Nevertheless,
the performances of all size 0.5% tests are less satisfactory than those for size
5% tests because larger sample sizes n are required to approximate the tail
behavior well.

We also compare the performance of estimators of #,, for different § and
parametrizations. In our experiment, we have 7, = 1+ 1/m because we have
set 7 = 1. The MSEs of estimators f = T/(L+7)of fro = 7u/(1 + 70)
are shown in Figure [A.I0] in log scale. Clearly, the only estimator that is
consistent, invariant to parametrization and robust against ¢ is our proposal
fg =7/(1 +79). Tt concentrates at the true value £, quite closely even for
small m and n. It verifies why L-5 has the greatest power. On the other hand,
the estimator fL =71,/(1 4+ 7L) has a large MSE when § # 0. It explains why

L-1 is not powerful.

14
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Table A.6: The range of empirical size [min &, max @] in percentage, where max and min are taken
over the three parametrizations. Only one value is recorded for parametrization-invariant tests.

The nominal size is o« = 5%.

Range of empirical size: [min &, maxa]/%
(n,m)  (1600,3)  (400,3)  (100,3)  (100,10)  (100,30)

W-1  [5.62,5.71] [5.30,6.03] [3.22,6.20] [1.64,4.81] [1.37,5.00]
W-2  [5.93,6.05] [6.08,7.18] [5.52,8.69] [4.42,8.47] [4.20,8.50]
W-3  [5.81,6.03] [6.01,6.98] [5.37,8.28] [4.20,7.67] [4.10,7.50]
W-4  [5.62,5.71] [5.30,6.03] [3.22,6.20] [1.64,4.81] [1.37,5.00]
L-1  [5.57,6.15] [6.37,6.57] [5.88,6.47] [4.39,5.66] [4.22,5.32]
L-2  [5.52,6.10] [6.37,6.52] [5.88,7.47] [4.39,5.66] [4.22,5.32]
L-3 5.76 6.37 5.42 3.78 3.71
L-4 5.76 6.37 5.42 3.78 3.71
L5 4.96 5.32 4.93 479 4.54
L-0 5.03 5.03 5.57 5.57 5.57

A.7 Supplements for Section [4.2

Let n; = > | R;; be the number of observed jth component. Without loss
of generality, assume X, is arranged in such a way that R;; > Ry; for all

i < i and j. To impute the missing data, it is useful to represent X; by
[ X1 | Br, 7] ~ N (B, ) and [ X5 | Xini—1y, By 72| ~ M (B] Zij, 72),
fOI' ] = 2, .o, P, where 7_12, . 77—5 € R+, ﬂ] € R], Xi’l;(jfl) = (Xih e 7Xi,j—l)T

and Z;; = (1,X;1:(j_1))T for 7 = 2. Denote the (complete-case) least squares

estimators of 3; and 7'j2 respectively by

~ W — Z:B)T(Ws — 75,
By = (Z12;)"' ZIW; and 77 = W, J%?( i = 2i6)
i —J
where Z; = (Zyj,..., Zn;;)" and W = (Xyy, ..
We assume a Bayesian imputation model with the non-informative prior

fBr, - Bty 1) o 1/(f -+~ 77). For £ = 1,...,m, denote the (th im-

puted data set by X, whose (i, j)th element is Xi(f). If1<j<pandi<n,,

LX)

then Xi(je) = X,;, otherwise Xff ) is filled in by recursing the following steps for
1=2,...,p.

1. Draw a sample (7'3(4))2 from 77 (n; — j)/xirj.
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2. Draw a sample B 2 from ./V(BJ,( (02 (Z]Z;)7"
3. Draw a sample X from /V((B(é )TZZ]E), (TJ(K )2) fori = n;+1,...,n,
¢
where Zi(j) = (1, (X( )(j_l))T)T.

,1:

With the ¢th imputed data set, the Hy-constrained MLEs of p and X are
ﬁ((f) =0, and i((f) = (XO)T(X D) /n; whereas the unconstrained counterparts
are A0 = 17X® /n and SO = (X©O — 4O)T(XO — 4O /n,

The partial result is shown in Figure 3| of the main text, whereas the full
version is shown in Figure [A. 11}

A.8 Applications to a Care-Survival Data

Meng and Rubin| (1992)) considered the data given in Table where ¢, j and
k index, respectively, amount of parental care (less or more, corresponding to
= 1,2), and survival status (died or survived, corresponding to j = 1,2),
and clinic (A or B, corresponding to & = 1,2). The label k£ is missing for
some observations. The missing mechanism was assumed to be ignorable. We
consider two null hypotheses: (Hy) the clinic and parental care are condition-
ally independent given the survival status, and (H)) all three variables are
independent. It is remarked that testing the conditional independence model
(i.e., Hp) is useful from a modeling perceptive. If Hy cannot be rejected, then
one may be tempted to adopt the more parsimonious null model (for the cell
probabilities). The same model is also suggested in |[Little and Rubin| (2002)
and [Meng and Rubin| (1992).
Our aim is to investigate the impact on {f)s, ﬁ; , lA)g } by the parametriza-
tion of the cell probabilities

mijr = P(parental care = 7, survival status = 7, clinic label = k)

for 4,5,k € {1,2}; and the impact on {?L,?g,@} under different null hy-
potheses. Here the full model parameter vector can be expressed as 1 =
(7111, T112, T121, T122, T211, T212, To21)T.  Since the restrictions imposed by Hy
are mi = (15 + moj) (mij1 + mij2) for 7 = 1,2, one may express the parame-

ter of interest as 6 = (61, 0:)7, where 0; = ;5 — (715 + Tajx)(Mij1 + Tij2) for

16



MI Likelihood Ratio Tests A.8 Applications to a Care-Survival Data

j = 1,2. Then Hy can be equivalently stated as § = 6y, where 6y = (0,0)T.

Similarly, the parameter of interest under H|, can be defined.

Table A.7: Data from [Meng and Rubin| (1992)). The notation “?” indicates missing label.

Parental care (i) | Less More
Survival Status (j) | Died Survived Died Survived
Clinic Label (k) Al 3 176 4 203

B 17 197 2 23

? 10 150 ) 90

The computation of the stacked MI estimators of {m;j;} is presented in
of the Appendix. We consider three parametrizations: (i) ¥jx = mijk;
(il) ijr = log{min/(1 — myx)}; and (ili) ¢iji = myn and Yo = mijo/mijn
Denote the p-values of tests {l~)L, lA?gf , lA)g } by {Pr,Dd, ﬁg }, respectively. The
results are summarized in Table . Clearly, only 7g, 7'y, ﬁ; , ﬁg are always
non-negative and parametrization-invariant. Some of the values of 7, and ﬁL
are negative, leading to the meaningless p;, = 1. For testing Hy, we have
ﬁ; ~ ﬁg . For testing HY, ﬁ; and ﬁg are not very close to each other,
but they both lead to essentially zero p-value. These results reconfirm the
conclusions in Meng and Rubin| (1992). Moreover, only @ does not change
under different null hypotheses.

The MI data sets are generated from a Bayesian model in Section 4.2 of
Meng and Rubin| (1992)). The ¢th imputed log-likelihood function is log f(X® |
T = D n{ log ., where X are the cell counts n in the (th imputed
data set. Hence the unconstrained MLE of 7, is 7v) = n&) /ngf), where

= > nd . Let n}t = Doy n. Consequently, the joint log-likelihood
based on the stacked data is

log f(X5 | 7) ZZn log 7, = Zn+ log ., (A.14)

/=1 c

Thus the unconstrained MLE with respect to is 75 = n}/ni, where

ni = >, nt. Similarly, we can find the constrained MLEs under a given null.
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Table A.8: The LRTs using Dr, ﬁ;r and ﬁg under different parametrizations in Section

Parametrization (i): identity map

Hy: Conditional independence

Hy: Full independence

m 7?[‘77’:;77:\3 EL7B§7Z§§ ﬁLaZ/TSFaﬁg ‘ 7?L77/:§7’?§> l’\j[nﬁéraﬁg ﬁLal/)\SFaﬁg
21 0.63,0.64,0.83  0.14,0.14,0.12 0.87,0.87,0.89 0.53,0.53,0.83 44.4,44.4,37.1 0,0,0
3| 0.54,0.54,0.38 0.08,0.08,0.09 0.93,0.93,0.92| 0.31,0.31,0.38 54.2,54.2,51.4  0,0,0
51 0.49,0.48,0.89 0.12,0.12,0.10 0.89,0.89,0.91| 0.72,0.72,0.89  40.8,40.8,37.1 0,0,0
71 0.23,0.23,0.47 0.06,0.06,0.05 0.94,0.94,0.95| 0.31,0.31,0.47 53.2,53.2,47.6  0,0,0
10| 0.50,0.50,0.70  0.14,0.14,0.12 0.87,0.87,0.88| 0.56,0.56,0.70  45.4,45.4,41.7  0,0,0
25| 0.35,0.35,0.47 0.06,0.06,0.06 0.94,0.94,0.95| 0.35,0.35,0.47 51.4,51.4,47.0  0,0,0
50| 0.31,0.31,0.45 0.11,0.11,0.10 0.90,0.90,0.91| 0.33,0.33,0.45 51.5,51.5,47.3  0,0,0

| Parametrization (ii): logit transformation

| Hy: Conditional independence Hy: Full independence
m‘ FLﬂﬁgﬂﬁg EL;ﬁg_vﬁg ﬁLa%vﬁg ‘ FL7?§_>?§ 5L7ﬁ§_aﬁg ﬁLa%aﬁg
21 1.23,0.64,0.83 0.01,0.14,0.12 0.99,0.87,0.89| 0.98,0.53,0.83 34.2,44.4,37.1 0,0,0
3| 1.08,0.54,0.38 —0.07,0.08,0.09 1.00,0.93,0.92| 0.61,0.31,0.38 43.9,54.2,51.4  0,0,0
51 1.02,0.48,0.89 —0.09,0.12,0.10 1.00,0.89,0.91| 1.40,0.72,0.89  29.0,40.8,37.1 0,0,0
71 0.45,0.23,0.47 —0.07,0.06,0.05 1.00,0.94,0.95| 0.58,0.31,0.47 43.9,53.2,47.6  0,0,0
10| 0.99,0.50,0.70 —0.10,0.14,0.12 1.00,0.87,0.88| 1.09,0.56,0.70  33.7,45.4,41.7  0,0,0
25| 0.71,0.35,0.47 —0.14,0.06,0.06 1.00,0.94,0.95| 0.68,0.35,0.47 41.0,51.4,47.0  0,0,0
50| 0.63,0.31,0.45 —0.10,0.11,0.10 1.00,0.90,0.91| 0.65,0.33,0.45 41.3,51.5,47.3  0,0,0

| Parametrization (iii): ratios of probabilities

| Hjy: Conditional independence Hy: Full independence
m‘ ?La?§7?é> 5L7ﬁ§7ﬁé> Z«){qufskaﬁg ‘ ?L7?§L77/n\g ﬁIﬂﬁgaﬁg ﬁhﬁ&ﬁﬁ
2] 1.06,0.64,0.83 0.04,0.14,0.12 0.96,0.87,0.88|—0.38,0.53,0.83 109,44.4,37.1 0,0,0
31-2.35,0.54,0.38 —1.16,0.08,0.09 1.00,0.93,0.92|—1.22,0.31,0.38 —321,54.2,51.4 1,0,0
5—2.64,0.48,0.89 —1.38,0.12,0.10 1.00,0.89,0.91|—2.24,0.72,0.89 —58,40.8,37.1 1,0,0
71-0.01,0.23,0.47 0.25,0.06,0.05 0.78,0.94,0.95|—0.34,0.31,0.47 107,53.2,47.6 0,0,0
10| —2.04,0.50,0.70 —2.20,0.14,0.12 1.00,0.87,0.88|—1.85,0.56,0.70 —86,45.4,41.7 1,0,0
25(—1.39,0.35,0.47 —4.30,0.06,0.06 1.00,0.94,0.95|—-1.12,0.35,0.47 —603,51.4,47.0  1,0,0
50(—1.22,0.31,0.45 —7.39,0.11,0.10 1.00,0.90,0.91|—1.06,0.33,0.45 —1136,51.5,47.3 1,0,0
B Proofs

Proof of Theorem[1]. (i, ii) From ({2.3]), we know dy, > 0is invariant to parametriza-

tion 9. (iii) Since dy, is invariant to transformation of ¢, we assume, without

loss of generality, that 1) admits a parameterization such that Cov(g(e), no) =

0 by taking suitable linear transformation of . Also write Uy) as an efficient
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estimator of Var(7) based on X®; and recall that Ue(é) = U® is an efficient
estimator of Var(é) based on X ).

Usmg Taylor’s expansion on 1) — L(p) = m™* 37" log (X | 1) around
O* = ((9*) (7*)T)T, we know that for ¢ = 0,
L(w) = I — 5 (v - 0*) 16" (v~ 3°), (B.1)
where 1(v)) = —0?L(v)/0vy0yT, which satisfies
e (T 0
73" = ( e ) (B.2)

with Un =m~ 'y, UT(,E). Under the null, @Z* = @26“ So, using 1) we have

dv = (G5 —00) 1@ (95 - 0).

( 0, — 0% )(U o>< 0, — 0% )
—\ 7i60) — 7(0%) o T, )\ i) @

=~ (@ =0T, @ —0y) = dy, (B.3)

°

where we have used (a) f* =~ 0; see, e.g., Lemma 1 of Wang and Robins| (1998)),
and (b) 7(6) — A(6*) = O,(1/n) if 6y — 6* = O,(1/y/n); see Cox and Reid
(1987). Since diy = di, (Meng and Rubin|, [1992), we have dy, = dy.. 0

Proof of Proposition[]. The given condition implies that
9O = (@, @y, = @ @)
Gr= (@)L b= (65 ()T
Clearly, we also have the decomposition: L®) (1)) = L% )(9) + L ( ) for all ¢,
where L@(Q) = Li(0 | X®) and L(g)(n) = Ly(n | X®). Then,

d—d = —2{ = LO@P) = LO@) + L9()}
= EZ{L9<9<@>—L$)<6*>}
=1
since Lg)(é(e)) > L](f)(a*) for all /. O
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Proof of Corollary[l. Applying Taylor’s expansion on 1 + L®)(3)), we can
find ﬁ(z) lying on the line segment joining 12“) and {ﬂ\(()é) such that

LOG?) = LOG) - 1 (30 - 50) 10650 (5 - 7).,

where I () = —02LO (1)) /0vdyT. By the lower order variability of 1) (¢)©),
we can find ¢* such that IO (@) = 1O ()*) for all £. Then, using similar
techniques as in (B.2)) and (B.3)), we have

LOEGO) - LOG) = 3 (8 - 59) 106 (# - 59)
= % (60— 89) 0 (60— 8) (B.4)

for some matrix U. Similarly, we have

~ ~ 1 ANT »—1 ~
LOWG) — LOE) = 5 <90 _ 9*>T 7 <90 B 9*> ' (B.5)
Write A®? = AAT for any appropriate matrix A. Using (B.4)), (B.5)) and the

cyclic property of trace, we have

dL—dy = %i {(90 _ §(£)>T it (90 B gw) _ (90 B §*>T 7 (90 B 5*)}
=1

_—— {% 3 (00— 02) ~ (60 - 5*)®2}]

(=1

.11 &

m (=1

=~ {r

~ -1
{@y= - §®2}] ~tr (U B) = tr (%)
as m,n — o0, where %y o is a deterministic matrix that depends on both 6, and
the true value of 6, and satisfies n(U — %) > 0. Note that tr(%@éﬁg) = ko,
for some finite 7 by Assumption 2l Then 7, 5 7 = tr(%y o Bs)/k, proving

(ii). (But %o may not equal to %p, and hence 7, may not be consistent for

Pm-)
If Hy is true, then 8 5 6y and U = U = %, = %pp. Then, 7, P oas
m,n — o0. So, (i) follows. O
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Proof of Theorem[3. (i, ii) It is trivial by the definition of 7. (iii) Applying
Taylor’s expansion to ¢ — L (¢)) again, we know there is ¢ lying on the
line segment joining 12(5) and 1* such that

2! @ _ @(@)T OGO @ _ @(ﬂ)) . (B6)

LU = LO@0) - 5

By the lower order variability of 1 (), we know that [ (®) = 7(12*)
for all ¢, where T(¢)) = m= 30" I (4h). We also know that ¢* = . Thus

55 = L3 (0 - 00 T (7 - 30)

/=1
- {1 L5 (7 -50)}
~ fr {T(&*)% 3 (zZ(f) - 1/))@2} ~ ot (U] By)  (BT)

as m,n — 0. By the assumption of EFMI of ¢, we have ?ﬁ 2o O

Proof of Lemma 1] First, recall that, as n — oo, the observed data MLE §Obs
of 0 satisfies , which can be written as [éobs | 6] 2 Ni(8,Tp), where Ay, 2
Az, means that A, and Aj, have the same asymptotic distribution, i.e.,
there exist deterministic sequences p,, and 3, such that (A; , — p,) 20 V2 A
and (Agpn — tn)Xn 2 A for some non-degenerate random variable A. From
Assumption , a proper imputation model is used. So, we have , which

is equivalent to say that, as n — oo,

(091 Xens]| 2 HiBure, ), (B5)

independently for for ¢ = 1,...,m. Therefore we can represent
e ~ 0+TYW, (B.9)
0O R bs+ B2, L=1,....m (B.10)

where Zy,..., Zn, W i N (0, I). Also write Z, = (Z14,. .., Zke)7, for £ =

1,2,...,m, and W = (Wy,...,W;)T. Averaging (B.10) over ¢, we have 0 2
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éobs + 93;/27., where Z, = m™! ey Zy. Since By = » Uy, we have

%, (0" - 6)
U0 -0)

(1+»)Y2W + #1227,
(1+ #)2W + »127Z,.

RY R

Note that || implies %y = U. Under Hy, we have § = , and

k
d, = dy 4 Z {(1+»)"?W; + 1/2Zw}

~ ~

d, = dy {(1+2)2W, + 27}

I\M?r

After some simple algebra, we obtain

1 k 1+ 1/2W+ 1/2Z
ﬁ%(m—i- )7"2822 and D+%m21 1{ 7‘ ky }’
i mk + (m + )7 33, s,

where 53, = (m—1)"' 3" | (Ziy—Z;.)* is the sample variance of {Z;;}}" . Since
Wi, Z;s and SQZZ_ are mutually independent for each fixed i, we can simplify

the representation of D to

k
?ﬂL% m+1 ZH2 and f)+%(m—l){m—l-(m—f—l)f}Z]::lG?’
m(m — 1)k + (m+ 1), H?

where G2 X y2 and H2 ¢ y2,_| fori = 1,...,k, are all mutually independent.
Clearly, they can be further simplified to (2.12)). O

Proof of Theorem[3. Similar to and (B.10]), we can have a more general

representation:

QZobs s ¢ +J 71/2 ; QZ(E) % /IZObS + ‘%L/sz (= 17 s,y

where Zy,...,Z,,W ~ kS M (0, 1), Also write Z;, = (Zy, ..., Zpe)7, for £ =
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1,2,...,m,and W = (Wy,...,W,)T. Using (B.7)), we have
-~ 1 LN N\ /A~ IN\T
{z@b);;}%(w@-—w)(w“>—¢) }

% ! S o / 274 ®2

2 tr{%wlﬁz[(Jw—%w)IQ(Zg—Z.)] }

SL—gL =~ f{r

=1
» m h
= — tr{#[ Z, } = — it —
Z n (Ze— — ;; ’
Equivalently, we can say 6y, — (5L = #Xh /m as n — o0. Hence
m+ 1
RO = 5. 2

F(m 1) X
which is equivalent to (2.13]). Note that it is true under both Hy and H;. O

Proof of Theorem[{]. From the representations of c?ﬁ and ?S in Lemma [1| and
Theorem |3, we know that they are asymptotically (n — o) independent. The

proof then follows the derivation for Lemma [1] O

Proof of Theorem[A.1]. (i) Using the representation (A.3), we can easily see
that 72 = 0. (i) It suffices to show

Z (W) + A, 9 | XO) = dy, — db,

where A,, = 1//)\* —128‘. Under Hy, A, = 0 and QZ(()K) = QZ(@, SO 12(()@ +A, = 121\(@
Using Taylor’s expansion on 9 — L (1)) around its maximizer »®, we have
for ¢ = @Z(f) that

LO@) = LO@GO) — 2 (v~ 30) 10) (4 - 50)

Under the parametrization of ¢ in the proof of Theorem [l we know that
the upper k x k sub-matrix of I (QZ(E)) is (U(Z))_l. Using the lower order
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variability of U®), we have (U (5))71 = U  and

1 & ~ ~ 1 & ~m\ T ~
— DAL + B, DO | XO) = = SR+ A = 5O) 1OEGD) (7 + A
M my3
J N — — - ~ -
= =9 -0)T (09 —0) = dy — dyy = dy, — d,
miz
Therefore, the desired result follows. n

Proof of Theorem[A.J Throughout this proof, conditions (a), (b) and (c) re-
fer to the list given in Assumption (i, ii) It trivially follows from the
definitions of dg and 7. (iii) First, by the definition of maximizer and condi-

tion (a), we have

L(0*) - L(°*) = L(@*) - L (0% + L°(°) — L($®)
< LY - L") + L°(0%) - L(°)
< 2w [L(w) - I'W)] = 0,1/m)

which, together with condition (b), imply that
Z(w") - Z(W0%) = {ZW") - L")} + {Z0) - L) | + {05 - Z0°)}
25up [L(¥) — Z(6)] + {Z(0*) = L)} = 0,(1).  (B.11)

Per

Using 1’ and (c), we have QZS 2 4p*. By (b) and (c), we also have @Z)\* 25,
So, QZS — 12* 25 0 as n — 0. By the definition of maximizer,

A

0 = VL (%) = VL(J®) + VR((), (B.12)

where Vg(v) = dg(1)/0v is the gradient of ) — g(¢). By condition (a), we
know VR(QZS) = O,(1/n). Thus, together with (B.12), we have vz({ﬂ\s) =
0,(1/n). Also, by the definition of MLE, we have VL(¢*) = 0.

By Taylor’s expansion, there exists 12 such that

—_— A~

L") L) = {VI@)} (0" =0%) =o(1/m),  (B13)
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where we have used the continuity of 1 — VL(1) to yield VL(9) = O,(1/n).
Rewriting (B.13]), we have

L(0*) — L’ (0%) = R($®) + 0,(1/n). (B.14)
Similar to , we have
L(03) — L2 (05) = R($S) + 0,(1/n). (B.15)

Then, using and , we have
d—ds| = {209 -} - {6 - @) }
— 20| R(®) = R(JS) + 0,(1/m)|.
Now consider two cases.

(i) Under Hy, we have dy, = O,(1) and 8 = ¢3. Thus condition (a) implies

R(¥S) — R(&S) = 0p(1/n). Then, we have ‘c?L — dg| = op(c’l\L).
(ii) Under Hy, we have dy, 2 0. Condition (a) and (B.11) imply that Z({p\*)—
L (4%) = 0,(1/n). Similarly, we also have L(1{) — L (48) = O,(1/n).

Hence ’c?L — ds‘ = O,(1). Thus we have ‘JL — 62\3‘ = op(dy).

A~

Therefore, under either Hy or H;, we also have ‘JL — C/Z\S‘ = o0p(dy,). Since
C,l\L ic/l\s and EL Zas, we know ?L "—“;"\5. ]
Note that, even under the assumption of this theorem, 7 and ?g are not

equivalent. From (A.7) and (A.8), 7y and @ are a “difference of difference”

estimator and a “difference” estimator, respectively. So, the “bias” of using

—$ .
L’ (¢)) cannot be canceled out in 7.
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Nominal sizea = 5%
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Figure A.7: The power curves under different parametrizations. The nominal size is a = 5%. In
each plot, the vertical axis denotes the power, whereas the horizontal axis denotes the value of
6 = p2 — p1. The legend in Figure also applies here.
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Nominal sizeo = 0.5%
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Figure A.8: The ratios of empirical power to empirical size under different parametrizations. The
nominal size is a = 0.5%. In each plot, the vertical axis denotes the ratio, and the horizontal axis
denotes § = pz — p1. The legend in Figure [A-5] also applies here. The results under nominal size
5% are shown in Figure [A.9) 97
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Figure A.9: The ratios of empirical power to empirical size under different parametrizations. The

In each plot, the vertical axis denotes the ratio, whereas the horizontal

nominal size is a = 5%.

axis denotes § = p2 — p1. The legend in Figure also applies here.
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Mean-squared error of estimators of FMI
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Figure A.10: The MSEs of estimators of £, used in the test statistics. The vertical axis denotes
the log of MSE, whereas the horizontal axis denotes the value of § = po — 1. The legend in Figure
[A75] also applies here.
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Figure A.11: The empirical size, empirical power, and their ratio. The first row of plots show
the empirical sizes. The size of the complete-case test (C2) under MAR is off the chart (always
equals to one) because it is invalid. The second and third rows of plots show the powers and the

power-to-size ratios, respectively, where the nominal size is 0.5%.
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