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Supplementary Material

This is the supplementary material for dynamic penalized splines, which includes auxiliary

lemmas and detailed proofs to the main theorems.

S1 Auxiliary Lemmas
In the proofs to our theorems, we need the following lemma from Nirenberg
(2011)), which is known as Gagliardo-Nirenberg interpolation inequality.

Lemma 1. Fiz 1 < p,q,r < 0o, s > 0 and natural number m, j, if there is

a real number o such that

1 1 l—a g
—=J+|-—m)a+ , —<a<l,
Y r

then there are constants Cy,Cy such that for all functions g : (0,1) — R,
19”0l < Cillg™ 1T llglly™ + Callglls

whenever both sides are well defined.
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Together with the inequality 27 < 1—p-+px where p € (0,1} and > 0,

we have the following corollary.

Corollary 1. Let q be some positive integer, A\,n be positive numbers, non-
negative numbers o, 5, be such that « + 4+ v = 2, and g € H?((0,1))

where H1((0,1)) denote the Sobolev space, then

g 1519115 19113
<2{C1w (1 — wy) At

+ Cowy?(1 —wy) A2 o {Nlg™ 13+ nllgll3} . (SLY)
where w; = (qa + 5)/(2q) and we = /2.

We also need the next lemma, which is part of Theorem 6.25, Section 6.4

of [Schumaker; (2007).

Lemma 2. Let f € CY([0,1]) with 1 < ¢ < oo and 1 < | < p. Let

k={0=rK <--- < kg =1} C[0,1]. Then there exists s € Sy pi1 such

that

17 = s, < camr |70

. 0<r<i-1

and

sO < Cu(fP, A) s
I5®]l,c < Cen(5?, 4)
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where

Wi(fP, D)oo = sup{|fP(z) — fP(y)]| 0 < 2,y < L Jw —y| < A},

A =max; |kj11 — k;| and C is a constant depending only on p.

S2 Proof of Theorem [

For simplicity, let C*, H* and L? denote C([0, 1]), H*((0,1)) and L?((0,1)).
The idea of our proof roots from Munteanu| (1973)). Let Z be the Hilbert

space L? x R™, with inner product defined by

1 n
(915211, s 210), (920 221, - - -5 220)) 7 = )‘n/ g1(z)g2(z)dx + Z 21i%2i-
0 i=1

Let L : HY — Z be the bounded linear map given by

Lg = (g(Q),g(l’l), s ,g(l’n)) :

Note that L(H?) and LSy, 41, j = 1,...,n are closed subspace of Z. Let
h = (0,y1,...,yn) € Z, then Lf, is the orthogonal projection from h to
LS., p+1. Let G be the injection from H? to L?>. We need to give a upper

bound for HGf — an . To begin with, see that

en - i,
ena]

< Gyl
up

HGfO -Gl gerta ||Lgl

= |2 -Lf.

< |th - Lh
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Firstly consider sup,¢a [|gll2/ || Lgll, which is

sup gl
< I llg @Il + Xy 97w }

/2"

Suppose Ay, [|g'? H; + 30 G (@) = A [|g@ Hz +n fol g*(x)dF(z) + I, then

1
0

=0 |y ) —n [ P@)iF@)

—n / P(2)d(F, — F)(x)

—n / ¢ (@)g(@){Fa(z) — F(z)}da

<n|[Fn = Fll 9l gl

2 1/2 _1/2
Let llglic = (A [l 13 +nllgl3) " by BT, 1] < Cs || B = Fll g Aa™C0nt/ o)

for some constant Cs. If ||F,, — F|| A /B0 p1/(20) < 1/(2C5) then

0<z<1

< gmax {1, max F@)} . (s2.1)

Y2lgll2.

(Sup ug||2)2 . 2 S22

gera || Lgl| nmin {1, ming<,<; F(x)}

Since ||g|lxk > n

with the assumption above.

Now consider ||Lfy — L fn

Let Q1 :Z — LH?and Q2 : Z — LSy, pta
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be orthogonal projection, then Lfn = (Q2h and Q2 = Q2Q)1. We have that

20— Ld| = 128~ QuLpl? + | @eLfo — LF|

=||Lfo — Q2Lfol* + Q21 Lfo — Q2Q1hl”
<|ILfo — Q2Lfo||2 + ||Q1Lfo — Q1hH2-

And by ,
HLh—%%LﬁMQZim‘Wﬁb—LMFSHLﬁV—LﬂF
o= 9l + S =57
D Ol = )Y+ lldo — 512}
By Lemma [2] there is s € S, 11 such that

-

< Hﬁg>__8m>

< C4Hféq)

and

1fo—slly < CadA7P

(lo)
71

for some constant Cy, where [y = min{l, p+1}. Thus there is some constant

C5 so that
2 2
|Lfo = QaLfol* < Co (A |[£5” || + a3 ||15™] ) (S2.3)
Notice that
<Lg7 LfO - h)Z

Q1L fo — Q1h]| = sup

gers || Lg|
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For all g € HY, we have

1 n
(Lg,Lfo—h), = )\n/o féq)(x)g(‘” (x)dx — Zg(xi)&'
i=1

and

A <A ||f f?

g, < 22

1
| 1 @@ gl

whenever ||F, — F||_ A "/®n/20 < 1/(2C5). And

> o(w)ei = [ o@HB, @) = g0BW) = [ o (@)Bla)da

< Mu(llgllo + 1l9'111)- (52.4)
By Lemmal[I], there are constants Cg and C; such that
a1 2q-1
/ 2

lglloe + 1lg'll; < Co |91 27 lgll,> + Cx llgll, - (52.5)
And with the assumption of (S2.1)), there is constants Cg such that

1 29-1 -+ 21 1

Co |91 lgllo™ + Cxllgll, < Cs (An T n) ILg]-

So

[N

|Q1Lfo — Q1h|| < )\71/2 féq)

-+ 201
+Ce{ Ap™n™ 4 +n~
2

)

Combining this inequality with (S2.2)) and (S2.3) completes the proof The-

orem [I1 O
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S3 Proof of Theorem [2
Let L : H? — Z be the bounded linear map given by

I/g = (g(Q)aplg(xl)a s 7Png(£n)) ’

then LHY and ijnj,p+1, j = 1,...,n are closed subspace of Z. Let h =
(0,:) € Z, then Lf is the orthogonal projection from h to LS, p+1. Let G

be the injection from HY to L2 Again we have

i gp | AGRZGR] ol
HGfo -Gl = HLfo —Lfp|| - == < || LSo — Lfa|| sup -
|2 L4 seitt||Lg|
First we prove that
G
sup M = 0,(n"'?). (S3.1)
2 [i
Let m = [n/2]. The same proof as (S2.1)) yields that
1 2 =
lgllz < llgll% < - (/\n 191]; + Zgz(ﬂﬁi)) Op(1), (S3.2)

where the O,(1) does not depend on g. The inequality (S3.1) holds as long

as we prove that

292(%) -, (Pig)*(x:) = llgllicop(1)- (S3.3)

Put

=Y [ {(Bere) - o)} arw
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and

n

M= G—m+1) /{ Prrg)(@) — (P (@)} d { () — P(x))

j=m

where P,y = I and Fj = (jF; —mF,,) /(j — m + 1), then 327" ¢*(2;) —

S (Pg)*(x;) = II + III. Note that
1T < max F(a) Z > [ Pt = o) (o) o)
< max F(z Z\Ig Pigll, (lglly + [1P59ll2)
< max Pz an Pl (ol + 1Pl

< 2max F(x ZHg Pigl g 1191 1 -

By Lemma 2]

2 . 2 2
lg = Prgllz = _int (llg' = I3+ llg — sl

Kj,p+1

< 22 g+ £ o)

< 2A%72 ||| 2 (53.4)

I
Then

1] < 4max F(2)v2|]g|], (lgll, + llg'll,) ZN '
By and the assumption that D;n!/e-D < )\n < Dont/(24=1) gnd
A, = O, (n7") for some v > (2¢ — 1)/{(2¢ + 1)(2¢ — 3)}, we have [II| =

lgllZop(1).
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Next we prove |ITI| = ||g||%0,(1). Let u; = (j — m 4+ 1)||Fj — F| s, one
has u; < j[|Fj — Fllsc + m||Fy — Fllse. Then Eu? = O(n). Integration by

parts yields that

11| = (Pi+19)%(x) — (Pig)*(2)}"| da.

UJ

Let 0; = 1 for k41 # K; and d; = 0 for K;11 = K;, and

n 1
A= Y052 [ {Praagle) + Pg(w) da,
j=m 0
n 1
Ao =30 [ {(Prag) @) + (Prg) ()Y
j=m 0
n 1 )
A=Y [ {Pragle) - Pigle))*do.
j=m "0
A=Y [ Bag @) - (P @ de
j=m
By the Cauchy—-Schwartz inequality,
ITII| < (A1 A9)Y? + (AyAs)'2,
Now
4 < Za a2 (1Plly + [ Priagll,)”.

Since [|Pygl2 < 129l < all3. we have A; < llgln Yo, 6,42 Simi-

larly, with ||(P;g)’ ||2 <||P g||Hl < ||g||H1, we have 4y < [|g||% 1D i 03
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Also by (53.4),

A3 = |1Pig — Pigly < > 1Prg — Piglin
j=m Jj=m

_ 2
= [lg = Pugllin <24%7%[|g],,
and
2 2
A= (Pi19) = (Pig)'lly < D I Pivag — Pigll
j=m j=m
2 _ 2
= |lg = Pugllin < 242719,
So

" 1/2
11| < 2v2 (Z 53‘%2) AL glla []9]], -
j=m

Assumptiongives that A, = O, (n™) and Y_7_ 6;u3 = o, (n(Pa=2v+2a/Catl)),
By inequality we have [III| = ||g||%0,(1). Thus we have proved
©31).

Now we prove that H[N/fo — EfH = 0, (n!/0a+2),

Let Ql . Z — LHY and Qg AR iSHmPH be orthogonal projection,
then [if = Qsh and Qy = Q2Q;. We have that

s 2 - RESRTT BT ~ 2
|20 = L[ = |25 - @oLfo|| + | @aLfo — Qan

2

< Hifo - Q2[~/foH2 + HQlfzfo — Qih

By Lemma [2] there exist a s € S, 41 and constant Cy such that

-

< O NI H (g+1)
5 = 940 fO

) k:()an
2
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Then we have

Hifo—@ﬂfo‘r: inf zfo—ngZS ‘Z/fo—zs‘r

geH4

= [[(fo = 9)@s + S (Pifo — Pis) (i)
=1

n
2
< [(fo= 9PN, + > IPfo — Pisl,
i=1
Lemma [1| implies that ||g||>. < Cio|lgl|?: for some constant Cj and all

g€ H' So
- -2 -
|28 = @aL| < Ao =9Il + Coo o 18So = Pisls
=1

< Mo || (o = 8)|[2 + Cron | fo — sl

< (Corndy + CoCron Ayt + CoCron AZ?) Hféﬁl)

‘ 2
2

_ Op(nl/(Qqul)).

It remains to show that
<Eg7 zfo - h

>Z — Op<n1/(4q+2))'

= sup
geH1

|@iLfo— Qi
Lg

Put

IV -\, / O @), V = 3 Pl () - F()}, VI= Y P(r)e,

=1

then (ig, Lfy— h) —IV+V - VL
Z
The easy part is for IV, where

(q

IV| <\,

(q)H2 < )\}L/2

1/(4q+2) HLgH
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Using Cauchy’s inequality, we have

V2 < {Z(RQ)Q(%)} {Z(Pz‘fo(%) - f(%))Q} ;

i=1 =1

where >0 (Pig)*(x ‘ . And

n

> (Bifola) = fol@) <Z||f P) foll% ZHI P) foll%: -
1=1
By Lemma [2]

2
(T = P)follz = _inf [1fo — ellfp < (42 + A2%) | )

Ki,p+1

Because A; > A,y and EA; = O(n™"),
S (4% + 42) = 0, (/D)
i=1
and V = O, (n!/(4e+2) HEQH
Now we need to show that VI/ HLgH = 0,(n'/1+2)) We have already
seen in and (S2.5) that |31, g(z:)e;| = Op(nt/4D)||g| &, and in
and that [|g]|x = Op(1) Hf)g” It suffices to show that

ST P)glan)e: = Oy(n /0772 e (53.5)
=1

Let py(x) be the polynomial of degree at most ¢ that fol{pg(a:)

g(x)}dxr =0 and pék)(l) — pék)(O) =g®(1) - g®™(0) for k=0,...q — 1.
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Suppose g9 — ng) has the Fourier expansion

ay cos(2mkx) + by sin(2wkzx),

NE

99 (x) = pi () =

i
I

(27k)*{ay, cos(2mkx) + by sin(2rkx)}.

I
NE

9(x) = py()

i
I

Notice that (I — P)g = (I — P)(g — p,) and [|g@|[s > 332, (a? + b3), by
Cauchy-Schwartz inequality,

{Z(I - Pz‘)g(%)&} Hg(‘l)”;2 <

=1

n

(27mk) ™ {Z(I - P) cos(27rk-)(xi)€i} + {Z(I - B)sin(kaz-)(mi)si}

i=1

(93.6)

For all fixed function A,

{Z(I - Pi)h(mi)&} =Y (I=P)W*(x)ei+2 Y (I=P)h(x;)(I=Py)h(z;)ee;.

if (€;)i=12,.. are independent of (k;);—12,.. and (z;);=12, ., and pairwise un-

goos

correlated, then for i < j,
E(I = P)h(z;)(I — Py)h(z))eie; = E(I — P)h(x;)(I — Py)h(z;)Eeie; =0,

otherwise if ¢; is independent of k; and w; for i < j and (g;)i=12,. are

pairwise independent, then for ¢ < j,

E(I = P)h(z:)(I = Py)h(zj)eie; = E(I = P)h(z:)(I = Py)h(z;)eiBe; = 0.
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In either case ¢; is independent of (I — B;)h?(x;), so

E{i(]—ﬂ)h(xi)si} —EZ [—P)h*(x;)e? < <supE€ ) EZ (I—-P)h*(z;).

i=1 i1 i=1

Replace h with cos(27k-), for some constant C,
(1= Py) cos(2mk-)(w:)[* < |[(I = By) cos(2k-)||5, < Cua [[(I = By) cos(2mk-)|[f1 -
By (S3.4)), for some constant Cis,

(I — P) cos(2mk-) |31 < CraAP2(27k)*, s =1,..., ¢,

and thus the above inequality holds for all s € [1, g], which means
(I — P)) cos(2mk-)(z;)]? < C11C12A%7%(27k)* for all s € [1,¢].
The same argument applies to sin(27k-), so
|(I — Py)sin(2rk-)(z;)[* < C11012A2572(27k)* for all s € [1,q].

Insert these and that Hg(q)Hz < |lgll3 /A into (S3.6), we get

n

2 [o.¢]
E sup ”9”;(2 {Z(I — Pz)g(xl)gl} < 011012/\;1 <Sup E&? > EZAzs 22(27%)2572(].
g

i=1 izl i=1 k=0

Put s = 1+ (2¢ — 1)/ {2v(2¢ + 1)}. Because )\, > Dn'/?*Y for some

D1 € (O, OO), Az 2 Ai+1 and EAz = O(n‘”),
)\ ZAQS 2 p 1/ 2q+1))
Since v > (2¢—1)/ {(2¢ + 1)(2¢ — 3)}, we have 25—2¢ < —1,80 > _pe,(2mk)? 2

is some finite constant. And Assumption 4 asserts that sup;-, Fe? is finite.

Thus we have proved (S3.5]), and our proof is complete. O
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