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Abstract: Multiple imputation (MI) inference handles missing data by imputing

the missing values m times, and then combining the results from the m complete-

data analyses. However, the existing method for combining likelihood ratio tests

(LRTs) has multiple defects: (i) the combined test statistic can be negative, but

its null distribution is approximated by an F -distribution; (ii) it is not invariant

to re-parametrization; (iii) it fails to ensure monotonic power owing to its use of

an inconsistent estimator of the fraction of missing information (FMI) under the

alternative hypothesis; and (iv) it requires nontrivial access to the LRT statistic

as a function of parameters instead of data sets. We show, using both theoretical

derivations and empirical investigations, that essentially all of these problems can

be straightforwardly addressed if we are willing to perform an additional LRT by

stacking the m completed data sets as one big completed data set. This enables

users to implement the MI LRT without modifying the complete-data procedure. A

particularly intriguing finding is that the FMI can be estimated consistently by an

LRT statistic for testing whether the m completed data sets can be regarded effec-

tively as samples coming from a common model. Practical guidelines are provided

based on an extensive comparison of existing MI tests. Issues related to nuisance

parameters are also discussed.

Key words and phrases: Fraction of missing information, invariant test, missing

data, monotonic power, robust estimation.

1. Historical Successes and Failures

1.1. The need for multiple imputation likelihood-ratio tests

Missing-data problems are ubiquitous in practice, to the extent that the ab-

sence of any missingness is often a strong indication that the data have been pre-

processed or manipulated in some way (e.g., Blocker and Meng (2013)). Multiple

imputation (MI) (Rubin (1978, 2004)) has been a preferred method, especially

by those who are ill-equipped to handle missingness on their own, owing to a

lack of information or skills or resources. MI relies on the data collector (e.g., a
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census bureau) building a reliable imputation model to fill in the missing data

m(≥ 2) times. In this way, users can apply their preferred software or procedures

designed for complete data, and do so m times. MI inference is then performed

by appropriately combining these m complete-data results. Note that in a typical

analysis of public MI data, the analyst has no control over or understanding of

how the imputation was done, including the choice of the model and m, which is

often small in reality (e.g., 3 ≤ m ≤ 10). The analyst’s job is to analyze the given

m completed data sets as appropriately as possible, but only using complete-data

procedures or software routines.

Although MI was designed initially for public-use data sets, over the years,

it has become a method of choice in general, because it separates handling the

missingness from the analysis (e.g., Tu, Meng and Pagano (1993); Rubin (1996,

2004); Schafer (1999); King et al. (2001); Peugh and Enders (2004); Kenward

and Carpenter (2007); Rose and Fraser (2008); Holan et al. (2010); Kim and

Yang (2017)). Software routines for performing MI are now available in R (Su

et al. (2011)), Stata (Royston and White (2011)), SAS (Berglund and Heeringa

(2014)), and SPSS; see Harel and Zhou (2007) and Horton and Kleinman (2007)

for summaries.

This convenient separation, however, creates an issue of uncongeniality, that

is, an incompatibility between the imputation model and the subsequent analysis

procedures (Meng (1994a)). This issue is examined in detail by Xie and Meng

(2017), who show that uncongeniality is easiest to deal with when the imputer’s

model is more saturated than the user’s model/procedure, and when the user

is conducting an efficient analysis, such as a likelihood inference. Therefore,

this study focuses on conducting MI likelihood ratio tests (LRTs), assuming the

imputation model is sufficiently saturated to render the common assumptions

made in the literature about conducting LRTs with MI valid.

Like many hypothesis testing procedures in common practice, the exact null

distributions of various MI test statistics, LRTs or not, are intractable. This

intractability is not computational, but rather statistical, owing to the well-known

issue of a nuisance parameter, that is, the lack of a pivotal quantity, as highlighted

by the Behrens–Fisher problem (Wallace (1980)). Indeed, the nuisance parameter

in the MI context is the so-called “fraction of missing information” (FMI), which

is determined by the ratio of the between-imputation variance to the within-

imputation variance (and its multi-variate counterparts). Hence, the challenge we

face is almost identical to the one faced by the Behrens–Fisher problem, as shown

in Meng (1994b). Currently the most successful strategy has been to reduce the

number of nuisance parameters to one by assuming an equal fraction of missing
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information (EFMI), a strategy we follow as well because our simulation study

indicates that it achieves a better compromise between type-I and type-II errors

than other strategies we (and others) have tried.

An added challenge in the MI context is that the user’s complete-data pro-

cedures can be very restrictive. What is available to the user could vary from

the entire likelihood function to point estimators (such as the MLE and Fisher

information) and to a single p-value. Therefore, there have been a variety of

procedures proposed in the literature, depending on what quantities we assume

the user has access to, as we review shortly.

Among them, a promising idea is to directly combine LRT statistics. How-

ever, the current execution of this idea (Meng and Rubin (1992)) relies too heavily

on the asymptotic equivalence (in terms of the data size, not the number of im-

putations, m) between the LRT and Wald test under the null. Its asymptotic

validity, unfortunately, does not protect it from quick deterioration for small data

sizes, such as delivering a negative “F test statistic” or FMI. Worst of all, the test

can have essentially zero power because the estimator of the FMI can be badly

inconsistent under some alternative hypotheses. The combining rule of Meng and

Rubin (1992) also requires access to the LRT as a function of parameter values,

not just as a function of the data. The former is often unavailable from stan-

dard software packages. This defective MI LRT, however, has been adopted by

textbooks (e.g., van Buuren (2012); Kim and Shao (2013)) and popular software,

for example, the function pool.compare in the R package mice (van Buuren and

Groothuis-Oudshoorn (2011)), the function testModels in the R package mitml

(Grund, Robitzsch and Luedtke (2017)), and the function milrtest (Medeiros

(2008)) in the Stata module mim (Carlin, Galati and Royston (2008)).

To minimize the negative impact of this defective LRT test, this study derives

MI LRTs that are free of these defects, as detailed in Section 1.5. We achieve

this mainly by switching the order of two main operators in the combining rule

of Meng and Rubin (1992): we maximize the average of the m log-likelihoods

instead of averaging their maximizers. This switch, guided by the likelihood

principle, renders positivity, invariance, and monotonic power. Other judicious

uses of the likelihood functions permit us to overcome the remaining defects.

1.2. Summary of the major findings

Our major contributions are four-fold:

• In terms of statistical principles, we propose switching the order of two

operations, namely maximization and averaging, in the existing MI LRT st-
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atistic, as suggested by the likelihood principle. This operation retrieves the

non-negativity and invariance to the re-parametrization of the MI statistic.

• In terms of theoretical properties, a new estimator of the fraction of missing

information is proposed. It is consistent, regardless of the validity of the

null hypothesis, so that the proposed test is monotonically powerful with

respect to the discrepancy between the null and alternative hypotheses.

• In terms of computational properties, the proposed test only requires that

users have a standard subroutine for performing a complete-data LRT. Thus,

unlike the existing MI LRT, users do not need to modify the subroutine in

order to evaluate the likelihood function at arbitrary parameter values.

• In terms of practical impact, the proposed test can be implemented easily

to replace the flawed MI LRT procedures in the aforementioned software

packages and beyond. It immediately resolves the issue of returning a neg-

ative F -test value. In addition, the power loss due to the flaws in the MI

LRT procedure can be retrieved.

The remainder of Section 1 provides background and notation. Section 2

discusses the defects of the existing MI LRT and our remedies. Section 3 in-

vestigates the computational requirements, including theoretical considerations

and comparisons. In particular, Algorithm 1 of Section 3.1 computes our most

recommended test. Section 4 provides empirical evidence. Section 5 concludes

the paper. Appendices A and B provide additional investigations, real-life data

examples, and proofs.

1.3. Notation and complete-data tests

Let Xobs and Xmis be, respectively, the observed and missing parts of an in-

tended complete data set X = Xcom = {Xobs, Xmis} consisting of n observations.

Denote the sampling model — probability or density, depending on the data type

— of X by f(· | ψ), where ψ ∈ Ψ ⊆ Rh is a vector of parameters. Suppose that

we are interested in inferring θ = θ(ψ) ∈ Θ ⊆ Rk, which is expressed as a function

of ψ. This definition of θ is very general. For example, θ can be a sub-vector of

ψ = (θᵀ, ηᵀ)ᵀ, or a transformation (not necessarily one-to-one) of ψ; see Section

4.4 of Serfling (2001) and Section 6.4.2 of Shao (1998).

The goal is to test H0 : θ = θ0 when only Xobs is available, where θ0 is a

specified vector. For example, if H0 puts a k-dimensional restriction R(ψ) = 0

on the model parameter ψ, then θ = R(ψ) and θ0 = 0. For simplicity, we focus

on a two-sided alternative, but our approach adapts to general LRTs. Here, we
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assume Xobs is rich enough that the missing data mechanism is ignorable (Rubin

(1976)), or it has been properly incorporated by the imputer, who may have

access to additional confidential data.

Let θ̂ = θ̂(X), ψ̂ = ψ̂(X), and ψ̂0 = ψ̂0(X) be the complete-data MLE

of θ, complete-data MLE of ψ, and H0-constrained complete-data MLE of ψ,

respectively. Furthermore, let U = Uθ = Uθ(X) and Uψ = Uψ(X) be efficient

estimators of Var(θ̂) and Var(ψ̂), respectively, for example, the inverse of the

observed Fisher information. Common test statistics for H0 include the Wald

statistic DW = dW(θ̂, U)/k and the LRT statistic DL = dL(ψ̂0, ψ̂ | X)/k, where

dW(θ̂, U) = (θ̂ − θ0)ᵀU−1(θ̂ − θ0), dL(ψ̂0, ψ̂ | X) = 2 log
f(X | ψ̂)

f(X | ψ̂0)
.

Under regularity conditions, such as those in Section 4.2.2 and Section 4.4.2 of

Serfling (2001), we have the following classical results.

Property 1. UnderH0, (i) DW ⇒ χ2
k/k andDL ⇒ χ2

k/k; and (ii) n(DW−DL)
pr→

0 as n → ∞, where “⇒” and “
pr→” denote convergence in distribution and in

probability, respectively.

Testing H0 based on Xobs is more involved. For MI, let X(`) = {Xobs, X
(`)
mis},

for ` = 1, . . . ,m, be the m completed data sets, where X
(`)
mis are drawn from a

proper imputation model (Rubin (2004)). We then carry out a complete-data

estimation or testing procedure on X(`), for ` = 1, . . . ,m, resulting in a set of m

quantities. The so-called MI inference combines them to obtain a single answer.

Note that the setting of MI is such that the user is unable or unwilling to carry

out the test based directly on the observed data Xobs.

1.4. MI wald test and fraction of missing information

Let d
(`)
W = dW(θ̂(`), U (`)), θ̂(`) = θ̂(X(`)), and U (`) = U(X(`)) be the imputed

counterparts of dW(θ̂, U), θ̂, and U , respectively, for each `. In addition, let

dW =
1

m

m∑
`=1

d
(`)
W , θ =

1

m

m∑
`=1

θ̂(`), U =
1

m

m∑
`=1

U (`). (1.1)

Under congeniality (Meng (1994a)), one can show that asymptotically (Rubin

and Schenker (1986)) Var(θ) can be consistently estimated by

T = U +

(
1 +

1

m

)
B, where B =

1

m− 1

m∑
`=1

(θ̂(`) − θ)(θ̂(`) − θ)ᵀ (1.2)
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is known as the between-imputation variance, in contrast to Ū in (1.1), which

measures the within-imputation variance. Intriguingly, 2T serves as a universal

(estimated) upper bound of Var(θ) under uncongeniality (Xie and Meng (2017)).

Under regularity conditions, we have that, as m,n→∞,

n(U −Uθ)
pr→ 0, n(T −Tθ)

pr→ 0, n(B −Bθ)
pr→ 0,

for some deterministic matrices Uθ, Tθ, and Bθ = Tθ − Uθ, where 0 denotes a

matrix of zeros, and the subscript θ highlights that these matrices are for esti-

mating θ, because there are also corresponding Tψ, Bψ, and Uψ for the entire

parameter ψ. Similar to U , T , and B, we define Uψ, Tψ, and Bψ for the pa-

rameter ψ. If θ̂com and θ̂obs are the MLEs of θ based on Xcom and Xobs (under

congeniality), respectively, then Uθ l Var(θ̂com) and Tθ l Var(θ̂obs) as n → ∞,

where An l Bn means that An −Bn = op{min(An, Bn)}. Note that the relation

An l Bn means that the difference between An and Bn is of a smaller order than

An or Bn, when both An ≥ 0 and Bn ≥ 0 approach zero. This notation (or its

variants) is also used in, for example, Meng and Rubin (1992), Li, Raghunathan

and Rubin (1991), and Kim and Shao (2013).

The straightforward MI Wald test DW(T ) = dW(θ, T )/k is not practical

because T is singular when m < k (usually 3 ≤ m ≤ 10). Even when it is not

singular, it is usually not a very stable estimator of Tθ because m is small. To

circumvent this problem, Rubin (1978) adopted the following assumption of an

EFMI.

Assumption 1 (EFMI of θ). There is r ≥ 0 such that Tθ = (1 + r)Uθ.

EFMI is a strong assumption, implying that the missing data have caused

an equal loss of information for estimating every component of θ. However,

as we shall see shortly, adopting this assumption for the purpose of hypothesis

testing is essentially the same as summarizing the impact of (at least) k nuisance

parameters due to FMI by a single nuisance parameter, this is, the average FMI

across different components. How well this reduction strategy works has a greater

effect on the power of the test than on its validity, as long as we can construct an

approximate null distribution that is more robust to the EFMI assumption. The

issue of power turns out to be a rather tricky one, because without the reduction

strategy, we also lose power when m/k is small or even modest. This is because

we simply do not have enough degrees of freedom to estimate all the nuisance

parameters well or at all. We illustrate this point in Section 4.2. (To clarify some

confusion in literature, r in Assumption 1 is the odds of the missing information,

not the FMI, which is f = r/(1 + r).) We also denote rm = (1 + 1/m)r as the
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finite-m adjusted value of r.

Under EFMI, Rubin (2004) replaced T by (1 + r̃′W)U , where

r̃′W =
(m+ 1)

k(m− 1)
(d
′
W − d̃′W), d

′
W =

1

m

m∑
`=1

dW(θ̂(`), U), (1.3)

d̃′W = dW(θ, U), and the prime “′” indicates that U is used instead of individual

{U (`)}m`=1. Then, a simple MI Wald test statistic (Rubin (2004)) is

D̃′W =
d̃′W

k(1 + r̃′W)
. (1.4)

The intuition behind (1.3)–(1.4) is important because it forms the building blocks

for virtually all the subsequent developments. The “obvious” Wald statistic d̃′W/k

is too large (compared to the usual χ2
k/k), because it fails to take into account

the missing information. The (1 + r̃′W) factor attempts to correct this, with the

amount of correction determined by the amount of between-imputation variance

relative to the within-imputation variance. This relative amount can be estimated

by contrasting the average of individual Wald statistics and the Wald statistic

based on an average of individual estimates, as in (1.3). Using the difference

between the “average of functions” and the “function of average,” namely,

Ave{G(x)} −G(Ave{x}), (1.5)

is a common practice, for example, G(x) = x2 for variance; see Meng (2002).

Because the exact null distribution of D̃′W is intractable, Li, Raghunathan

and Rubin (1991) proposed approximating it by F
k,d̃f(r̃′W,k)

, the F distribution

with degrees of freedom k and d̃f(r̃′W, k), where, denoting Km = k(m− 1),

d̃f(rm, k) =


4 + (Km − 4)

{
1 +

1− 2/Km

rm

}2

, if Km > 4;

(m− 1)(1 + 1/rm)2(k + 1)

2
, otherwise.

(1.6)

In (1.6), n is assumed to be sufficiently large so that the asymptotic χ2 distribu-

tion in Property 1 can be used. If n is small, the small sample degree of freedom

in Barnard and Rubin (1999) should be used.



1496 CHAN AND MENG

1.5. The current MI likelihood ratio test and its defect

Let d
(`)
L = dL(ψ̂

(`)
0 , ψ̂(`) | X(`)), ψ̂

(`)
0 = ψ̂0(X(`)) and ψ̂(`) = ψ̂(X(`)) be the

imputed counterparts of dL(ψ̂0, ψ̂ | X), ψ̂0 and ψ̂, respectively, for each `. Define

dL =
1

m

m∑
`=1

d
(`)
L , ψ0 =

1

m

m∑
`=1

ψ̂
(`)
0 , ψ =

1

m

m∑
`=1

ψ̂(`). (1.7)

Similar to r̃′W, Meng and Rubin (1992) proposed estimating rm by

r̃L =
m+ 1

k(m− 1)
(dL − d̃L), where d̃L =

1

m

m∑
`=1

dL(ψ0, ψ | X(`)), (1.8)

and hence it is again in the form of (1.5). The computation of r̃L requires that

users have access to (i) a subroutine for (X,ψ0, ψ) 7→ dL(ψ0, ψ | X), and (ii) the

estimates ψ̂
(`)
0 and ψ̂(`), rather than the matrices U and B. Therefore, computing

r̃L is easier than computing r̃′W. The resulting MI LRT is

D̃L =
d̃L

k(1 + r̃L)
, (1.9)

the null distribution of which can be approximated by F
k,d̃f(r̃L,k)

. Its main the-

oretical justification (and motivation) is the asymptotic equivalence between the

complete-data Wald test statistic and the LRT statistic under the null, as stated

in Property 1. This equivalence permitted the replacement of d
′
W and d̃′W in (1.3)

by dL and d̃L, respectively, in (1.8). However, this is also where the problems lie.

First, with finite samples, 0 ≤ d̃L ≤ dL is not guaranteed; consequently, nor

is D̃L ≥ 0 or r̃L ≥ 0. Because D̃L is referred to as an F distribution and r̃L

estimates rm ≥ 0, clearly, negative values of D̃L or r̃L will cause trouble. Second,

the MI LRT statistic D̃L is not invariant to re-parameterization of ψ, although

invariance is a natural property of the standard LRT; see, for example, Dagenais

and Dufour (1991). This invariance principle is an appealing property because it

requires that problems with the same formal structure should produce the same

statistical results; see Chapter 6 of Berger (1985) and Chapter 3.2 of Lehmann

and Casella (1998). Formally, we say that ϕ = g(ψ) is a re-parametrization of ψ if

g is a bijective map. The classical LRT statistic is invariant to re-parametrization

because

dL(ψ̂0, ψ̂ | X) = dL(g−1(ϕ̂0), g−1(ϕ̂) | X),

where ϕ̂0 and ϕ̂ are the constrained and unconstrained MLEs, respectively, of
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ϕ based on X. However, the MI (pooled) LRT statistic d̃L no longer has this

property because

m∑
`=1

dL(ψ0, ψ | X(`)) 6=
m∑
`=1

dL(g−1(ϕ0), g−1(ϕ) | X(`))

in general, where ϕ̂
(`)
0 and ϕ̂(`) are the constrained and unconstrained MLEs,

respectively, of ϕ based on X(`), and ϕ0 = m−1
∑m

`=1 ϕ̂
(`)
0 and ϕ = m−1

∑m
`=1 ϕ̂

(`).

Section 4 shows how the MI LRT results vary dramatically with parametrizations

in finite samples.

Third, the estimator r̃L involves the estimators of ψ under H0, this is, ψ̂
(`)
0

and ψ0. When H0 fails, they may be inconsistent for ψ. Thus, r̃L is no longer

consistent for rm. A serious consequence is that the power of the test statistic D̃L

is not guaranteed to monotonically increase as H1 moves away from H0. Indeed,

our simulations (see Section 3.2) show that under certain parametrizations, the

power may nearly vanish for obviously false H0. Fourth, computing d̃L in (1.8)

requires that users have access to D̃L, a function of both data and parameters.

However, in most software, the available function is DL, a function of data only;

that is,

D̃L : (X,ψ0, ψ) 7→ dL(ψ0, ψ | X), DL : X 7→ dL(ψ̂0(X), ψ̂(X) | X). (1.10)

It is not always feasible for users to write themselves a subroutine for computing

D̃L.

In short, four problems need to be resolved: (i) the lack of non-negativity,

(ii) the lack of invariance, (iii) the lack of consistency and power, and (iv) the

lack of a feasible algorithm. Problems (i)–(iii) are resolved in Section 2; (iv) is

resolved in Section 3.

2. Improved MI likelihood ratio tests

2.1. Invariant combining rule and estimator of rm

To derive a parametrization-invariant MI LRT, we replace d̃L by an asymp-

totically equivalent version that behaves like a standard LRT statistic. Let

L(ψ) =
1

m

m∑
`=1

L(`)(ψ), where L(`)(ψ) = log f(X(`) | ψ). (2.1)
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Here, L(ψ) is not a real log-likelihood, because it does not properly model the

completed data sets: X = {X1, . . . , Xm} (e.g., all X` share the same Xobs).

Nevertheless, L(ψ) can be treated as a log-likelihood for computational purposes.

In particular, we can maximize it to obtain

ψ̂∗0 = ψ̂∗0(X) = argmax
ψ∈Ψ : θ(ψ)=θ0

L(ψ), ψ̂∗ = ψ̂∗(X) = argmax
ψ∈Ψ

L(ψ). (2.2)

The corresponding log-likelihood ratio test statistic is given by

d̂L = 2
{
L(ψ̂∗)− L(ψ̂∗0)

}
=

1

m

m∑
`=1

dL(ψ̂∗0, ψ̂
∗ | X(`)). (2.3)

Thus, in contrast to d̃L of (1.8), d̂L aggregates MI data sets by averaging the

MI LRT functions, as in (2.1), rather than averaging the MI test statistics and

moments, as in (1.7). Although
√
n(ψ̂∗0 − ψ0)

pr→ 0 and
√
n(ψ̂∗ − ψ)

pr→ 0 as

n → ∞ for each m, only d̂L, not d̃L, is guaranteed to be non-negative and

invariant to parametrization of ψ for all m,n. Indeed, the likelihood principle

guides us to consider averaging individual log-likelihoods rather than individual

MLEs, because the former has a much better chance of capturing the functional

features of the real log-likelihood than any of their (local) maximizers can.

To derive the properties of d̂L, we need the usual regularity conditions on the

MLE and MI.

Assumption 2. The sampling model f(X | ψ) satisfies the following:

(a) The map ψ 7→ L(ψ) = n−1 log f(X | ψ) is twice continuously differentiable.

(b) The complete-data MLE ψ̂(X) is the unique solution of ∂L(ψ)/∂ψ = 0.

(c) Let I(ψ) = −∂2L(ψ)/∂ψ∂ψᵀ; then, for each ψ, there exists a positive-

definite matrix I(ψ) = U−1
ψ such that I(ψ)

pr→ I(ψ) as n→∞.

(d) The observed-data MLE ψ̂obs of ψ obeys[
T
−1/2
ψ

(
ψ̂obs − ψ

) ∣∣∣∣ψ]⇒Nh(0, Ih) (2.4)

as n→∞, where Ih is the h× h identity matrix.

Assumption 3. The imputation model is proper (Rubin (2004)):[
B
−1/2
ψ

(
ψ̂(`) − ψ̂obs

) ∣∣∣∣Xobs

]
⇒Nh(0, Ih), (2.5)
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T−1
ψ

(
U

(`)
ψ −Uψ

) ∣∣∣∣Xobs

]
pr→ 0,

[
T−1
ψ (Bψ −Bψ)

∣∣∣∣Xobs

]
pr→ 0 (2.6)

independently for each `, as n→∞, provided that B−1
ψ is well defined.

Assumption 2 holds under the usual regularity conditions that guarantee

the normality and consistency of MLEs. When X
(1)
mis, . . . , X

(m)
mis are drawn inde-

pendently from a (correctly specified) posterior predictive distribution f(Xmis |
Xobs), Assumption 3 is typically satisfied. Clearly, we can replace ψ by its sub-

vector θ in Assumptions 2 and 3. These θ-version assumptions are sufficient to

guarantee the validity of Theorem 2 and Corollary 1. For simplicity, Assump-

tion 1, the θ-version of Assumptions 2 and 3, and the conditions that guarantees

Property 1 are collectively written as RCθ (RC denotes “regularity conditions”),

which are commonly assumed for MI inference.

Theorem 1. Assume RCθ. Under H0, we have (i) d̂L ≥ 0 for all m,n; (ii) d̂L

is invariant to parametrization of ψ for all m,n; and (iii) d̂L l d̃L as n→∞ for

each m.

Consequently, an improved combining rule is defined as

D̂L(rm) =
d̂L

k(1 + rm)
, (2.7)

for a given value of rm. The forms of (1.4) and (1.9) follow. Using d̂L in (2.3),

we can modify r̃L in (1.8) to provide a potentially better estimator:

r̂L =
m+ 1

k(m− 1)
(dL − d̂L). (2.8)

Although d̂L ≥ 0 is guaranteed by our construction, r̂L ≥ 0 does not hold in

general for a finite m. However, it is guaranteed in the following situation.

Proposition 1. Write ψ = (θᵀ, ηᵀ)ᵀ, where η represents a nuisance parameter

that is distinct from θ. If there exist functions L† and L‡ such that, for all X,

the log-likelihood function L(ψ | X) = log f(X | ψ) is of the form L(ψ | X) =

L†(θ | X) + L‡(η | X), then r̂L ≥ 0 for all m,n.

The condition in Proposition 1 means that the likelihood function of ψ is

separable, which ensures that the profile likelihood estimator of η given θ, this

is, η̂θ = argmaxηL(θ, η | X), is free of θ. Clearly, in the absence of the nuisance

parameter η, the separation condition holds trivially. More generally, we have

the following.
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Corollary 1. Assume RCθ. We have (i) under H0, r̂L
pr→ r as m,n → ∞;

and (ii) under H1, r̂L
pr→ r0 as m,n → ∞, where r0 ≥ 0 is some finite value

depending on θ0 and the true value of θ.

Corollary 1 ensures that, under H0, r̂L is non-negative asymptotically and

converges in probability to the true r. However, it also reveals another fundamen-

tal defect of r̂L: under H1, the limit r0 may not equal r, a problem we address in

Section 2.2. Fortunately, because d̂L
pr→ ∞ under H1, the LRT statistic D̂L(r̂L)

is still powerful, albeit the power may be reduced. Similarly, r̃L of (1.8) has the

same asymptotic properties and defects, but r̂L behaves more nicely than r̃L for

finite m. This hinges closely on the high sensitivity of r̃L to the parametrization

of ψ; for example, r̃L may become more negative as H1 moves away from H0; see

Section 4.1.

Whereas we can fix the occasional negativeness of r̂L by using r̂+
L = max(0, r̂L),

such an ad hoc fix misses the opportunity to improve upon r̂L, and indeed it can-

not fix the inconsistency of r̂L under H1.

2.2. A consistent and non-negative estimator of rm

Proposition 1 already hinted that the source of the negativity and inconsis-

tency of r̂L is related to the existence of the nuisance parameter η. By definition,

dL and d̂L depend on the specification of θ0. In general, the effect of θ0 may not

be cancelled out by their difference dL− d̂L, unless a certain type of orthogonality

assumption is made on η and θ; see Proposition 1 for an example. Consequently,

the validity of the estimator r̂L depends on the correctness of H0. A more elabo-

rate discussion can be found in Appendix A.1. In order to principally resolve the

aforementioned problem, we need to eliminate the dependence on θ0 in our esti-

mator for the odds of missing information, rm. We achieve this goal by estimating

these odds for the entire ψ, resulting in the following estimator for rm:

r̂♦L =
m+ 1

h(m− 1)
(δL − δ̂L), where (2.9)

δL = 2L(ψ̂(1), . . . , ψ̂(m)), δ̂L = 2L(ψ̂∗, . . . , ψ̂∗), (2.10)

and h is the dimension of ψ. In (2.9), the rhombus “♦” symbolizes a robust

estimator. It is robust because it is consistent under either H0 or H1, as long as

we are willing to impose the EFMI assumption on ψ, this is, Assumption 4. This

expansion from θ to ψ is inevitable because the LRT must handle the entire ψ,

not just θ. The collection of Assumptions 2–4 are referred to as RCψ.

Assumption 4 (EFMI of ψ). There is r ≥ 0 such that Tψ = (1 + r)Uψ.
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Theorem 2. Assume RCψ. For any value of ψ, we have (i) r̂♦L ≥ 0 for all m,n;

(ii) r̂♦L is invariant to parametrization of ψ for all m,n; and (iii) r̂♦L
pr→ r as

m,n→∞, where r is given in Assumption 4.

With the improved combining rule D̂L(rm) of (2.7) and improved estimators

for rm, we are ready to propose two MI LRT statistics:

D̂+
L = D̂L(r̂+

L ) and D̂♦L = D̂L(r̂♦L ). (2.11)

For comparison, we also study the test statistic D̂L = D̂L(r̂L).

2.3. Reference null distributions

The estimators r̂+
L and r̃L have the same functional form asymptotically

(n→∞). Hence, they have the same asymptotic distribution.

Lemma 1. Suppose RCθ and m > 1. Under H0, we have, jointly,

r̂+
L

rm
⇒M2 and D̂+

L ⇒
(1 + rm)M1

1 + rmM2
(2.12)

as n→∞, where M1 ∼ χ2
k/k and M2 ∼ χ2

k(m−1)/{k(m− 1)} are independent.

Consequently, D̂+
L = D̂L(r̂+

L ) approximately follows F
k,d̃f(r̂+L ,k)

under H0, but

a better approximation is provided shortly. For the other proposal, although

r̂+
L − r̂

♦
L

pr→ 0 as n → ∞ under H0, their non-degenerated limiting distributions

are different because r̂♦L and r̂+
L rely on an average FMI in ψ and θ, respectively.

Theorem 3. Suppose RCψ and m > 1. Then, for any value of ψ,

r̂♦L
rm
⇒M3 ∼

χ2
h(m−1)

h(m− 1)
(2.13)

as n→∞, where M3 is independent of the M1 defined in (2.12).

Theorem 3 implies that, if n can be regarded as infinity and r̂♦L is uniformly

integrable in L2, then Bias(r̂♦L )=E(r̂♦L )−rm=0 and Var(r̂♦L )=2r2
m/{h(m−1)}

= O(m−1) as m → ∞. Hence, r̂♦L is a
√
m-consistent estimator of r in L2.

Moreover, for each m > 1 and as n → ∞, we have Bias(r̂+
L )/Bias(r̂♦L ) → 1 and

Var(r̂+
L )/Var(r̂♦L ) → h/k ≥ 1, which imply that r̂♦L is no less efficient than r̂+

L

when RCψ holds. This is not surprising because of the extra information brought

in by the stronger Assumption 4. Result (2.13) also gives us the exact (i.e., for

any m > 1, but assuming n → ∞) reference null distribution of D̂♦L , as given

below.
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Theorem 4. Assume RCψ and m > 1. Under H0, we have

D̂♦L ⇒
(1 + rm)M1

1 + rmM3
≡ D (2.14)

as n→∞, where M1 ∼ χ2
k/k and M3 ∼ χ2

h(m−1)/{h(m− 1)} are independent.

The impact of the nuisance parameter rm on D diminishes with m because

D̂♦L and D̂+
L converge in distribution to M1 = χ2

k/k as m,n→∞. Because M3
pr→

1 faster than M2
pr→ 1, D̂♦L is expected to be more robust to rm. Nevertheless,

m typically is small in practice (e.g., m ≤ 10), so we cannot ignore the impact

of rm. This issue has been largely dealt with in the literature by seeking an

Fk,df distribution to approximate D, as in Li, Raghunathan and Rubin (1991).

However, directly adopting their d̃f of (1.6) leads to a poorer approximation

for our purposes; see below. A better approximation is to match the first two

moments of the denominator of (2.14), 1 + rmM3, with that of a scaled χ2:

aχ2
b/b. This yields a = 1+rm and b = (1+r−1

m )2h(m−1), and the approximated

F
k,d̂f(rm,h)

, where

d̂f(rm, h) =

{
1 + rm

rm

}2

h(m− 1) =
h(m− 1)

f2
m

, (2.15)

which is appealing because it simply inflates the denominator degrees of freedom

h(m−1) by dividing it by the square of the finite-m corrected FMI fm = rm/(1+

rm). The less missing information, the closer F
k,d̂f(rm,h)

is to χ2
k/k, the usual

large-n χ2 test; as mentioned earlier, for small n, see Barnard and Rubin (1999).

To compare the performance of F
k,d̂f(rm,h)

in (2.15) with the existing best

approximation F
k,d̃f(rm,h)

, as approximations to the limiting distribution of D

given in (2.14), we compute via simulations

α̃ = P
{
D > F−1

k,d̃f(rm,h)
(1− α)

}
and α̂ = P

{
D > F−1

k,d̂f(rm,h)
(1− α)

}
,

where F−1
k,df(q) denotes the q-quantile of Fk,df . Note that the experiments assess

solely the performance of the finite-m approximation instead of the performance

of the large-n χ2-approximation of the asymptotic LRT statistics. We draw N =

218 independent copies D for each of the following possible combinations: m ∈
{3, 5, 7}, k ∈ {1, 2, 4, 8}, τ = h/k ∈ {1, 2, 3}, fm ∈ {0, 0.1, . . . , 0.9}, and following

the recommendation of Benjamin et al. (2018), we use both α ∈ {0.5%, 5%}.
The results for α = 0.5% and α = 5% are shown in Figure 1 and Figure A.3

of the Appendix, respectively. In general, α̂ approximates α much better than
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Figure 1. The performance of two approximated null distributions when the nominal size
is α = 0.5%. The vertical axis denotes α̂ or α̃, and the horizontal axis denotes the value
of fm. The number attached to each line denotes the value of τ = h/k.

α̃ does, especially when m, k, h are small. When m,h are larger, they perform

similarly because both F
k,d̃f(rm,h)

and F
k,d̂f(rm,h)

get closer to χ2
k/k. However, the

performance of α̃ and α̂ is not monotonic in fm. The performance of F
k,d̂f(rm,h)

is particularly good for 0% . fm . 30%. Consequently, we recommend using

F
k,d̂f(r̂♦L ,h)

as an approximate null distribution for D̂♦L , and F
k,d̂f(r̂+L ,k)

for D̂+
L ,

as employed in the rest of this paper. However, these approximations obviously

suffer from the usual “plug-in problem” by ignoring the uncertainty in estimating

rm. Because Fk,df is not too sensitive to the value of df once it is reasonably

large (df ≥ 20), the “plug-in problem” is less an issue here than in many other

contexts, leading to acceptable approximations, as empirically demonstrated in

Section 4. Nevertheless, further improvements should be sought, especially for

dealing with the violation of the EFMI assumption, which would likely make the

performance of our tests deteriorate with large k or h, in contrast to the results

shown in Figure 1; see Chan (2022) for a possible remedy.
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3. Computational Considerations and Comparisons

3.1. Computationally feasible combining rule

For many real-world data sets, X is an n × p matrix, with rows indicating

subjects and columns indicating attributes. We write X = (X1, . . . , Xn)ᵀ, and

its sampling model by fn(X | ψ). Correspondingly, the `th imputed data set is

X(`) = (X
(`)
1 , . . . , X

(`)
n )ᵀ. Define the stacked data set by X(1:m) = [(X(1))ᵀ, . . . ,

(X(m))ᵀ]ᵀ, a mn × p matrix, which is conceptually different from the collection

of data sets {X(1), . . . , X(m)}. Assuming that the rows of X are independent, we

can compute (2.1) as

L(ψ) =
1

m
log fmn(X(1:m) | ψ). (3.1)

Consequently, as long as the user’s complete-data procedures can handle size mn

instead of n, the user can apply them to X(1:m) to obtain D̂+
L and D̂♦L in (2.11).

In many applications, the rows correspond to individual subjects. Thus,

the row-independence assumption typically holds for arbitrary n. Hence, we

can extend from n to mn, assuming the user’s complete-data procedure is not

size-limited. Even if this is not true, (3.1) can still hold approximately under

some regularity conditions; see Appendix A, where we also reveal a subtle, but

important difference between the computation formulae (2.1) and (3.1).

Similar to DL in (1.10), we define complete-data functions

DL,0(X) = 2 log f(X | ψ̂0(X)), DL,1(X) = 2 log f(X | ψ̂(X)), (3.2)

the only input of which is the data set X. Clearly, DL(X) = DL,1(X)−DL,0(X).

The subroutine for evaluating the complete-data LRT function X 7→ DL(X) is

usually available, as is the subroutine for X 7→ DL,1(X), for example, the function

logLik in R extracts the maximum of the complete data log-likelihood for objects

belonging to classes "glm", "lm", "nls", and "Arima".

Algorithms 1 and 2 compute D̂♦L and D̂+
L , respectively. We recommend using

the robust MI LRT in Algorithm 1, because it has the best theoretical guarantee.

The second test can be useful when DL is available but DL,1 is not.

3.2. Computational comparison with existing tests

Different MI tests require different computing subroutines, for example, DL,

D̃L, DL,1,

MW(X) =
{
θ̂(X), U(X)

}
and ML(X) =

{
ψ̂(X), ψ̂0(X)

}
,
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Algorithm 1: (Robust) MI LRT statistic D̂♦L

Input: Data sets X(1), . . . , X(m); h, k; functions DL,1, DL in (3.2), (1.10).
begin

Stack the data sets to form X(1:m) = [(X(1))ᵀ, . . . , (X(m))ᵀ]ᵀ.

Find δL =
∑m

`=1 DL,1(X(`))/m, δ̂L = DL,1(X(1:m))/m, d̂L = DL(X(1:m))/m.

Calculate r̂♦L according to (2.9), and D̂♦L according to (2.7) and (2.11).

Calculate d̂f(r̂♦L , h) according to (2.15).

Compute the p-value as 1− Fk,d̂f(r̂♦L ,h)(D̂
♦
L ).

Algorithm 2: MI LRT statistic D̂+
L

Input: Data sets X(1), . . . , X(m); k; function DL in (1.10).
begin

Stack the data sets to form X(1:m) = [(X(1))ᵀ, . . . , (X(m))ᵀ]ᵀ.

Find dL =
∑m

`=1 DL(X(`))/m and d̂L = m−1DL(X(1:m)).

Calculate r̂+L according to (2.8), and D̂+
L according to (2.7) and (2.11).

Calculate d̂f(r̂+L , k) according to (2.15).

Compute the p-value as 1− Fk,d̂f(r̂+L ,k)(D̂
+
L ).

where the unnormalized density can be used in DL,1. We summarize the com-

puting requirement in Table 1. We also compare the following statistical and

computational properties of various MI test statistics and various estimators of

rm:

• (Inv) The MI test is invariant to re-parametrization of ψ.

• (Con) The estimator of rm is consistent, regardless of whether or not H0 is

true.

• (≥ 0) The test statistic and estimator of rm are always non-negative.

• (Pow) The MI test has high power to reject H0 under H1.

• (Def) The MI test statistic is well defined and numerically well conditioned.

• (Sca) The MI procedure requires that users deal with scalars only.

• (EFMI) Whether EFMI is assumed for θ or for ψ.

In summary, our proposed LRT-2 is computationally most attractive. If the

user is willing to make stronger assumptions, our proposed LRT-3 has better
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Table 1. Computational requirements and statistical properties of MI tests. The symbol
“+” (resp. “−”) means that a test has (resp. does not have) the indicated property; see
Section 3.2 for detailed descriptions. WT-1 (Rubin (2004); Li et al. (1991)) and LRT-1
(Meng and Rubin (1992)) are existing tests. LRT-2 and LRT-3 are the proposed tests,
which can be computed by Algorithms 2 and 1, respectively. LRT-3 is recommended.

Properties

Test Statistic Distribution Routine Inv Con ≥ 0 Pow Def Sca EFMI

WT-1 DW(T ) ≈ Fk,d̃f(r̃′W,k) MW − + + − − − θ

LRT-1 D̃L(r̃L) ≈ Fk,d̃f(r̃L,k)
ML, D̃L − − − − + − θ

LRT-2 D̂L(r̂+L ) ≈ Fk,d̂f(r̂+L ,k) DL + − + − + + θ

LRT-3 D̂L(r̂♦L ) ≈ Fk,d̂f(r̂♦L ,k) DL,DL,1 + + + + + + ψ

statistical properties, and is still computationally feasible. In practice, we rec-

ommend using LRT-3. We also present other existing MI tests and compare our

proposals with them in Appendix A.5.

3.3. Summary of notation

For ease of referencing, we summarize all major notation used in the paper.

Recall that ψ ∈ Rh is the model parameter, and θ is the parameter of interest.

We would like to test H0 : θ = θ0 against H1 : θ 6= θ0.

• Complete-data Estimators and Test Statistics:

– θ̂(X) and U(X): MLE of θ and its variance estimator.

– ψ̂(X) and ψ̂0(X): the unrestricted and H0-restricted MLEs of ψ.

– dW(θ̂, U) = (θ̂ − θ0)ᵀU−1(θ̂ − θ0): the Wald test statistic.

– dL(ψ̂0, ψ̂ | X) = 2 log{f(X | ψ̂)/f(X | ψ̂0)}: the LRT statistic.

• Complete-data Functions (or Software Routines):

– MW(X) = {θ̂(X), U(X)} and ML(X) = {ψ̂(X), ψ̂0(X)}.

– D̃L(X,ψ0, ψ) = dL(ψ0, ψ | X): a nonstandard LRT function/routine.

– DL(X) = dL(ψ̂0(X), ψ̂(X) | X): the standard LRT function/routine.

– DL,1(X) = 2 log f(X | ψ̂(X)): the (scaled) maximum log-likelihood.

• MI Statistics:

– θ̂(`), U (`), ψ̂
(`)
0 , ψ̂(`), d

(`)
W , d

(`)
L : the imputed values of θ̂, U , ψ̂0, ψ̂,

dW(θ̂, U), dL(ψ̂0, ψ̂ | X) using the imputed data set X(`) for each `.
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– θ, U , ψ0, ψ, dW, dL: the averages (over `) of θ̂(`), U (`), ψ̂
(`)
0 , ψ̂(`), d

(`)
W ,

d
(`)
L .

– T = U + (1 + 1/m)B, where B =
∑m

`=1(θ̂(`) − θ)(θ̂(`) − θ)ᵀ/(m− 1).

– d
′
W =

∑m
`=1 dW(θ̂(`), U)/m and d̃′W = dW(θ, U).

– d̃L =
∑m

`=1 D̃L(X(`), ψ0, ψ)/m: an existing pooled LRT statistic.

– d̂L = DL(X(1:m))/m: the proposed pooled LRT statistic.

– δL =
∑m

`=1 DL,1(X(`))/m and δ̂L = DL,1(X(1:m))/m: two proposed

ways for pooling maximized log-likelihood.

• Estimators of rm:

– r̃′W = (m+ 1)(d
′
W − d̃′W)/{k(m− 1)} (Rubin (2004)).

– r̃L = (m+ 1)(dL − d̃L)/{k(m− 1)} (Meng and Rubin (1992)).

– r̂+
L = max[0, (m+ 1)(dL − d̂L)/{k(m− 1)}]: our first proposal.

– r̂♦L = (m+ 1)(δL − δ̂L)/{h(m− 1)}: our second proposal.

• MI Test Statistics for Testing H0 against H1:

– (WT-1) DW(T ) = dW(θ, T )/k: the classical MI Wald test.

– (LRT-1) D̃L(r̃L) = d̃L/{k(1 + r̃L)}: the existing MI LRT.

– (LRT-2) D̂L(r̂+
L ) = d̂L/{k(1 + r̂+

L )}: our first proposal.

– (LRT-3) D̂L(r̂♦L ) = d̂L/{k(1 + r̂♦L )}: our second proposal.

4. Empirical Investigation and Findings

4.1. Monte Carlo experiments with EFMI

Let X1, . . . , Xn ∼Np(µ,Σ) independently, where µ = (µ1, . . . , µp)
ᵀ. Assume

that only nobs = b(1 − f)nc data points are observed. Let Xobs = {Xi : i =

1, . . . , nobs} and Xmis = {Xi : i = nobs + 1, . . . , n}. We want to test H0 : µ1 =

· · · = µp.

Obviously, one may directly use the observed data set to construct the LRT

statistic DL without MI. Thus, it is regarded as a benchmark (denoted by LRT-

0). The tests WT-1 and LRT-1,2,3 listed in Table 1 are investigated. We perform

MI using a Bayesian model with a multivariate Jeffreys prior on (µ,Σ), this is,

f(µ,Σ) ∝ |Σ|−(p+1)/2. The imputation procedure is detailed in Appendix A.6.

We study the impact of the parametrization on different test statistics.
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• Parametrizations of θ for the Wald tests: (i) θ = (µ2 − µ1, . . . , µp − µp−1)ᵀ;

(ii) θ = (µ2/µ1 − 1, . . . , µp/µp−1 − 1)ᵀ; and (iii) θ = (µ3
2 − µ3

1, . . . , µ
3
p −

µ3
p−1)ᵀ. For any case above, H0 can be expressed as θ = (0, . . . , 0)ᵀ.

• Parametrizations of ψ for LRTs: (i) ψ = {µ; Σ}; (ii) ψ = {√σii/µi, 1 ≤ i ≤
p; Σ}; and (iii) ψ =

{
µᵀΣ−1/2; Σ−1

}
, where Σ = (σij) and Σ1/2 is the square

root of Σ via the spectral method. The dimension of ψ is h = (p2 + 3p)/2.

We set Σ = σ2{(1 − ρ)Ip + ρ1p1
ᵀ
p}, f = 0.5, p = 2, ρ = 0.8, σ2 = 5, and

µ = (−2+δ,−2+2δ)ᵀ for different values of m ∈ {3, 10, 30}, n ∈ {100, 400, 1600},
and δ = µ2 − µ1 ∈ [0, 4]. All simulations are repeated 212 times. The empirical

power functions for α = 0.5% tests are plotted in Figure 2. The results for

α = 5% tests are deferred to Table A.7 of the Appendix.

In general, WT-1 exhibits monotonically increasing power as δ increases, and

its performance is affected significantly by parametrization. Indeed, the power

can be as low as zero when 1 . δ . 2 under parametrizations (ii) and (iii). Under

parametrization (ii), LRT-1 is not powerful, even for large δ. On the other hand,

our first proposed test statistic LRT-2 performs better than LRT-1, at least for

large m; however, they also lose a significant amount of power when m is small.

Our recommended proposal LRT-3 performs best in all cases. The superiority of

LRT-3 is particularly striking when m is small, this is, m = 3.

We also investigate (a) the distribution of the p-value, (b) the empirical size

α̂ in comparison to the nominal type-I error α, (c) the empirical size-adjusted

power (Bayarri et al. (2016)), (d) the robustness of our proposed estimators of

rm, and (e) the performance of other existing MI tests. The results are shown in

Appendix A.6, all of which indicate that our proposed tests perform best.

4.2. Monte Carlo experiments without EFMI

To check how robust various tests are to the assumption of EFMI, we sim-

ulate Xi = (Xi1, . . . , Xip)
ᵀ ∼ Np(µ,Σ) independently for i = 1, . . . , n. Let

Rij be defined by Rij = 1 if Xij is observed, and Rij = 0 otherwise. Sup-

pose that the first variable X·1 is always observed, and the rest form a mono-

tone missing pattern, as defined by a logistic model on the missing propensity:

P (Rij = 0 | Ri,j−1 = a) = [1 + exp(α0 + α1Xi,j−1)]−1 (for j = 2, . . . , p) when

a = 1. This probability is zero when a = 0 (i.e., nothing is missing). If α1 = 0,

the data are missing completely at random (MCAR); otherwise they are miss-

ing at random (MAR); see Rubin (1976). The imputation procedure is given in

Appendix A.7.

We test H0 : µ = 0p against H1 : µ 6= 0p. We set µ = δ1p, where δ ∈
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Figure 2. The power curves under nominal size α = 0.5%. In each plot, the vertical axis
denotes the power, and the horizontal axis denotes the value of δ = µ2 − µ1.

[0, 0.6]; Σij = 0.5|i−j|, for i, j = 1, . . . , p; n = 500; m ∈ {3, 5}; p = 5; and

(α0, α1) ∈ {(2,−1), (1, 0)}. Our model treats Σ as unknown, and hence k = p

and h = (3p + p2)/2. Under H0 and MAR, the FMI, i.e., the eigenvalues of
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Figure 3. The empirical size, empirical power, and their ratio. The first row of plots
show the empirical sizes. The size of the complete-case test (C2) under MAR is off the
chart (always equal to one) because it is invalid. The second and third rows of plots
show the powers and the power-to-size ratios, respectively. The nominal size is 0.5%.

BθT
−1
θ , are (0, 19%, 34%, 45%, 55%). Thus, the assumption of EFMI does not

hold.

In this experiment, we also compare the performance of WT-1 and LRT-1,2,3.

For reference, the complete-case (asymptotic) LRT using {Xi : Ri1 = · · · = Rip
= 1}, denoted by LRT-0, is also computed. The results are shown in Figure 3.

The size of LRT-3 is accurate when the nominal size is small. If the data are

MCAR, LRT-0 is valid, but with slightly less power. (LRT-0 is typically invalid

without MCAR.) The test LRT-3 has the best power-to-size ratio among all other

tests. The power-to-size ratio of LRT-2 and LRT-3 become closer to the nominal

value 1/0.5% = 200 as m increases. These results indicate that our proposed tests

perform well and best, despite the serious violation of the EFMI assumption.
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5. Conclusion, Limitation and Future Work

In addition to conducting a general comparative study of MI tests, we have

proposed two particularly promising MI LRTs based on D̂♦L = D̂L(r̂♦L ) and D̂+
L =

D̂L(r̂+
L ). Both test statistics are non-negative, invariant to parametrizations, and

powerful to reject a false H0 (at least for large enough m). The test D̂♦L is the most

principled, and has desirable monotonically increasing power as H1 departs from

H0. However, it is derived under the stronger assumption of EFMI for ψ, not just

for θ. Furthermore, row independence of Xcom is needed for ease of computation.

(With a slightly more computationally demanding requirement, D̂L(r̂♦L ) can be

used without the independence assumption.) The main advantage of D̂+
L is that

it is easier to compute, because it requires only standard complete-data computer

subroutines for LRTs. One drawback is that the ad hoc fix r̂+
L = max(0, r̂L) is

inconsistent, in general. However, the inconsistency does not significantly affect

the asymptotic power, at least in our experiments. Although D̂+
L and D̂♦L offer

significant improvements over existing options, more research is needed, for the

reasons listed below:

• When the missing-data mechanism is not ignorable, but the imputers fail

to fully take that into account, the issue of uncongeniality becomes critical

(Meng (1994a)). Xie and Meng (2017) provide theoretical tools to address

this issue in the context of estimation, and research is needed to extend

their findings to the setting of hypothesis testing.

• Violating the EFMI assumption may not invalidate a test, but it will affect

its power. Thus, it is desirable to explore MI tests without assuming EFMI.

• The robust D̂♦L relies on a stronger assumption of EFMI on ψ. We can

modify it so only EFMI on θ is required, but the modification may be very

difficult to compute, and may require that users have access to nontrivial

complete-data procedures. Hence, a computationally feasible robust test

that only assumes EFMI on θ needs to be developed.

• Because the FMI is a fundamental nuisance parameter and there is no

(known) pivotal quantity, all MI tests are just approximations. If FMI

is large or m is small, they may perform poorly. Thus, seeking powerful

MI tests that are least affected by FMI is of both theoretical and practical

interest.
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Supplementary Material

Appendix A contains additional theoretical results and details of numeri-

cal examples. Appendix B contains proofs of the main results. The R code is

provided online.
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