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Abstract: In many physical and computer experiments, the order in which the steps

of a process are performed may have a substantial impact on the measured response.

Often, the goal in these situations is to uncover the order that optimizes the re-

sponse according to some metric. However, the brute force approach of performing

all permutations quickly becomes impractical as the number of components in the

process increases. Instead, we seek to develop order-of-addition experiments that

choose an economically viable subset of permutations to test. The statistical lit-

erature on this topic is sparse, and many researchers rely on ad-hoc methods to

study the effect of process order. In this work, we present a series of novel devel-

opments, including a modeling framework that exploits certain structures of the

data, a method for constructing optimal designs under this proposed framework,

and an evaluation of the performance and robustness of the constructed designs.

We use data from a drug combination therapy problem to highlight the benefits of

our approach.

Key words and phrases: Drug combination experiment, experimental design, gen-

eralized minimum aberration, Latin square, optimal design, orthogonal array.

1. Introduction

In many experiments, the order in which a process is executed or components

are added can have a substantial impact on the response. Researchers must there-

fore consider this effect when designing their experiments, or they run the risk of

producing sub-optimal conclusions. However, the combinatorial explosion that

occurs in experiments with more than a few components quickly renders run-

ning a trial for every permutation impractical. The solution to this problem is

to design order-of-addition experiments in which the goal is to choose an appro-

priate subset of all possible permutations, such that the study objective can be

appropriately met, while satisfying the computational and financial constraints.

Order-of-addition experiments are popular for studying physical and simu-

lated phenomena in areas such as medical science, pharmaceutical science, bio-
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chemistry, nutritional science, food science, and mechanics and engineering; see

Lin and Peng (2019) for a review of these applications. We encounter order-of-

addition experiments in both past and present drug combination projects. Com-

bination chemotherapy has become common in cancer treatment, viral infection

eradication, and super bacteria inhibition (Ding et al. (2013), Jaynes et al. (2013),

Ding et al. (2015), Silva et al. (2016), Xiao, Wang and Xu (2019)). However, a

major limitation of the current techniques is that drugs are added simultaneously

and the drug sequence is not considered. The drug sequence often plays a major

role in deciding the endpoint efficacy because the early addition of certain drugs

could prepare the biological system to better accept or defend the later drugs.

Pre-clinical and clinical studies indicate that the drug sequence is important to

improving the effect of the treatment (MacBeath and Yaffe (2012), Wang, Xu

and Ding (2020)).

Nevertheless, references for the design and modeling of such experiments are

rather primitive. Traditional factorial designs and orthogonal arrays cannot be

used for order-of-addition experiments, because each run must be a permutation

of the components, and existing methods fall short when working with complex,

real data. In this work, Section 2 begins with an overview of the current order-of-

addition literature. Next, Section 3 proposes new models and presents the results

of applying them to the drug-sequencing problem discussed above in the context

of treating lymphoma. Section 4 introduces a novel construction method, and

covers general optimality results for a class of models. Section 5 evaluates the

performance and properties of the designs from our algorithm and compares them

with those of existing designs. This includes a study that demonstrates that the

proposed designs are robust under algorithm tuning and model misspecification.

Section 6 concludes the paper with a summary and discussion. All proofs are

given in Section S1 of the Supplementary Material.

2. Background

We call each material or drug to be added in an experiment a component. If

the experiment involves m components, denoted by 0, 1, . . . ,m−1, then there are

m! possible permutations. Let Fm be the full design with m! distinct rows and

m columns, where each row is a permutation of m components. Performing all

possible permutations quickly becomes unfeasible, even for experiments with five

or more components. To save time and cost, it is necessary to choose a subset

of the runs to perform. A natural question then arises of which subset to choose

and how to model the response.
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There have been a few recent studies on the design and analysis of order-

of-addition experiments, as formulated above. Van Nostrand (1995) and Voelkel

(2019) studied order-of-addition experiments by creating a set of pseudo-factors

{Iij , 0 ≤ i < j ≤ m − 1}, such that each corresponds to the pairwise ordering

of the components. For example, in the case of m = 4 components, the six

pairwise ordering factors are I01, I02, I03, I12, I13, and I23. Each factor Iij has

two levels, 1 and −1, indicating whether or not, respectively, component i is

added before component j. Furthermore, they considered the following pairwise

ordering (PWO) model:

y = β0 +
∑
i<j

βijIij + ε, (2.1)

with random error ε ∼ N(0, σ2). Voelkel (2019) constructed optimal designs for

this PWO model and employed the D-criterion to assess their properties and make

comparisons. Peng et al. (2019) showed that the full design Fm is optimal for

the PWO model under any concave and signed permutation invariant criterion.

The authors also constructed a class of fractional designs that are optimal under

these same conditions. However, their designs often have an excessive number of

runs, and may be less useful in practice. Zhao, Lin and Liu (2020) constructed

minimally supported designs for the PWO model containing only one point per

parameter. Mee (2020) extended the PWO model to include interactions of the

pairwise ordering factors, which we briefly consider in Section 3. Lin and Peng

(2019) provided a good summary of PWO models.

Yang, Sun and Xu (2021) took a different approach to the problem by mea-

suring the absolute position effects instead of the relative position effects. They

framed the order-of-addition experiment with n runs and m components as a

design matrix A = (aij), where aij is the component added in the jth position

of the ith run. They constructed an indicator z
(i)
kj for each component-position

pair (k, j), such that z
(i)
kj is one if aij = k, and zero otherwise. Because exactly

one component is used at each position, we have
∑m−1

k=0 z
(i)
kj = 1 for any i and j.

Thus, m − 1 contrasts are needed to represent the effects of m components for

each position. Because each run is a permutation of m distinct components, we

also have
∑m

j=1 z
(i)
kj = 1 for any i and k. As a result, we can only include m− 1

positions in the model. Given these constraints, an appropriate regression model,

called the component-position (CP) model, is

y = γ0 +

m−1∑
k=1

m−1∑
j=1

zkjγkj + ε, (2.2)
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Figure 1. Component-position effects plots for four-drug (left) and five-drug (right)
order-of-addition experiments.

where y is the response, γ0 is the intercept, zkj is an indicator for the component-

position pair (k, j), as described above, γkj is the parameter representing the

effect of component k being added at the jth position, and ε is an independent

normal random error. Yang, Sun and Xu (2021) also proposed the following class

of designs for the CP model (2.2).

Definition 1. An n × m matrix with entries from {0, 1, . . . ,m − 1} is called

a component orthogonal array (COA) of n runs and m factors if each row is a

permutation of {0, 1, . . . ,m−1} and, for any subarray of two columns, each level

combination (i, j), with i 6= j and i, j = 0, 1, . . . ,m − 1, appears equally often.

Such an array is denoted by COA(n,m).

By Definition 1, every level combination (i, j), with i 6= j and i, j = 0, 1, . . . ,

m−1, must appear equally often in every two-column sub-array of a COA(n,m).

Thus, all designs must have n = λm(m−1), where λ is an integer. Indeed, COAs

are orthogonal arrays of type I, as defined by Rao (1961). Hedayat, Sloane and

Stufken (1999) provided a comprehensive introduction to orthogonal arrays.

Several of these recent works have focused on the aforementioned problem

of choosing an optimal sequence for drug administration. Figure 1 shows the

component-position effects plots for four-drug (left) and five-drug (right) order-

of-addition experiments from Yang, Sun and Xu (2021) and Mee (2020). These

experiments considered four and five chemotherapeutics, respectively, for treat-

ing lymphoma that have received FDA approval for clinical testing (Wang, Xu

and Ding (2020)). Each drug was tested at a fixed dosage estimated from a pre-

liminary dose-response study. For each sequence, a drug was administered every

four hours in the four-drug study, and every three hours in the five-drug study.
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In each plot, the horizontal axis denotes the position at which a drug is added,

and the vertical axis denotes the mean response, in this case, a measure of cancer

cell inhibition 24 hours after the first drug was administered. Each point denotes

the mean response of all runs in which the labeled drug is at the fixed position.

For each drug, the m dots corresponding to m different positions are connected

to visualize the trend as that drug is shifted to a later position in the sequence.

The solid horizontal line, used as a reference, represents the average response of

all observations. Both plots show that the effect of a drug on tumor inhibition

depends on its position. The four-drug plot suggests that the component effects

have a nearly linear relationship with the position. In this case, the authors found

that both the PWO model (2.1) and the CP model (2.2) fit the data well, with

predictive R2 of 0.67 and 0.54, respectively. On the other hand, the five-drug plot

suggests that the relationship between the component effects and the position is

nonlinear. Neither model fits the data well, with predictive R2 of 0.20 and 0.09,

respectively.

The two existing models do not fit the five-drug data well because they lack

interaction terms. It is common in practice to find that a few two-factor inter-

actions are also significant, in addition to the main effects. For this reason, Mee

(2020) proposed a triplets order-of-addition model that expands the PWO model

to include two-factor interactions involving exactly three distinct components.

The triplets model has many more parameters than both existing models, so it

requires a much larger run size to estimate. This is a major shortcoming. We

hope to improve this body of literature by proposing new models and designs

that can handle increasingly complex situations, such as the five-drug example,

without requiring an excessive number of runs.

3. Flexible Position Models

Before presenting our proposed models, we give some notation and defini-

tions. Given an n×m component matrix A = (aij), where each row is a permu-

tation of the components 0, 1, . . . ,m−1, we define a new n×m matrix B = (bik)

as follows: bik = j if aij = k−1, for k = 1, . . . ,m. Note that aij is the component

used at the jth position of the ith run, while bik is the position of component

k − 1 in the ith run. For example, the left side of row 14 in Table 1 indicates

that the four components should appear in the order (2, 0, 3, 1), while the right-

hand side equivalently states that positions (2, 4, 1, 3) should be assigned to

components 0, 1, 2, and 3, respectively. Each row of B is a permutation of the

m positions 1, . . . ,m. To maintain the previous notation, we refer to B as the
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Table 1. Design and data for a four-drug order-of-addition experiment.

Components Positions

Run a1 a2 a3 a4 b1 b2 b3 b4 y

1∗ 0 1 2 3 1 2 3 4 41.1

2∗ 0 1 3 2 1 2 4 3 37.5

3∗ 0 2 1 3 1 3 2 4 55.4

4∗ 0 2 3 1 1 4 2 3 56.5

5∗ 0 3 1 2 1 3 4 2 43.3

6∗ 0 3 2 1 1 4 3 2 51.2

7∗ 1 0 2 3 2 1 3 4 46.1

8∗ 1 0 3 2 2 1 4 3 27.8

9∗ 1 2 0 3 3 1 2 4 39.5

10∗ 1 2 3 0 4 1 2 3 46.4

11∗ 1 3 0 2 3 1 4 2 34.4

12∗ 1 3 2 0 4 1 3 2 39.4

13∗ 2 0 1 3 2 3 1 4 53.5

14∗ 2 0 3 1 2 4 1 3 51.2

15∗ 2 1 0 3 3 2 1 4 50.8

16∗ 2 1 3 0 4 2 1 3 51.4

17∗ 2 3 0 1 3 4 1 2 52.9

18∗ 2 3 1 0 4 3 1 2 53.4

19∗ 3 0 1 2 2 3 4 1 39.1

20∗ 3 0 2 1 2 4 3 1 46.4

21∗ 3 1 0 2 3 2 4 1 37.2

22∗ 3 1 2 0 4 2 3 1 42.1

23∗ 3 2 0 1 3 4 2 1 46.8

24∗ 3 2 1 0 4 3 2 1 41.8

Note: The 12 (∗) runs were used in Example 1 to fit the models and compare the quality
of the out-of-sample predictions.

position matrix.

To compare our new models against the existing ones, we use the previously

discussed four- and five-drug data presented in Yang, Sun and Xu (2021) and

Mee (2020), respectively. The data from these two experiments are given in

Table 1 (matrices A and B) and Table 2 (matrix A), respectively. Recall from

Section 2 that the existing methods are not sufficient for efficiently estimating

the interaction effects between the drugs. We propose the following new, broader

class of linear models based on the position matrix B = (bik) that overcomes this

weakness:

y = f(x)Tβ + ε, (3.1)
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Table 2. Design and data for a five-drug order-of-addition experiment.

Run Components y Run Components y

1 3 1 0 2 4 4.93 21 3 1 2 4 0 5.53

2 1 0 2 3 4 13.63 22 1 0 3 4 2 7.72

3 3 0 1 4 2 15.57 23 0 1 3 2 4 10.96

4 3 2 4 0 1 18.47 24 1 3 2 0 4 12.09

5 4 3 0 1 2 19.5 25 3 0 4 2 1 13.84

6 0 1 4 3 2 20.23 26 0 3 4 1 2 16.25

7 1 3 4 2 0 21.47 27 0 4 2 3 1 16.37

8 0 4 1 2 3 21.59 28 3 2 0 1 4 17.97

9 0 2 3 1 4 23.55 29 4 2 3 0 1 19.71

10 0 3 2 4 1 23.61 30 4 3 1 2 0 20.35

11 1 2 0 4 3 23.85 31 1 4 0 2 3 20.4

12 3 4 2 1 0 25.23 32 0 2 1 4 3 22.06

13 4 2 1 3 0 25.62 33 2 1 4 0 3 22.35

14 2 1 3 4 0 26.08 34 2 0 1 3 4 23.37

15 4 0 3 2 1 26.75 35 3 4 1 0 2 23.4

16 1 4 3 0 2 28.38 36 4 1 0 3 2 24.31

17 2 3 1 0 4 29.43 37 1 2 4 3 0 24.65

18 2 4 0 3 1 30.52 38 2 3 0 4 1 25.99

19 2 0 4 1 3 31.27 39 2 4 3 1 0 26.3

20 4 1 2 0 3 31.96 40 4 0 2 1 3 26.49

where x is a row of the position matrixB, f(x) is a vector of some basis functions,

β is a vector of unknown coefficients, and ε ∼ N(0, σ2) consists of independent

normal errors. Using B, we can represent the two existing models as special

cases of this model. Specifically, the PWO model uses a set of basis functions

that return the sign of bk − bl for each pair of components k − 1 and l − 1 when

x = (b1, . . . , bm). The CP model similarly includes one indicator function for

every component-position pair (k, j). However, these methods do not take full

advantage of the benefit provided by this new position-based perspective.

Because positions have a natural order, we can study their effects using

polynomial functions (e.g., Wu and Hamada (2009)). Such a model was proposed

by Anderson-Cook and Lu (2019), but no framework or details were given. We

define the orthogonal polynomials of degree 1 and 2 over the set of positions as

p1(x) = c1

(
x− m+ 1

2

)
and p2(x) = c2

[(
x− m+ 1

2

)2

−
(
m2 − 1

12

)]
,

respectively, where c1 and c2 are scalars that ensure that the length of each
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contrast vector is
√
m. For example, when m = 4, c1 = 2/

√
5 and c2 =

2, and (p1(x), p2(x)) = (−1.5c1, 1), (−0.5c1,−1), (0.5c1,−1), and (1.5c1, 1), for

x = 1, 2, 3, and 4, respectively. When m = 5, c1 =
√

1/2 and c2 =
√

5/14,

and (p1(x), p2(x)) = (−2c1, 2c2), (−c1,−c2), (0,−2c2), (c1,−c2), and (2c1, 2c2),

for x = 1, 2, 3, 4, and 5, respectively.

The orthogonal polynomials have the following constraints:

(a)

m∑
x=1

pj(x) = 0, (b)

m∑
x=1

p2j (x) = m, (3.2)

for j = 1, 2. These constraints complicate the modeling and the study of the

design optimality for order-of-addition experiments, because each row of the po-

sition matrix B is a permutation of {1, . . . ,m}.
Using these polynomials, we consider three specific models:

y = β0 +

m−1∑
k=1

p1(bk)βk + ε, (3.3)

y = β0 +

m−1∑
k=1

p1(bk)βk +

m−1∑
k=1

p2(bk)βkk + ε, (3.4)

y = β0 +

m−1∑
k=1

p1(bk)βk +

m−2∑
k=1

p2(bk)βkk

+
∑

1≤k<l≤m−1

p1(bk)p1(bl)βkl + ε, (3.5)

where y is the response, b1, . . . , bm are the positions of the m components, β0 is

the intercept, βk, βkk, and βkl are unknown parameters, and ε ∼ N(0, σ2) is a ran-

dom error. We can interpret the main effect parameters as the expected change

in the response after moving the specified component one position later in the

sequence. Because each row of the position matrix is a permutation of {1, . . . ,m}
and the orthogonal polynomials obey the constraints in (3.2), we must remove

one component effect from models (3.3) and (3.4) in order to make the models

estimable. Furthermore, model (3.5) only includes βkk, for k = 1, 2, . . . ,m − 2,

and removes any interaction terms involving component m− 1. We can similarly

craft more complicated models with higher-order terms, if needed. For conve-

nience, we refer to models (3.3), (3.4), and (3.5) as the first-order, quadratic,

and second-order position models, with m − 1, 2m − 1, and (m − 1)(m + 2)/2

parameters, respectively.

Table 3 shows the number of parameters of five models for m = 3, . . . , 10,
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Table 3. Number of parameters of models for m = 3–10.

m

Model 3 4 5 6 7 8 9 10

PWO Model 4 7 11 16 22 29 37 46

CP Model 5 10 17 26 37 50 65 82

First-order Model 3 4 5 6 7 8 9 10

Quadratic Model 5 7 9 11 13 15 17 19

Second-order Model 5 9 14 20 27 35 44 54

including the PWO model and the CP model. The first-order and quadratic

position models have fewer parameters than the others when m > 4. The second-

order position model has a few more parameters than the PWO model, but has

fewer parameters than the CP model as m increases. The new position models

are both parsimonious and flexible. We demonstrate these traits using both drug

sequencing experiments, each of which has two objectives: fitting an accurate

model, and locating the optimal drug sequence.

Example 1. Consider the four-drug order-of-addition experiment in Table 1. We

first fit the five models to the full data. The PWO and CP models have predictive

R2 of 0.67 and 0.54, respectively. The first-order, quadratic, and second-order

position models have predictive R2 of 0.69, 0.66, and 0.65, respectively. The root

mean squared errors (RMSEs) for the PWO and CP models are 2.97 and 2.86,

respectively, and 3.34, 3.00, and 2.67, respectively, for the position models. From

this, we see that all five models have a similar goodness of fit. The first-order

model with four parameters is the simplest and achieves the best predictive R2

value.

To further compare the predictive accuracy of the models, we train each

on the COA(12,4) given by the runs with ∗ in Table 1, and predict across all 24

sequences. The PWO and CP models have predicted versus observed correlations

of 0.90 and 0.87, respectively, while the position models have correlations 0.87,

0.88, and 0.89, respectively. All models achieve comparable prediction accuracy,

but the first-order model is able to do so with fewer parameters and has a better

predictive R2 when considering the full data set. Thus, for the simpler data set

in which the relationship appears linear (Figure 1), our succinct models fit well

and produce accurate predictions.

In order to interpret the position models, we first simplify each model (fit to

all 24 runs) using forward and backward stepwise variable selection with respect

to the AIC. We start from a constant model, and instead of removing the last
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effect, as in (3.3)-(3.5), we allow for the choice of any effect. The resulting models

are

ŷ = 45.22 + 2.03B − 5.55C − 1.81A, (3.6)

ŷ = 45.22− 1.81A+ 2.03B − 5.55C + 1.41A2, (3.7)

ŷ = 44.68− 1.81A+ 2.03B − 5.55C + 0.98A2 − 1.62AB, (3.8)

where each drug has been replaced with a letter to make the conclusions clearer

(e.g., A and A2 represent the linear and quadratic effects, respectively, of drug 0).

The predictive R2 values for these three models are 0.69, 0.72, and 0.74, and the

RMSEs are 3.34, 3.03, and 2.76, respectively. Further examination reveals that

A, A2, and A2 and AB are not significant at the 5% level in models (3.6)-(3.8),

respectively. After removing the nonsignificant terms, we have the reduced model

ŷ = 45.22 + 2.93B − 4.65C.

In this model, the negative coefficient of drug C can be interpreted as the

response being maximized when it comes earlier in the sequence, and the posi-

tive coefficient of drug B signifies that the response increases when it is placed

later. These interpretations reflect the linear trends we see in the four-drug

component-position effects plot in Figure 1. Mee (2020) and Yang, Sun and Xu

(2021) also performed a stepwise regression to simplify the PWO and CP models,

respectively. Their simplified PWO and CP models are comparable to models

(3.6)-(3.8) in terms of their predictive R2.

Example 2. Consider the five-drug order-of-addition experiment in Table 2.

The experiment was conducted in batches. The first 20 runs were used in a

batch, and the second 20 runs were used in another batch. After fitting each

model to all 40 runs, including a block variable representing the batch effect, the

PWO and CP models have predictive R2 value of 0.20 and 0.09, respectively, and

the first-order, quadratic, and second-order position models have predictive R2

values of 0.44, 0.41, and 0.52, respectively. The RMSEs for the PWO and CP

models are 4.11 and 3.45, respectively, and 4.18, 3.80, and 2.85, respectively, for

the position models. The position models show a greater ability to capture the

nonlinear trends present in Figure 1. The second-order model not only produces

the overall best fit, but also generalizes well.

In order to improve interpretability and keep the final model concise, variable

selection is used to choose the most appropriate to include effects from the second-

order model. Starting with a constant model, forward and backward stepwise

regressions are used to produce a model with a small AIC. Because the choice of

which effects to remove from the position models was arbitrary, we allow for the
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selection of any linear, quadratic, or two-factor interaction effects, as in Example

1. We also allow for the selection of a block effect that represents the two batches.

With this in mind, the resulting model has a total of eight terms, has a predictive

R2 of 0.68 (larger than any competitor), and is given by

ŷ = 23.13−4.08∆+3.19A+3.45B+4.49D+1.05C2+1.82BE−1.64CE. (3.9)

In this model, the block variable is given by ∆, and each drug is again represented

by a letter to facilitate substantive conclusions. We see that the quadratic effect

of drug C and two interactions involving drug E are included in the final model.

Owing to the constraints in (3.2), we have A+B+C +D+E = 0. Therefore, if

we replace A with −B−C−D−E, then we get an equivalent model that follows

the effect hierarchy principle (Wu and Hamada (2009)).

A direct interpretation of these significant effects is complicated by the inclu-

sion of C2, BE, and CE, so we consider the top 10 predicted sequences: CEBAD,

CAEBD, CEABD, CBEAD, CADEB, CEBDA, EBADC, CAEDB, CABED, and

EBACD. While most of these sequences are not in the Table 2 design, the se-

quence CAEBD has the second-highest predicted response and the second-highest

observed response.

In order to overcome the shortcomings of the PWO model when fitting to the

data, Mee (2020) considered expanded pairwise models that include interactions

of the pairwise factors Ijk. The model that includes only factor interactions that

involve exactly three components is dubbed the triplets model, and is given by

y = β0 +
∑
j<k

βjkIjk +

m−2∑
j=1

m−1∑
k=j+1

m∑
l=k+1

[βjk?jlIjkIjl + βjk?klIjkIkl] + ε. (3.10)

This model contains too many parameters to be useful in many cases; how-

ever, this also gives it additional flexibility that may produce a better fit. Also

using a forward stepwise regression, Mee (2020) found two models that include

some of the additional interaction terms. Our stepwise model (3.9) with df = 32,

predictive R2 = 0.68, and RMSE = 3.32 is competitive with both of these triplets

models (df = 24, predictive R2 = 0.60, RMSE = 3.14, and df = 26, predictive

R2 = 0.51, RMSE = 3.73), and becomes more appealing when considering the

use of fewer parameters. Furthermore, the top two predicted sequences from both

of these models are CAEBD and CEBAD, aligning with the top two predicted

sequences from the position model. Our model is also better than the PWO and

CP models with interactions reported by Yang, Sun and Xu (2021) in terms of

various measures, including the predictive R2 and RMSE. This further substan-
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tiates our claim that the second-order model is able to achieve an intuitive and

cost-effective fit on complex order-of-addition data, which until now has not been

possible.

Note that while our models fit well to the real data in these examples, they

assume that the absolute rather than the relative component positions are most

predictive of the response. While the substantive conclusions are similar between

the two model types, it is important to recognize that, in practice, the details

of the application should be considered when assuming a model. For example,

the absolute position assumption may be more valid in the drug administration

problem, in which early exposure to a drug may produce better results. On the

other hand, the relative position assumption makes more sense in cases where the

components are known to react with each other, as in the experiments considered

by Voelkel and Gallagher (2019). We study the robustness of our models to this

assumption in Section 5.

4. Design Construction and Optimality

The positive results shown in the previous examples inspire us to study the

properties of these new models and design construction. Because we do not know

in advance which model is the best in a practical situation, we would like to have

a class of designs that can perform well with different models and various run

sizes. To achieve this goal, we propose a novel construction method which, for

many values of m, can quickly generate efficient designs of any run size.

For a prime or a prime power m, let GF (m) = {ω0, ω1, . . . , ωm−1} be a Galois

field of order m, with ω0 being the zero element (Barker (1986)). When m is a

prime, GF (m) = {0, 1, . . . ,m − 1} is a ring of integers modulo m. Algorithm 1

constructs an n×m design for any n ≤ m!.

Each Lk in Step 1 is an m×m Latin square, and the (m− 1) Latin squares

(L1, . . . ,Lm−1) are mutually orthogonal. (Two Latin squares are orthogonal

if, when they are superimposed, each pair (i, j) appears exactly once for any

i, j = 0, . . . ,m − 1.) Mutually orthogonal Latin squares are traditionally used

to construct balanced incomplete block designs and orthogonal arrays. We use

them for a different purpose.

The design C1 constructed in Step 2, as well as any Ci in Step 3, is a

COA(m2 −m,m). Any pair of Ci and Cj in Step 3 do not share any common

permutations. The m! ×m matrix Fm constructed in Step 4 consists of all m!

permutations of m components. Step 5 simply chooses the first n rows of Fm

as a candidate design, which often has good properties already. Specifically,
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Algorithm 1

Step 1. For k = 1, . . . ,m − 1, define an m ×m matrix Lk such that its (i, j)th element
is ωi + ωk ∗ ωj , for i, j = 0, . . . ,m − 1, where the addition and multiplication are
defined on GF (m).

Step 2. Construct an (m2−m)×m matrix C1 by row-wise concatenating L1, . . . ,Lm−1.

Step 3. Keep the first two columns of C1 fixed and permute the last m − 2 columns of
C1 in a systematic way. There are (m − 2)! permutations, admitting a total of
(m− 2)! permuted matrices, denoted as C1, . . . ,C(m−2)!.

Step 4. Construct an m!×m matrix Fm by row-wise concatenating C1, . . . ,C(m−2)! and
replacing ωi with number i, for i = 0, . . . ,m− 1.

Step 5. Let Fn,m be the n×m design formed by the first n rows of Fm.

Step 6. Permute the columns of Fn,m to improve its performance under a chosen crite-
rion.

Table 4. The full 24-run design F4, as generated by Algorithm 1.

Run a1 a2 a3 a4 Run a1 a2 a3 a4
1 0 1 2 3 13 0 1 3 2
2 L1 1 0 3 2 14 1 0 2 3
3 2 3 0 1 15 2 3 1 0
4 3 2 1 0 16 3 2 0 1
5 0 2 3 1 17 0 2 1 3
6 C1 L2 1 3 2 0 18 C2 1 3 0 2
7 2 0 1 3 19 2 0 3 1
8 3 1 0 2 20 3 1 2 0
9 0 3 1 2 21 0 3 2 1

10 L3 1 2 0 3 22 1 2 3 0
11 2 1 3 0 23 2 1 0 3
12 3 0 2 1 24 3 0 1 2

Anderson-Cook and Lu (2019) outline the benefits of constructing designs from

Latin squares and choosing a run size that is a multiple of m. Step 6, to be

discussed later, can be used to further improve the design according to a specific

criterion.

We consider the m = 4 case in which the full design Fm consists of 24

permutations in the order given in Table 4. The first four permutations form a

4×4 Latin square L1, the next four permutations form another Latin square L2,

and so on. The first 12 permutations form a COA(12,4). The last 12 permutations

are obtained from the first 12 by permuting the last two columns.
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When n = m(m−1), Fn,m is equivalent to the COA(m(m−1),m) constructed

by Yang, Sun and Xu (2021). However, their construction does not provide

designs with other run sizes. When m is not a prime power, a Galois field of

order m does not exist. In these cases, an exchange algorithm may produce good

designs. In future work, we will explore construction methods for this situation.

One criterion that we can use to assess the goodness of the designs produced

by Algorithm 1 is the generalized wordlength pattern (GWLP), which can be

computed using the GWLP function in the R package DoE.base (Groemping,

Amarov and Xu (2014)). The GWLP (W1, . . . ,Wm) measures the aliasing of

factorial effects, whereWi ≥ 0 measures the overall aliasing of i-factor interactions

on the general mean under the standard ANOVA model. An important property

of the GWLP is that it characterizes the orthogonality or strength of a design.

Xu and Wu (2001) showed that a design is an orthogonal array of strength t if

and only if W1 = · · · = Wt = 0. Applying this result, we have W1 = 0 if and only

if the design is level balanced; that is, each level appears the same number of

times in each column. Among level balanced designs, designs with small W2 are

preferred. The generalized minimum aberration criterion (Xu and Wu (2001))

favors designs that sequentially minimize W1,W2, . . .. The generalized minimum

aberration criterion includes the minimum aberration criterion (Fries and Hunter

(1980)), the minimum G2-aberration criterion (Tang and Deng (1999)), and many

optimality criteria as special cases (Xu (2003); Xu, Phoa and Wong (2009)).

Generalized minimum aberration designs are model robust in the sense that they

minimize contamination of higher-order effects on the estimation of lower-order

effects (Xu and Wu (2001)).

To assess the orthogonality of different types of designs, we use the GWLP

of the component matrix A directly. Note that the component matrix A and the

position matrix B have the same GWLP, provided that every component appears

in every position at least once. With this in mind, the designs Fn,m produced by

Algorithm 1 have several desirable properties.

Theorem 1. The design Fn,m has the following properties:

(i) For any n = qm + r with integers q > 0 and 0 ≤ r < m, Fn,m has W1 =

mr(m − r)/n2, which is the minimum among all possible designs with n

runs, m columns, and m levels.

(ii) If n is a multiple of m, then Fn,m has W1 = 0.

(iii) If m ≤ n ≤ m(m−1), then Fn,m has generalized minimum aberration among

all possible designs with n runs, m columns, and m levels.
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(iv) If n is a multiple of m(m− 1), then Fn,m is a COA(n,m).

Theorem 1 (i) and (ii) imply that our designs always have the desirable

property of being level balanced or nearly balanced for each column. Theorem 1

(iii) and (iv) indicate that our designs tend to minimize the correlation between

columns and reduce aliasing among first-order and second-order effects. Finally,

having shown in Theorem 1 (iv) that Fn,m is a COA when n is a multiple of

m(m − 1), Theorem 2 shows that these designs are D-optimal under the first-

order and quadratic models.

Cheng, Deng and Tang (2002) and Mandal and Mukerjee (2005) showed

that generalized minimum aberration designs have high efficiency under model

uncertainty for factorial experiments. Thus, Theorem 1 implies that the designs

constructed from our algorithm have high efficiency under various models for

order-of-addition experiments. Evidence of this property is presented in the next

section.

We can also assess the constructed designs using the popular D- and A-

optimality criteria. For an n-run design ξ = {x1, . . . ,xn}, letX = (f(x1),f(x2),

. . . ,f(xn))T be the model matrix of the linear model (3.1), and let M(ξ) =

XTX/n be the per-run information matrix. A D-optimal design maximizes

|M(ξ)|, while an A-optimal design minimizes tr(M(ξ)−1). The D-optimality

criterion seeks to minimize the volume of the confidence ellipsoid around the

parameter estimates, and the A-optimality criterion minimizes the sum of the

variances of the parameter estimates. The full design Fm with all m! permu-

tations is D-optimal for both the PWO model and the CP model (Peng et al.

(2019); Yang, Sun and Xu (2021)). Additionally, Peng et al. (2019) showed that

this design is also A-optimal for the PWO model. We can therefore compare the

quality of any proposed design to this optimal one. For convenience, we define

the D- and A-efficiency of ξ under model (3.1) relative to Fm respectively as

D(ξ) =

{
|M(ξ)|
|M(Fm)|

}1/p

, A(ξ) =

{
tr(M(ξ))

tr(M(Fm))

}
, (4.1)

where p is the number of columns of the model matrix X.

We need to determine whether the full design Fm is indeed optimal under

the three position models. In this process, we rely on the checking condition for

optimality provided by the equivalence theorem (Silvey (1980)). The equivalence

theorem for models of the form (3.1) states that a design ξ∗ is D- or A-optimal

for a model with regression function f(x) over compact space Ω if and only if

D : f(x)TM(ξ∗)−1f(x)− p ≤ 0 ∀x ∈ Ω, (4.2)
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A : f(x)TM(ξ∗)−2f(x)− tr(M(ξ∗)−1) ≤ 0 ∀x ∈ Ω, (4.3)

with equality obtained at the design points x ∈ ξ∗. In the case of the three

position models, each x is a permutation, and Ω is the space of all permutations

of {1, . . . ,m}. We have the following important results regarding the full design

and COAs.

Theorem 2. The full design Fm is D-optimal under the first-order and quadratic

position models, as is every COA(n,m).

Theorem 3. The full design Fm is D-optimal for the second-order position

model.

Remark 1. Note that the result of Theorem 1 from Peng et al. (2019), which

shows the optimality of Fm under the PWO model for any concave and signed

permutation invariant criteria, does not apply to the three position models. As a

counterexample, we consider the A-optimality criterion. If the result of their the-

orem held for the position models, then we would be able to confirm A-optimality

of the full design numerically. However, as shown below in Remark 2, this is not

the case. Furthermore, the information matrices for the first-order and quadratic

models are block diagonal (see Section S1), yet the closed form of the information

matrix for the second-order model is too complex to work with directly. How-

ever, the proof of Theorem 3 is general and can be applied to the PWO and CP

models, as well as to other models, such as a third-order model that includes all

estimable terms.

Remark 2. We leave a detailed investigation of A-optimal designs for these

models to future work. Through preliminary investigation, we conclude that

the design Fm does not satisfy the checking condition (4.3), and is thus not A-

optimal, for any of the position models (see Section S2). Similarly, I-optimal

designs under the position models can ensure that we are able to predict the

best ordering, but they are beyond the scope of this study and warrant further

examination. The D-optimality remains the most popular design criterion, so we

focus on it for the remainder of this work.

The D-efficiency of a design varies with respect to column permutations; that

is, permuting the columns of a design may lead to different D-efficiencies. For this

reason, we can permute the columns in Step 6 to maximize the D-efficiency for

a specific model. We consider other opportunities for improved efficiency using

level and Ci permutations in Section 5. In contrast, the GWLP is invariant with

respect to column permutations, and instead studies the combinatorial properties

of the design, such as balance and orthogonality.
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5. Efficiency and Robustness of Designs

We compare our designs with those from Voelkel (2019) with m = 4, 5, 7

and various run sizes. We also compare them with the design given in Table 2

from Mee (2020) with (n,m) = (40, 5). In order to present a fair comparison, we

consider one design Fn,m, which is generated by taking the first n rows of the full

design Fm in Step 5, and another design F∗
n,m, which permutes the columns of

Fn,m in Step 6 to maximize the geometric mean efficiency of the models of interest.

Table 5 compares the D-efficiencies of these designs under the five models and

the first two terms (W1 and W2) of the GWLP. Designs F∗
n,m for which there is

no improvement over Fn,m are omitted. While Voelkel (2019) used many other

criteria to compare his order-of-addition designs, many of these are derivatives

of the two we consider here, and are thus not necessary to include. Because our

algorithm is able to generate designs with variable run sizes, we also include the

efficiencies of designs with various n between m(m− 1) and m!.

Voelkel’s designs are constructed for the PWO model, and thus perform well

under this model. However, they exhibit poor performance under the CP model

and have large W1 or W2 values. In contrast, our designs are robust and perform

well under all models (with the exception of the PWO model in certain situations)

and always have small W1 and W2 values. Recall W1 = 0 if and only if a design is

level balanced for each column. Voelkel’s designs are not level balanced, except for

one case (Voelkel.12a), while our designs are all level balanced or nearly balanced.

Mee’s design performs comparably to F40,5 for all models except the PWO model,

which it outperforms. When allowing for column permutations, Mee’s design has

similar properties to those of F∗
40,5. In general, the F∗

n,m designs in Table 5, which

maximize the geometric mean efficiency, may not necessarily be optimal for any

of the five models, but they are model robust and have high D-efficiencies for all

models; see Section S3 of the Supplementary Material.

Figure 2 shows the maximal D-efficiency obtained using Algorithm 1 for each

model across a range of run sizes, n, by using a brute force search over all column

permutations in Step 6. From these plots, we find that the algorithm is able

to produce highly efficient designs for many values of n. Specifically, we find

that with a proper selection of a column permutation, our designs achieve high

D-efficiency (> 85%) for every model.

In addition to column permutations, the assignment of values to ω0, ω1,

. . . , ωm−1 in Step 1 and the order of permutations of the last m − 2 columns

to create the Ci in Step 3 can both be manipulated. To understand the effects

of these permutations, we repeat the algorithm many times, with each iteration
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Table 5. Comparison of D-efficiency and GWLP across designs and models.

D-efficiency GWLP

n m Design DPWO DCP DFO DPQ DSO W1 W2

12 4 Voelkel.12a 1 0.758 1 0.955 0.953 0 4.667

Voelkel.12b 1 0 1 0.916 0.877 0.361 2.514

F12,4 0.909 1 1 1 1 0 2

16 4 F16,4 0.917 0.950 0.977 0.963 0.953 0 3

20 4 F20,4 0.954 0.957 0.983 0.970 0.961 0 2

20 5 Voelkel.20a 0.903 0.588 0.997 0.945 0.861 0.35 10.35

Voelkel.20b 0.97 0.623 0.993 0.931 0.854 0.625 8

F20,5 0 1 1 1 0.959 0 2.5

F∗
20,5 0.898 1 1 1 0.950 0 2.5

24 5 Voelkel.24a 1 0.094 1 0.969 0.933 0.573 8.281

Voelkel.24b 1 0 1 0.967 0.94 0.639 7.635

Voelkel.24c 1 0.668 1 0.969 0.944 0.226 8.368

F24,5 0.545 0.961 0.99 0.982 0.949 0.035 3.75

F∗
24,5 0.926 0.961 0.996 0.981 0.950 0.035 3.75

40 5 Mee.40 0.969 1 1 1 0.994 0 2.5

F40,5 0.889 1 1 1 0.999 0 2.5

F∗
40,5 0.969 1 1 1 0.995 0 2.5

60 5 F60,5 0.977 1 1 1 0.986 0 2.5

F∗
60,5 0.977 1 1 1 0.999 0 2.5

24 7 Voelkel.24 0.990 - 1 0 - 2.125 20.688

F24,7 0 - 0.989 0.686 - 0.146 21

F∗
24,7 0.742 - 0.989 0.873 - 0.146 21

36 7 Voelkel.36 0.970 - 1 0.911 0.764 0.789 23.722

F36,7 0 - 1 0.923 0.809 0.032 7.389

F∗
36,7 0.881 - 0.987 0.979 0.839 0.032 7.389

48 7 Voelkel.48 0.986 0.587 1 0.950 0.872 0.924 17.099

F48,7 0 0.967 0.993 0.985 0.876 0.018 5.688

F∗
48,7 0.943 0.967 0.995 0.989 0.798 0.018 5.688

Note: D-efficiency: the larger, the better; GWLP: the smaller, the better. DX is the
D-efficiency under model X (PWO, CP, first-order, pure quadratic, and second-order,
respectively). In some cases, the chosen run size does not permit estimation of some
models (with D-efficiencies marked by “-”). Designs Fn,m are obtained via Algorithm 1
without Step 6, while F∗

n,m are obtained with column permutations in Step 6 to maximize
the geometric mean efficiency of the estimable models.

using a different combination of level, Ci, and column permutations. This de-

tailed study has demonstrated that for small values of m, the effect of the choice

of permutations on efficiency is large under the PWO model, and small for the

other models. Upon studying each choice of permutation in turn, we find that
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Figure 2. Maximal D-efficiency of F∗
n,m under column permutations for variable run

sizes for (a) m = 4, (b) m = 5, and (c) m = 7.

improvements to the D-efficiency of the best column-permuted design are small

when allowing for level and Ci permutations. This justifies the inclusion of col-

umn permutations in Step 6 of Algorithm 1. The full results of this study can be

found in Section S3.

Having shown that Algorithm 1 can, in general, produce designs that are

optimal or near-optimal for many models when accounting for choices in the al-
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gorithm, we now examine the robustness of our designs to model misspecification.

For example, we see from Table 5 that Voelkel’s designs have lower efficiency un-

der the CP model, while our designs Fn,m have lower efficiency for the PWO

model. If we design our experiment under the assumption that one of these

models fits the experimental data, when in reality a different model captures the

trend, then we run the risk of choosing an inefficient design. To test the ability

of our designs to withstand such an error, we consider the trade-off in efficiency

for different levels of confidence in our selection of the true model. Here, we find

that our designs are robust to misspecifcation, and specifically to the assumption

that relative/absolute position effects are most relevant. The details of this study

can be found in Section S4.

6. Conclusion

Researchers are often interested in understanding the relationship between

the process order of their experiment and the measured response. However,

statistical techniques for efficiently studying this effect are largely absent from

the literature. In this work, we have proposed succinct models and cost-effective

designs for accurately capturing important trends. Through careful research, we

have seen that our models yield a superior fit and interpretable estimates, while

our designs are optimal in many cases and robust to model misspecification. Note,

however, that all of the models we consider, with the exception of the PWO model,

are based on the absolute position effects assumption. Were we to consider further

extensions of the PWO model, such as those proposed in Voelkel and Gallagher

(2019) or Mee (2020), we may see different results. Furthermore, Schoen and

Mee (2020) have recently found designs for m = 5, 6, 7 that are optimal under

the PWO model and exhibit stronger balance than Voelkel’s. Such designs may be

more appropriate if there is strong confidence in the relative position assumption,

but we do not consider them here. Further investigation is also needed into the

robustness of the designs to omitted higher-order terms and interactions in both

absolute and relative position-based models.

Applications to sequential drug administration have further demonstrated

the scientific value of these methods to the broader research community. How-

ever, there is still much work left to be done in this field. The construction of

efficient designs with large, nonprime m remains a challenging open problem.

Existing algorithms may be sufficient for constructing nearly optimal designs for

small, nonprime m. Mee (2020) briefly discussed the idea of ordering restrictions,

yet there are many constrained situations for which no appropriate designs exist.
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Additionally, standard approaches for combining designs for the ordering effect

with those for additional covariates result in experiments too large to be of much

practical use. Through further development of our techniques and subsequent re-

search into these and other related problems, we hope that meaningful guidelines

will be produced for scientists conducting order-of-addition experiments.

Supplementary Material

The online Supplementary Material includes proofs of the theorems, a dis-

cussion of the A-optimality results, and the model robustness of the proposed

order-of-addition designs.
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