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Proofs of Theorems 1, 2 and 3.

Proof of Theorem 1. Let T* = T*(c) = T;;(c, N) and

n

&= (Yio1 —cwp),
k=1

where ¢ > 0. We will divide three steps to complete the proof of Theorem 1.

Step I. Show that

Eo(ér) > Eo(ér+)

(A. 2)
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for all T € Ty and the strict inequality of (A.2) holds for all T' € Ty with T £ T*.
To prove (A.2), by Lemma 3.2 in Chow, Robbins and Siegmund (1971), we only

need to prove the following two inequalities:

Eoo(&ps

Sn) <& on {T">n} (A. 3)
and
Eo(ér|§n) > € on {T"=n,T >n} (A. 4)

for each n > 1.
Let Bint1(N) ={Ys <lp(c),n+1 <k <m} forn+1<m < N. By the similar

method of proving Theorem 1 in Han, Tsung and Xian (2017), we can verify that

(€)= vurs + Bo( D Bt (V) [evmss = Yl 32 ) (A. 5)
and
E0< N T > m)[cvp - Ym]|gn> (A. 6)

< (I(e) = cvna)I(T > )

for 0 <n < N and T € Ty, and therefore, by (A.1), (A.5) and (A.6),

(T > n)Eo(§r+ — &)[8n) (A.7)
= I(T">n) Y Bo(I(T" > m)[€nir — &u])IFn)

= (T >n)[Y, — cvpi1 + Z Eo(1(Bnt1) (Yo — cUmi1)][Sn)

m=n+1

= I(T* > n) (Y, — ln(c)) <0
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and

(T = n)I(T > n)Eo(&r — &)[Sn) (A. 8)

= 1T =) 3 Bo(I(T > m)ss — Eal)I50)

= I(T"=n)[I[(T >n)(Y, — cvps1)
+ Z E, (I(T > m)[Y,, — cvm+1]|3n>]

> I(T* =n)[I(T > n)(Yn — cvps1) + (cvni1 — () I(T > n)]

= I(T" =n)I(T > n)[Y, —l,(c)] >0,

for 1 < n < N, where the last inequality in (A.7) comes from the definition of 7.
The two inequalities (A.7) and (A.8) mean respectively that (A.3) and (A.4) hold for
1 < n < N. Hence, the inequality in (A.2) holds for all T € ¥y. Furthermore, from
(A.7) and (A.8), it follows that the strict inequality in (A.2) holds for all T € T with
T 4T

Step II. Show that there is positive number ¢, such that

B Eo(U1)) _ Eoll(e,) ="

T (T (e) = e (1= =2 -

As Eo(vy) < v < o0 Eg(vg), it follows that there is at least a k > 2 such that

Eo(vg) > 0. Let k* = max{2 <k < N+ 1: Ey(vx) > 0}, we have

T* k* k*

Eo() w) =Y Eo(viI(T* > k) = Eo(v1) + > _ Eo(v I(T* > k)).

k=1 k=1 k=2
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By the definition of {lx(c),1 <k < N 4 1} and T*, we know that

k,*

limy  Eo(w/(T" > k) = 0
k=2
k*

k:*
lim Y Eo(uiI(T* > k) = > Eo(vy)
k=2 k=2

As 21,212 Eo(viI(T* > k)) is continuous and increasing on ¢, it follows that there is a

positive number ¢, such that

T*(cy) k*
Eof ve) = Y Eo(upl(T* > k) = 1. (A.9)
k=1 k=1

It follows from (A.5) that

Eo([Y; — cvmpi [ I[(T* > m + 1))

111=

= By (B3 Bus V)V — ctmsa50))

=1

= Eo(cv; — lp(c)). (A. 10)

Thus, by (A.1), (A.9), and (A.10) we have

Ey (X0 Y, )

Iun(T*(cy)) =

Eo(Y 0 )
_ o Bo(lYar — eyt + 0t 1(T7(ey) 2 m + 1))
Y
o T Bo(un I (T*(e;) = m)) — Eo(lo(c,))
Y

_ eB(En ) Eolo(ey) | Eollo(c))

gl Y X ! gl
_ o Bol))  Ealt(e) - W)t

v gl
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The last equality follows from the definition of ly(c) in (2.7). It proves (iii) of Theorem
1.

Step III. Show (i) and (ii) of Theorem 1. Let

Eo(lo(cy))
Eo(X 55 v)

If jMJ\[(T) 2 C,y, then jM,N(T> Z é»y == jM,N(T*(CfY)). If jM,N<T) < ny, then, by (Al),

ey = Jun(T*(cy)) = ¢y —

(A.2), and Eo(X2F _, vm) > v, we have

m=1

Tun(T) =]y > [E];(O(ZZ i”;)—cfy]Eo(va)

T
= [Eo ZYm 1 C'\/EO Z

m=1
™ ( Cw) T*(cy)
Z EO Z Ym 1 c’yEO( Z vm)]
m=1
c T*(cy)
EO(ZT (cy) Yin_1)
= | = &JEo( ), vm)

o) :
Eo(325 7" vm) o
= [Tun(T"(cy)) = cy]v.
This means that Jy, v (1) > Tun(T*(cy)) forall T € Ty with E (3" rie1Um) > . That
is, (i) of Theorem 1 is true. The strict inequality in (ii) of Theorem 1 comes from the
strict inequality in (A.2) when T' # T*(c,) with Eo(3.) _ o) = Eo(30 " (CW) V) = 7.
This completes the proof of Theorem 1.

Proof of Theorem 2. Since Yy, = (Y1 + wi(Yi—1, Anp, ) A and

plk(Xk‘kaly ey kaj>
pOk(Xklxkfla -~-7Xk7i>

A =
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for 1 < k < N, it follows that (Y, Xy),0 < k < N, is a two-dimensional p-order
Markov chain, where p = max{i,j}. Let 1 < p < N. By the definition of the optimal

control limits, we have

(A. 11)
() = coer (Y, Anp,)
B0 ([l1(0) = (Vi i (Ve A )i Vi, Ano)
for0<k<p-—1and
(A. 12)
l(c) = cvp1(Y, Anp,)
+ B ([1(0) = (Vi + wia (Vi A )] i Any )
for p < k < N. Let p = 0, we have similarly
(A. 13)

lk(C) = lk(C, Yk)

= o1 (V) + Eo ({1 () = (Vi + wha (V) A 1Y% )

for 0 <k <N.
Proof of Theorem 3. Let p = 0. As the observations X;,0 < k < N, are
independent, it follows from the definition of {Yy,1 < k < N} that {Y;,1 <k < N}isa

1-order Markov chain. Thus, the optimal control limits, I(c),0 < k < N, satisfy (A.13).
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Let y = cons1(y). As vyii(y) is non-increasing, it follows that there is a positive
number yy(c) such that yy(c) = coyi1(yn(c)). Hence, Y > In(c) = coni1(Yy) if and

only if Yy > yn(c). Therefore, we let Iy(c) = yn(c). Take k = N — 1 in (A.13) and let

y=foly) = con(y)

+ Bofeonsa (v + wn(v)Av) = (v + wn(y)An]* Yaos = ).

Note that the two functions (y + wy(y)) and wvy(y) are non-decreasing and non-
increasing on y > 0, respectively. Therefore, the function fy(y) is non-increasing on
y > 0, and it follows that there is a positive number yy_; such that yy_1 = fo(yn_1);

that is,

ynv-1 = con(yn—1)

+ Bo(levwsr — (w1 + wn v ) AN Va1 = yvo).

This implies that Yx_1 > Iy_i(c) if and only if Yy_; > yy_1. Therefore, we let

In—1(¢) = yn—1. Similarly, there are positive numbers y;,1 < k < N — 2 such that

Yi > lp(c) if and only if Y > yi for 1 <k < N — 2, where

Yk = Ut (yr) + Eo ([lk+1(c> — (yr + wk+1(yk))Ak+1]+‘Yk = yk)

for 1 < k < N — 2. Taking ZNk(c) =y, for 1 < k < N, we know that the control
limit {l;(c)} is an equivalent control limit of the optimal sequential test 7%, (c, N) and
it consists of a series of nonnegative non-random numbers. This proves (ii) of Theorem

3.
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Let 1 < p < N. As {(Vs, Xi),0 < k < N} is a two-dimensional p-order Markov
chain, it follows that (A.12) and (A.11) hold for p < k < N and 0 < k < p — 1, respec-
tively. When k = N in (A.12), we take Iy(c) = yn(c), where yy(c) = con1(yn(c)).
For any fixed observation values ap, = {xg,...,Tp—ps1} for p < &k < N — 1 and

ago = {xp, ..., x0} for 0 <k <p—1, let

?J:fp(y) = Cvk—i-l(yaak,p)

+ Bo( [l (0) = (9 + wen (9 0kp) Arr] Y = 9, Ary = iy )

forp<k <N —1and

y:gp(y) = CUk+1(Z/7CLk,0)

+ Eo ([lkﬂ(c) — (y + wr41(y, ak70))Ak+1]+’Yk =y, Appo = ak,O)

for 0 < k < p— 1. As the two functions f,(y) and g,(y) are non-increasing on y > 0,
it follows that there are positive numbers v, = yi(c, ax,p) for p < k < N — 1 and
Yk = yk(c,arp) for 1 < k < p — 1 such that y, = fp(yx) for p < k < N —1 and
Yr = gp(y) for 1 < k < p — 1. Therefore, Y}, > [;(c) if and only if Y}, > y;. Taking
lA;;(c) = yr(c, Xgy ooy Xpjp—ps1) for p < k < N and Z];(C) = yr(c, Xp, ..., Xo) for 1 < k <
p — 1, we have 7/}\74(0, N) =T (c, N). That is, {lz(c), 1 <k < N + 1} is an equivalent
control limit of the optimal sequential test T5;(c, N) that does not directly depend on

the statistic, Y;, 1 < k < N. This completes the proof of (i) of Theorem 3.



