DYNAMIC PENALIZED SPLINES FOR STREAMING DATA

Dingchuan Xue and Fang Yao

School of Mathematical Sciences, Center for Statistical Science, Peking University

Supplementary Material

This is the supplementary material for dynamic penalized splines, which includes auxiliary lemmas and detailed proofs to the main theorems.

S1 Auxiliary Lemmas

In the proofs to our theorems, we need the following lemma from Nirenberg (2011), which is known as Gagliardo-Nirenberg interpolation inequality.

Lemma 1. Fix $1 \le p, q, r \le \infty$, s > 0 and natural number m, j, if there is a real number α such that

$$\frac{1}{p} = j + \left(\frac{1}{r} - m\right)\alpha + \frac{1 - \alpha}{q}, \ \frac{j}{m} \le \alpha < 1,$$

then there are constants C_1, C_2 such that for all functions $g: (0,1) \to \mathbb{R}$,

$$||g^{(j)}||_p \le C_1 ||g^{(m)}||_r^{\alpha} ||g||_q^{1-\alpha} + C_2 ||g||_s$$

whenever both sides are well defined.

Together with the inequality $x^p \le 1 - p + px$ where $p \in (0, 1]$ and $x \ge 0$, we have the following corollary.

Corollary 1. Let q be some positive integer, λ , n be positive numbers, nonnegative numbers α, β, γ be such that $\alpha + \beta + \gamma = 2$, and $g \in H^q((0,1))$ where $H^q((0,1))$ denote the Sobolev space, then

$$||g^{(q)}||_{2}^{\alpha}||g'||_{2}^{\beta}||g||_{2}^{\gamma}$$

$$\leq 2\{C_{1}w_{1}^{w_{1}}(1-w_{1})^{1-w_{1}}\lambda^{-w_{1}}n^{w_{1}-1}$$

$$+C_{2}w_{2}^{w_{2}}(1-w_{2})^{1-w_{2}}\lambda^{-w_{2}}n^{w_{2}-1}\} \times \{\lambda||g^{(m)}||_{2}^{2}+n||g||_{2}^{2}\}, \quad (S1.1)$$

where $w_1 = (q\alpha + \beta)/(2q)$ and $w_2 = \alpha/2$.

We also need the next lemma, which is part of Theorem 6.25, Section 6.4 of Schumaker (2007).

Lemma 2. Let $f \in C^l([0,1])$ with $1 \leq q \leq \infty$ and $1 \leq l \leq p$. Let $\kappa = \{0 = \kappa_1 \leq \cdots \leq \kappa_K = 1\} \subseteq [0,1]$. Then there exists $s \in \mathbb{S}_{\kappa,p+1}$ such that

$$||f^{(r)} - s^{(r)}||_q \le C\Delta^{l-r} ||f^{(l)}||_q, \quad 0 \le r \le l-1$$

and

$$||s^{(p)}||_{\infty} \le C\omega_1(f^{(p)}, \Delta)_{\infty}$$

where

$$\omega_1(f^{(p)}, \Delta)_{\infty} = \sup\{|f^{(p)}(x) - f^{(p)}(y)| | 0 \le x, y \le 1, |x - y| \le \Delta\},\$$

 $\Delta = \max_{j} |\kappa_{j+1} - \kappa_{j}|$ and C is a constant depending only on p.

S2 Proof of Theorem 1

For simplicity, let C^i , H^i and L^2 denote $C^i([0,1])$, $H^i((0,1))$ and $L^2((0,1))$. The idea of our proof roots from Munteanu (1973). Let Z be the Hilbert space $L^2 \times \mathbb{R}^n$, with inner product defined by

$$\langle (g_1, z_{11}, \dots, z_{1n}), (g_2, z_{21}, \dots, z_{2n}) \rangle_Z = \lambda_n \int_0^1 g_1(x)g_2(x)dx + \sum_{i=1}^n z_{1i}z_{2i}.$$

Let $L: H^q \to Z$ be the bounded linear map given by

$$Lg = (g^{(q)}, g(x_1), \dots, g(x_n)).$$

Note that $L(H^q)$ and $L\mathbb{S}_{\kappa_j,p+1}$, $j=1,\ldots,n$ are closed subspace of Z. Let $h=(0,y_1,\ldots,y_n)\in Z$, then $L\hat{f}_n$ is the orthogonal projection from h to $L\mathbb{S}_{\kappa_n,p+1}$. Let G be the injection from H^q to L^2 . We need to give a upper bound for $\|Gf-G\hat{f}_n\|$. To begin with, see that

$$\|Gf_0 - G\hat{f}_n\| = \|Lf_0 - L\hat{f}_n\| \cdot \frac{\|Gf_0 - G\hat{f}_n\|}{\|Lf_0 - L\hat{f}_n\|} \le \|Lf_0 - L\hat{f}_n\| \sup_{g \in H^q} \frac{\|Gg\|}{\|Lg\|}.$$

Firstly consider $\sup_{g \in H^q} \|g\|_2 / \|Lg\|$, which is

$$\sup_{g \in H^q} \frac{\|g\|_2}{\left\{\lambda_n \|g^{(q)}\|_2^2 + \sum_{i=1}^n g^2(x_i)\right\}^{1/2}}.$$

Suppose $\lambda_n \|g^{(q)}\|_2^2 + \sum_{i=1}^n g^2(x_i) = \lambda_n \|g^{(q)}\|_2^2 + n \int_0^1 g^2(x) dF(x) + \mathbf{I}$, then

$$|\mathbf{I}| = n \left| \sum_{i=1}^{n} g^{2}(x_{i}) - n \int_{0}^{1} g^{2}(x) dF(x) \right|$$

$$= n \left| \int_{0}^{1} g^{2}(x) d(F_{n} - F)(x) \right|$$

$$= n \left| \int_{0}^{1} g'(x) g(x) \{F_{n}(x) - F(x)\} dx \right|$$

$$\leq n \|F_{n} - F\|_{\infty} \|g'\|_{2} \|g\|_{2}.$$

Let $||g||_K = \left(\lambda_n ||g^{(q)}||_2^2 + n ||g||_2^2\right)^{1/2}$, by (S1.1), $|\mathbf{I}| \le C_3 ||F_n - F||_{\infty} \lambda_n^{-1/(2q)} n^{1/(2q)} ||g||_K$ for some constant C_3 . If $||F_n - F||_{\infty} \lambda_n^{-1/(2q)} n^{1/(2q)} \le 1/(2C_3)$ then

$$\frac{1}{2} \min \left\{ 1, \min_{0 \le x \le 1} F(x) \right\} \le \frac{\|Lg\|^2}{\|g\|_K^2} \le \frac{3}{2} \max \left\{ 1, \max_{0 \le x \le 1} F(x) \right\}. \tag{S2.1}$$

Since $||g||_K \ge n^{1/2} ||g||_2$,

$$\left(\sup_{g \in H^q} \frac{\|g\|_2}{\|Lg\|}\right)^2 \le \frac{2}{n \min\{1, \min_{0 \le x \le 1} F(x)\}}$$
 (S2.2)

with the assumption above.

Now consider $||Lf_0 - L\hat{f}_n||$. Let $Q_1: Z \to LH^q$ and $Q_2: Z \to L\mathbb{S}_{\kappa_n, p+1}$

be orthogonal projection, then $L\hat{f}_n = Q_2h$ and $Q_2 = Q_2Q_1$. We have that

$$\begin{aligned} \left\| Lf_0 - L\hat{f} \right\|^2 &= \left\| Lf_0 - Q_2 Lf_0 \right\|^2 + \left\| Q_2 Lf_0 - L\hat{f}_n \right\|^2 \\ &= \left\| Lf_0 - Q_2 Lf_0 \right\|^2 + \left\| Q_2 Q_1 Lf_0 - Q_2 Q_1 h \right\|^2 \\ &\leq \left\| Lf_0 - Q_2 Lf_0 \right\|^2 + \left\| Q_1 Lf_0 - Q_1 h \right\|^2. \end{aligned}$$

And by (S2.1),

$$||Lf_0 - Q_2 Lf_0||^2 = \inf_{g \in H^q} ||Lf_0 - Lg||^2 \le ||Lf_0 - Ls||^2$$

$$= \lambda_n ||(f_0 - s)^{(q)}||_2^2 + \sum_{i=1}^n (f_0 - s)^2 (x_i)$$

$$\le \frac{3 \max_x F(x)}{2} \left\{ \lambda_n ||(f_0 - s)^{(q)}||_2^2 + n ||f_0 - s||_2^2 \right\}.$$

By Lemma 2, there is $s \in \mathbb{S}_{\kappa_n,p+1}$ such that

$$\left\| f_0^{(q)} - s^{(q)} \right\|_2 \le \left\| f_0^{(q)} - s^{(q)} \right\|_{\infty} \le C_4 \left\| f_0^{(q)} \right\|_{\infty}$$

and

$$||f_0 - s||_2 \le C_4 \Delta_n^{2l_0} ||f_0^{(l_0)}||_2$$

for some constant C_4 , where $l_0 = \min\{l, p+1\}$. Thus there is some constant C_5 so that

$$||Lf_0 - Q_2 Lf_0||^2 \le C_5(\lambda_n ||f_0^{(q)}||_{\infty}^2 + n\Delta_n^{2l_0} ||f_0^{(l_0)}||_2^2).$$
 (S2.3)

Notice that

$$||Q_1Lf_0 - Q_1h|| = \sup_{g \in H^q} \frac{\langle Lg, Lf_0 - h \rangle_Z}{||Lg||}.$$

For all $g \in H^q$, we have

$$\langle Lg, Lf_0 - h \rangle_Z = \lambda_n \int_0^1 f_0^{(q)}(x)g^{(q)}(x)dx - \sum_{i=1}^n g(x_i)\varepsilon_i$$

and

$$\lambda_n \left| \int_0^1 f_0^{(q)}(x) g^{(q)}(x) dx \right| \le \lambda_n \left\| f_0^{(q)} \right\|_2 \left\| g^{(q)} \right\|_2 \le \lambda_n^{1/2} \left\| f_0^{(q)} \right\|_2 \left\| Lg \right\|$$

whenever $||F_n - F||_{\infty} \lambda_n^{-1/(2q)} n^{1/(2q)} \le 1/(2C_3)$. And

$$\left| \sum_{i=1}^{n} g(x_i) \varepsilon_i \right| = \int_0^1 g(x) dE_n(x) = g(1)E(1) - \int_0^1 g'(x) E_n(x) dx$$

$$\leq M_n(\|g\|_{\infty} + \|g'\|_1). \tag{S2.4}$$

By Lemma 1, there are constants C_6 and C_7 such that

$$\|g\|_{\infty} + \|g'\|_{1} \le C_{6} \|g^{(q)}\|_{2}^{\frac{1}{2q}} \|g\|_{2}^{\frac{2q-1}{2q}} + C_{7} \|g\|_{2}.$$
 (S2.5)

And with the assumption of (S2.1), there is constants C_8 such that

$$C_6 \|g^{(q)}\|_2^{\frac{1}{2q}} \|g\|_2^{\frac{2q-1}{2q}} + C_7 \|g\|_2 \le C_8 \left(\lambda_n^{-\frac{1}{4q}} n^{-\frac{2q-1}{4q}} + n^{-\frac{1}{2}}\right) \|Lg\|.$$

So

$$||Q_1Lf_0 - Q_1h|| \le \lambda_n^{1/2} ||f_0^{(q)}||_2 + C_8 \left(\lambda_n^{-\frac{1}{4q}} n^{-\frac{2q-1}{4q}} + n^{-\frac{1}{2}}\right).$$

Combining this inequality with (S2.2) and (S2.3) completes the proof Theorem 1. \Box

S3 Proof of Theorem 2

Let $\tilde{L}: H^q \to Z$ be the bounded linear map given by

$$\tilde{L}g = \left(g^{(q)}, P_1g(x_1), \dots, P_ng(x_n)\right),\,$$

then $\tilde{L}H^q$ and $\tilde{L}\mathbb{S}_{\kappa_j,p+1}$, $j=1,\ldots,n$ are closed subspace of Z. Let $h=(0,y_i)\in Z$, then $\tilde{L}\tilde{f}$ is the orthogonal projection from h to $\tilde{L}\mathbb{S}_{\kappa_n,p+1}$. Let G be the injection from H^q to L^2 . Again we have

$$\left\|Gf_0 - G\tilde{f}_n\right\| = \left\|\tilde{L}f_0 - \tilde{L}\tilde{f}_n\right\| \cdot \frac{\left\|Gf_0 - G\tilde{f}_n\right\|}{\left\|\tilde{L}f_0 - \tilde{L}\tilde{f}_n\right\|} \le \left\|\tilde{L}f_0 - \tilde{L}\tilde{f}_n\right\| \sup_{g \in H^q} \frac{\left\|Gg\right\|}{\left\|\tilde{L}g\right\|}.$$

First we prove that

$$\sup_{g \in H^q} \frac{\|Gg\|}{\|\tilde{L}g\|} = O_p(n^{-1/2}). \tag{S3.1}$$

Let $m = \lfloor n/2 \rfloor$. The same proof as (S2.1) yields that

$$\|g\|_{2}^{2} \le \|g\|_{K}^{2} \le \frac{1}{n} \left(\lambda_{n} \|g^{(q)}\|_{2}^{2} + \sum_{i=m}^{n} g^{2}(x_{i})\right) O_{p}(1),$$
 (S3.2)

where the $O_p(1)$ does not depend on g. The inequality (S3.1) holds as long as we prove that

$$\sum_{i=m}^{n} g^{2}(x_{i}) - \sum_{i=m}^{n} (P_{i}g)^{2}(x_{i}) = ||g||_{K}^{2} o_{p}(1).$$
 (S3.3)

Put

$$\mathbf{II} = \sum_{j=m}^{n} \int_{0}^{1} \left\{ (P_{j}g)^{2}(x) - g^{2}(x) \right\} dF(x)$$

and

$$\mathbf{III} = \sum_{j=m}^{n} (j - m + 1) \int_{0}^{1} \left\{ (P_{j+1}g)^{2}(x) - (P_{j}g)^{2}(x) \right\} d \left\{ \tilde{F}_{j}(x) - F(x) \right\}$$
where $P_{n+1} = I$ and $\tilde{F}_{j} = (jF_{j} - mF_{m}) / (j - m + 1)$, then $\sum_{i=m}^{n} g^{2}(x_{i}) - \sum_{i=m}^{n} (P_{i}g)^{2}(x_{i}) = \mathbf{II} + \mathbf{III}$. Note that
$$|\mathbf{II}| \leq \max_{x} F(x) \sum_{j=m}^{n} \int_{0}^{1} (P_{j}g(x) - g(x)) (P_{j}g(x) + g(x)) dx$$

$$\leq \max_{x} F(x) \sum_{j=m}^{n} \|g - P_{j}g\|_{2} (\|g\|_{2} + \|P_{j}g\|_{2})$$

$$\leq \max_{x} F(x) \sum_{j=m}^{n} \|g - P_{j}g\|_{H^{1}} (\|g\|_{H^{1}} + \|P_{j}g\|_{H^{1}})$$

$$\leq 2 \max_{x} F(x) \sum_{j=m}^{n} \|g - P_{j}g\|_{H^{1}} \|g\|_{H^{1}}.$$

By Lemma 2,

$$\|g - P_{j}g\|_{H^{1}}^{2} = \inf_{s \in \mathbb{S}_{\kappa_{j}, p+1}} \left(\|g' - s'\|_{2}^{2} + \|g - s\|_{2}^{2} \right)$$

$$\leq \Delta_{j}^{2q-2} \|g^{(q)}\|_{2}^{2} + \Delta_{j}^{2q} \|g^{(q)}\|_{2}^{2}$$

$$\leq 2\Delta_{j}^{2q-2} \|g^{(q)}\|_{2}^{2}. \tag{S3.4}$$

Then

$$|\mathbf{II}| \le 4 \max_{x} F(x) \sqrt{2} \|g^{(q)}\|_{2} (\|g\|_{2} + \|g'\|_{2}) \sum_{j=m}^{n} \Delta_{j}^{q-1}.$$
By (S1.1) and the assumption that $D_{1}n^{1/(2q-1)} \le \lambda_{n} \le D_{2}n^{1/(2q-1)}$ and $\Delta_{n} = O_{p}(n^{-\nu})$ for some $\nu > (2q-1)/\{(2q+1)(2q-3)\}$, we have $|\mathbf{II}| = \|g\|_{K}^{2}o_{p}(1).$

Next we prove $|\mathbf{III}| = \|g\|_K^2 o_p(1)$. Let $u_j = (j-m+1)\|\tilde{F}_j - F\|_{\infty}$, one has $u_j \leq j\|F_j - F\|_{\infty} + m\|F_m - F\|_{\infty}$. Then $Eu_j^2 = O(n)$. Integration by parts yields that

$$|\mathbf{III}| = \sum_{j=m}^{n} u_j \int_0^1 \left| \frac{d}{dx} \left\{ (P_{j+1}g)^2(x) - (P_jg)^2(x) \right\}^2 \right| dx.$$

Let $\delta_j = 1$ for $\kappa_{j+1} \neq \kappa_j$ and $\delta_j = 0$ for $\kappa_{j+1} = \kappa_j$, and

$$A_{1} = \sum_{j=m}^{n} \delta_{j} u_{j}^{2} \int_{0}^{1} \left\{ P_{j+1} g(x) + P_{j} g(x) \right\}^{2} dx,$$

$$A_{2} = \sum_{j=m}^{n} \delta_{j} u_{j}^{2} \int_{0}^{1} \left\{ (P_{j+1} g)'(x) + (P_{j} g)'(x) \right\}^{2} dx,$$

$$A_{3} = \sum_{j=m}^{n} \int_{0}^{1} \left\{ P_{j+1} g(x) - P_{j} g(x) \right\}^{2} dx,$$

$$A_{4} = \sum_{j=m}^{n} \int_{0}^{1} \left\{ (P_{j+1} g)'(x) - (P_{j} g)'(x) \right\}^{2} dx.$$

By the Cauchy–Schwartz inequality,

$$|\mathbf{III}| < (A_1 A_4)^{1/2} + (A_2 A_3)^{1/2}.$$

Now

$$A_1 \le \sum_{j=m}^n \delta_j u_j^2 (\|P_j g\|_2 + \|P_{j+1} g\|_2)^2.$$

Since $||P_jg||_2^2 \le ||P_jg||_{H^1}^2 \le ||g||_{H^1}^2$, we have $A_1 \le ||g||_{H^1}^2 \sum_{j=m}^n \delta_j u_j^2$. Similarly, with $||(P_jg)'||_2^2 \le ||P_jg||_{H^1}^2 \le ||g||_{H^1}^2$, we have $A_2 \le ||g||_{H^1}^2 \sum_{j=m}^n \delta_j u_j^2$.

Also by (S3.4),

$$A_{3} = \sum_{j=m}^{n} \|P_{j+1}g - P_{j}g\|_{2}^{2} \le \sum_{j=m}^{n} \|P_{j+1}g - P_{j}g\|_{H^{1}}^{2}$$
$$= \|g - P_{m}g\|_{H^{1}}^{2} \le 2\Delta_{m}^{2q-2} \|g^{(q)}\|_{2}^{2},$$

and

$$A_4 = \sum_{j=m}^{n} \|(P_{j+1}g)' - (P_jg)'\|_2^2 \le \sum_{j=m}^{n} \|P_{j+1}g - P_jg\|_{H^1}^2$$
$$= \|g - P_mg\|_{H^1}^2 \le 2\Delta_m^{2q-2} \|g^{(q)}\|_2^2.$$

So

$$|\mathbf{III}| \le 2\sqrt{2} \left(\sum_{j=m}^{n} \delta_{j} u_{j}^{2} \right)^{1/2} \Delta_{m}^{q-1} \|g\|_{H^{1}} \|g^{(q)}\|_{2}.$$

Assumption 5 gives that $\Delta_n = O_p(n^{-\nu})$ and $\sum_{j=m}^n \delta_j u_j^2 = o_p(n^{(2q-2)\nu+2q/(2q+1)})$.

By inequality (S1.1) we have $|\mathbf{III}| = ||g||_K^2 o_p(1)$. Thus we have proved (S3.1).

Now we prove that $\|\tilde{L}f_0 - \tilde{L}\tilde{f}\| = O_p(n^{1/(4q+2)}).$

Let $\tilde{Q}_1: Z \to \tilde{L}H^q$ and $\tilde{Q}_2: Z \to \tilde{L}\mathbb{S}_{\kappa_n, p+1}$ be orthogonal projection, then $\tilde{L}\tilde{f} = \tilde{Q}_2 h$ and $\tilde{Q}_2 = \tilde{Q}_2 \tilde{Q}_1$. We have that

$$\|\tilde{L}f_{0} - L\tilde{f}\|^{2} = \|\tilde{L}f_{0} - \tilde{Q}_{2}\tilde{L}f_{0}\|^{2} + \|\tilde{Q}_{2}\tilde{L}f_{0} - \tilde{Q}_{2}h\|^{2}$$

$$\leq \|\tilde{L}f_{0} - \tilde{Q}_{2}\tilde{L}f_{0}\|^{2} + \|\tilde{Q}_{1}\tilde{L}f_{0} - \tilde{Q}_{1}h\|^{2}.$$

By Lemma 2 there exist a $s \in \mathbb{S}_{\kappa_n,p+1}$ and constant C_9 such that

$$\left\| f_0^{(k)} - s^{(k)} \right\|_2 \le C_9 \Delta_n^{q+1-k} \left\| f_0^{(q+1)} \right\|_2, \ k = 0, 1, q.$$

Then we have

$$\begin{split} \left\| \tilde{L}f_0 - \tilde{Q}_2 \tilde{L}f_0 \right\|^2 &= \inf_{g \in H^q} \left\| \tilde{L}f_0 - \tilde{L}g \right\|^2 \le \left\| \tilde{L}f_0 - \tilde{L}s \right\|^2 \\ &= \lambda_n \left\| (f_0 - s)^{(q)} \right\|_2^2 + \sum_{i=1}^n (P_i f_0 - P_i s)^2 (x_i) \\ &\le \lambda_n \left\| (f_0 - s)^{(q)} \right\|_2^2 + \sum_{i=1}^n \left\| P_i f_0 - P_i s \right\|_{\infty}^2. \end{split}$$

Lemma 1 implies that $\|g\|_{\infty}^2 \leq C_{10} \|g\|_{H^1}^2$ for some constant C_{10} and all $g \in H^1$. So

$$\left\| \tilde{L}f_0 - \tilde{Q}_2 \tilde{L}f_0 \right\|^2 \le \lambda_n \left\| (f_0 - s)^{(q)} \right\|_2^2 + C_{10} \sum_{i=1}^n \left\| P_i f_0 - P_i s \right\|_{H^1}^2$$

$$\le \lambda_n \left\| (f_0 - s)^{(q)} \right\|_2^2 + C_{10} n \left\| f_0 - s \right\|_{H^1}^2$$

$$\le \left(C_9 \lambda_n \Delta_n + C_9 C_{10} n \Delta_n^{2q} + C_9 C_{10} n \Delta_n^{2q+2} \right) \left\| f_0^{(q+1)} \right\|_2^2$$

$$= O_p(n^{1/(2q+1)}).$$

It remains to show that

$$\left\| \tilde{Q}_1 \tilde{L} f_0 - \tilde{Q}_1 h \right\| = \sup_{g \in H^q} \frac{\left(\tilde{L}g, \tilde{L} f_0 - h \right)_Z}{\left\| \tilde{L}g \right\|} = O_p(n^{1/(4q+2)}).$$

Put

$$\mathbf{IV} = \lambda_n \int_0^1 f_0^{(q)}(x) g^{(q)}(x) dx, \ \mathbf{V} = \sum_{i=1}^n P_i g(x_i) \left\{ P_i f_0(x_i) - f(x_i) \right\}, \ \mathbf{VI} = \sum_{i=1}^n P_i g(x_i) \varepsilon_i,$$
then $\left(\tilde{L}g, \tilde{L}f_0 - h \right)_Z = \mathbf{IV} + \mathbf{V} - \mathbf{VI}.$

The easy part is for **IV**, where

$$|\mathbf{IV}| \le \lambda_n \|f_0^{(q)}\|_2 \|g^{(q)}\|_2 \le \lambda_n^{1/2} \|f_0^{(q)}\|_2 \|\tilde{L}g\| = O_p(n^{1/(4q+2)}) \|\tilde{L}g\|.$$

Using Cauchy's inequality, we have

$$\mathbf{V}^2 \le \left\{ \sum_{i=1}^n (P_i g)^2(x_i) \right\} \left\{ \sum_{i=1}^n (P_i f_0(x_i) - f(x_i))^2 \right\},\,$$

where $\sum_{i=1}^{n} (P_i g)^2(x_i) \le \left\| \tilde{L}g \right\|^2$. And

$$\sum_{i=1}^{n} (P_i f_0(x_i) - f_0(x_i))^2 \le \sum_{i=1}^{n} \|(I - P_i) f_0\|_{\infty}^2 \le \sum_{i=1}^{n} \|(I - P_i) f_0\|_{H^1}^2.$$

By Lemma 2,

$$\|(I - P_i)f_0\|_{H^1}^2 = \inf_{e \in \mathbb{S}_{\kappa_i, p+1}} \|f_0 - e\|_{H^1}^2 \le \left(\Delta_i^{2q} + \Delta_i^{2q+2}\right) \|f_0^{(q+1)}\|_2^2.$$

Because $\Delta_i \geq \Delta_{i+1}$ and $E\Delta_i = O(n^{-\nu})$,

$$\sum_{i=1}^{n} \left(\Delta_i^{2q} + \Delta_i^{2q+2} \right) = O_p(n^{1/(2q+1)})$$

and
$$\mathbf{V} = O_p(n^{1/(4q+2)}) \| \tilde{L}g \|.$$

Now we need to show that $\mathbf{VI}/\left\|\tilde{L}g\right\| = O_p(n^{1/(4q+2)})$. We have already seen in (S2.4) and (S2.5) that $\left|\sum_{i=1}^n g(x_i)\varepsilon_i\right| = O_p(n^{1/(4q+2)})\|g\|_K$, and in (S3.2) and (S3.3) that $\|g\|_K = O_p(1)\left\|\tilde{L}g\right\|$. It suffices to show that

$$\sum_{i=1}^{n} (I - P_i)g(x_i)\varepsilon_i = O_p(n^{1/(4q+2)}) \left\| \tilde{L}g \right\|.$$
 (S3.5)

Let $p_g(x)$ be the polynomial of degree at most q that $\int_0^1 \{p_g(x) - g(x)\} dx = 0$ and $p_g^{(k)}(1) - p_g^{(k)}(0) = g^{(k)}(1) - g^{(k)}(0)$ for $k = 0, \dots, q-1$.

Suppose $g^{(q)} - p_g^{(q)}$ has the Fourier expansion

$$g^{(q)}(x) - p_g^{(q)}(x) = \sum_{k=1}^{\infty} a_k \cos(2\pi kx) + b_k \sin(2\pi kx),$$

$$g(x) - p_g(x) = \sum_{k=1}^{\infty} (2\pi k)^{-2q} \{ a_k \cos(2\pi kx) + b_k \sin(2\pi kx) \}.$$

Notice that $(I - P_i)g = (I - P_i)(g - p_g)$ and $\|g^{(q)}\|_2^2 \ge \sum_{k=1}^{\infty} (a_k^2 + b_k^2)$, by Cauchy-Schwartz inequality,

$$\left\{ \sum_{i=1}^{n} (I - P_i) g(x_i) \varepsilon_i \right\}^2 \|g^{(q)}\|_2^{-2} \leq \sum_{k=1}^{\infty} (2\pi k)^{-2q} \left[\left\{ \sum_{i=0}^{n} (I - P_i) \cos(2\pi k \cdot)(x_i) \varepsilon_i \right\}^2 + \left\{ \sum_{i=1}^{n} (I - P_i) \sin(2\pi k \cdot)(x_i) \varepsilon_i \right\}^2 \right].$$
(S3.6)

For all fixed function h,

$$\left\{\sum_{i=1}^{n} (I - P_i)h(x_i)\varepsilon_i\right\}^2 = \sum_{i=1}^{n} (I - P_i)h^2(x_i)\varepsilon_i^2 + 2\sum_{i < j} (I - P_i)h(x_i)(I - P_j)h(x_j)\varepsilon_i\varepsilon_j.$$

if $(\varepsilon_i)_{i=1,2,...}$ are independent of $(\kappa_i)_{i=1,2,...}$ and $(x_i)_{i=1,2,...}$, and pairwise uncorrelated, then for i < j,

$$E(I - P_i)h(x_i)(I - P_j)h(x_j)\varepsilon_i\varepsilon_j = E(I - P_i)h(x_i)(I - P_j)h(x_j)E\varepsilon_i\varepsilon_j = 0,$$

otherwise if ε_j is independent of κ_i and x_i for $i \leq j$ and $(\varepsilon_i)_{i=1,2,...}$ are pairwise independent, then for i < j,

$$E(I - P_i)h(x_i)(I - P_j)h(x_j)\varepsilon_i\varepsilon_j = E(I - P_i)h(x_i)(I - P_j)h(x_j)\varepsilon_iE\varepsilon_j = 0.$$

In either case ε_i is independent of $(I - P_i)h^2(x_i)$, so

$$E\left\{\sum_{i=1}^{n}(I-P_i)h(x_i)\varepsilon_i\right\}^2 = E\sum_{i=1}^{n}(I-P_i)h^2(x_i)\varepsilon_i^2 \le \left(\sup_{i\ge 1}E\varepsilon_i^2\right)E\sum_{i=1}^{n}(I-P_i)h^2(x_i).$$

Replace h with $\cos(2\pi k \cdot)$, for some constant C_{11} ,

$$|(I-P_i)\cos(2\pi k\cdot)(x_i)|^2 \le ||(I-P_i)\cos(2\pi k\cdot)||_{\infty}^2 \le C_{11} ||(I-P_i)\cos(2\pi k\cdot)||_{H^1}^2$$

By (S3.4), for some constant C_{12} ,

$$\|(I - P_i)\cos(2\pi k \cdot)\|_{H^1}^2 \le C_{12}\Delta_i^{2s-2}(2\pi k)^s, \ s = 1, \dots, q,$$

and thus the above inequality holds for all $s \in [1, q]$, which means

$$|(I - P_i)\cos(2\pi k \cdot)(x_i)|^2 \le C_{11}C_{12}\Delta_i^{2s-2}(2\pi k)^s$$
 for all $s \in [1, q]$.

The same argument applies to $\sin(2\pi k \cdot)$, so

$$|(I - P_i)\sin(2\pi k \cdot)(x_i)|^2 \le C_{11}C_{12}\Delta_i^{2s-2}(2\pi k)^s$$
 for all $s \in [1, q]$.

Insert these and that $\|g^{(q)}\|_2^2 \leq \|g\|_K^2/\lambda_n$ into (S3.6), we get

$$E\sup_{g} \|g\|_{K}^{-2} \left\{ \sum_{i=1}^{n} (I - P_{i})g(x_{i})\varepsilon_{i} \right\}^{2} \leq C_{11}C_{12}\lambda_{n}^{-1} \left(\sup_{i \geq 1} E\varepsilon_{i}^{2} \right) E\sum_{i=1}^{n} \Delta_{i}^{2s-2} \sum_{k=0}^{\infty} (2\pi k)^{2s-2q}.$$

Put $s = 1 + (2q - 1)/\{2\nu(2q + 1)\}$. Because $\lambda_n \ge D_1 n^{1/(2q+1)}$ for some

$$D_1 \in (0, \infty), \ \Delta_i \ge \Delta_{i+1} \text{ and } E\Delta_i = O(n^{-\nu}),$$

$$\lambda_n^{-1} \sum_{i=1}^n \Delta_i^{2s-2} = O_p(n^{1/(2q+1)}).$$

Since $\nu > (2q-1)/\{(2q+1)(2q-3)\}$, we have 2s-2q < -1, so $\sum_{k=0}^{\infty} (2\pi k)^{2s-2q}$

is some finite constant. And Assumption 4 asserts that $\sup_{i\geq 1} E\varepsilon_i^2$ is finite.

Thus we have proved (S3.5), and our proof is complete.

References

Munteanu, M.-J. (1973). Generalized smoothing spline functions for operators. SIAM Journal on Numerical Analysis 10(1), 28–34.

Nirenberg, L. (2011). On elliptic partial differential equations. In S. Faedo (Ed.), *Il principio di minimo e sue applicazioni alle equazioni funzionali*, C.I.M.E. Summer Schools, pp. 1–48. Springer.

Schumaker, L. (2007). Spline Functions: Basic Theory (3 ed.). Cambridge Mathematical Library. Cambridge University Press.