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Proofs of Theorems 1, 2 and 3.

Proof of Theorem 1. Let T ∗ = T ∗(c) = T ∗M(c,N) and

ξn =
n∑
k=1

(Yk−1 − cvk), (A. 1)

where c > 0. We will divide three steps to complete the proof of Theorem 1.

Step I. Show that

E0(ξT ) ≥ E0(ξT ∗) (A. 2)
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for all T ∈ TN and the strict inequality of (A.2) holds for all T ∈ TN with T 6= T ∗.

To prove (A.2), by Lemma 3.2 in Chow, Robbins and Siegmund (1971), we only

need to prove the following two inequalities:

E∞(ξT ∗|Fn) ≤ ξn on {T ∗ > n} (A. 3)

and

E∞(ξT |Fn) ≥ ξn on {T ∗ = n, T > n} (A. 4)

for each n ≥ 1.

Let Bm,n+1(N) = {Yk < lk(c), n+ 1 ≤ k ≤ m} for n+ 1 ≤ m ≤ N . By the similar

method of proving Theorem 1 in Han, Tsung and Xian (2017), we can verify that

ln(c) = cvn+1 + E0

( N∑
m=n+1

Bm,n+1(N)[cvm+1 − Ym]|Fn
)

(A. 5)

and

E0

( N∑
m=n+1

I(T > m)[cvm+1 − Ym]|Fn
)

(A. 6)

≤ (ln(c)− cvn+1)I(T > n)

for 0 ≤ n ≤ N and T ∈ TN , and therefore, by (A.1), (A.5) and (A.6),

I(T ∗ > n)E0(ξT ∗ − ξn)|Fn) (A. 7)

= I(T ∗ > n)
N∑

m=n

E0(I(T ∗ > m)[ξm+1 − ξm])|Fn)

= I(T ∗ > n)[Yn − cvn+1 +
N∑

m=n+1

E0(I(Bm,n+1)(Ym − cvm+1)]|Fn)

= I(T ∗ > n)(Yn − ln(c)) < 0
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and

I(T ∗ = n)I(T > n)E0(ξT − ξn)|Fn) (A. 8)

= I(T ∗ = n)
N∑

m=n

E0(I(T > m)[ξm+1 − ξm])|Fn)

= I(T ∗ = n)[I(T > n)(Yn − cvn+1)

+
N∑

m=n+1

E0

(
I(T > m)[Ym − cvm+1]|Fn

)
]

≥ I(T ∗ = n)[I(T > n)(Yn − cvn+1) + (cvn+1 − ln(c))I(T > n)]

= I(T ∗ = n)I(T > n)[Yn − ln(c)] ≥ 0,

for 1 ≤ n ≤ N , where the last inequality in (A.7) comes from the definition of T ∗.

The two inequalities (A.7) and (A.8) mean respectively that (A.3) and (A.4) hold for

1 ≤ n ≤ N . Hence, the inequality in (A.2) holds for all T ∈ TN . Furthermore, from

(A.7) and (A.8), it follows that the strict inequality in (A.2) holds for all T ∈ TN with

T 6= T ∗.

Step II. Show that there is positive number cγ such that

JM,N(T ∗(cγ)) = cγ

(
1− E0(v1)

γ

)
− E0[l1(cγ)− Y1]+

γ
.

As E0(v1) < γ <
∑N+1

k=1 E0(vk), it follows that there is at least a k ≥ 2 such that

E0(vk) > 0. Let k∗ = max{2 ≤ k ≤ N + 1 : E0(vk) > 0}, we have

E0(
T ∗∑
k=1

vk) =
k∗∑
k=1

E0(vkI(T ∗ ≥ k)) = E0(v1) +
k∗∑
k=2

E0(vkI(T ∗ ≥ k)).
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By the definition of {lk(c), 1 ≤ k ≤ N + 1} and T ∗, we know that

lim
c→0

k∗∑
k=2

E0(vkI(T ∗ ≥ k)) = 0

lim
c→∞

k∗∑
k=2

E0(vkI(T ∗ ≥ k)) =
k∗∑
k=2

E0(vk)

As
∑k∗

k=2E0(vkI(T ∗ ≥ k)) is continuous and increasing on c, it follows that there is a

positive number cγ such that

E0(

T ∗(cγ)∑
k=1

vk) =
k∗∑
k=1

E0(vkI(T ∗ ≥ k)) = γ. (A. 9)

It follows from (A.5) that

N∑
m=1

E0([Ym − cvm+1]I(T ∗ ≥ m+ 1))

= E0

(
E0(

N∑
m=1

Bm,1(N)[Ym − cvm+1]|F0)
)

= E0(cv1 − l0(c)). (A. 10)

Thus, by (A.1), (A.9), and (A.10) we have

JM,N(T ∗(cγ)) =
E0(
∑T ∗(cγ)

m=1 Ym−1)

E0(
∑T ∗(cγ)

m=1 vk)

=

∑N
m=1 E0([Ym − cγvm+1 + cγvm+1]I(T ∗(cγ) ≥ m+ 1))

γ

=
cγ
∑N+1

m=1 E0(vmI(T ∗(cγ) ≥ m))− E0(l0(cγ))

γ

=
cγE0(

∑T ∗(cγ)
m=1 vk)

γ
− E0(l0(cγ))

γ
= cγ −

E0(l0(cγ))

γ

= cγ(1−
E0(v1)

γ
)− E0[l1(cγ)− Y1]+

γ
.
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The last equality follows from the definition of l0(c) in (2.7). It proves (iii) of Theorem

1.

Step III. Show (i) and (ii) of Theorem 1. Let

c̃γ = JM,N(T ∗(cγ)) = cγ −
E0(l0(cγ))

E0(
∑T ∗(cγ)

m=1 vm)
.

If JM,N(T ) ≥ cγ, then JM,N(T ) ≥ c̃γ = JM,N(T ∗(cγ)). If JM,N(T ) < cγ, then, by (A.1),

(A.2), and E0(
∑T

m=1 vm) ≥ γ, we have

[JM,N(T )− cγ]γ ≥ [
E0(
∑T

m=1 Ym−1)

E0(
∑T

m=1 vm)
− cγ]E0(

T∑
m=1

vm)

= [E0(
T∑

m=1

Ym−1)− cγE0(
T∑

m=1

vm)]

≥ [E0(

T ∗(cγ)∑
m=1

Ym−1)− cγE0(

T ∗(cγ)∑
m=1

vm)]

= [
E0(
∑T ∗(cγ)

m=1 Ym−1)

E0(
∑T ∗(cγ)

m=1 vm)
− cγ]E0(

T ∗(cγ)∑
m=1

vm)

= [JM,N(T ∗(cγ))− cγ]γ.

This means that JM,N(T ) ≥ JM,N(T ∗(cγ)) for all T ∈ TN with E0(
∑T

m=1 vm) ≥ γ. That

is, (i) of Theorem 1 is true. The strict inequality in (ii) of Theorem 1 comes from the

strict inequality in (A.2) when T 6= T ∗(cγ) with E0(
∑T

m=1 vm) = E0(
∑T ∗(cγ)

m=1 vm) = γ.

This completes the proof of Theorem 1.

Proof of Theorem 2. Since Yk = (Yk−1 + wk(Yk−1, An,p1))Λk and

Λk =
p1k(Xk|Xk−1, ..., Xk−j)

p0k(Xk|Xk−1, ..., Xk−i)
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for 1 ≤ k ≤ N , it follows that (Yk, Xk), 0 ≤ k ≤ N, is a two-dimensional p-order

Markov chain, where p = max{i, j}. Let 1 ≤ p ≤ N . By the definition of the optimal

control limits, we have

(A. 11)

lk(c) = cvk+1(Yk, An,p2)

+E0

(
[lk+1(c)− (Yk + wk+1(Yk, An,p1))Λk+1]

+|Yk, An,0
)

for 0 ≤ k ≤ p− 1 and

(A. 12)

lk(c) = cvk+1(Yk, An,p2)

+ E0

(
[lk+1(c)− (Yk + wk+1(Yk, An,p1))Λk+1]

+|Yk, An,p
)

for p ≤ k ≤ N. Let p = 0, we have similarly

(A. 13)

lk(c) = lk(c, Yk)

= cvk+1(Yk) + E0

(
[lk+1(c)− (Yk + wk+1(Yk))Λk+1]

+|Yk
)

for 0 ≤ k ≤ N .

Proof of Theorem 3. Let p = 0. As the observations Xk, 0 ≤ k ≤ N, are

independent, it follows from the definition of {Yk, 1 ≤ k ≤ N} that {Yk, 1 ≤ k ≤ N} is a

1-order Markov chain. Thus, the optimal control limits, lk(c), 0 ≤ k ≤ N , satisfy (A.13).
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Let y = cvN+1(y). As vN+1(y) is non-increasing, it follows that there is a positive

number yN(c) such that yN(c) = cvN+1(yN(c)). Hence, YN ≥ lN(c) = cvN+1(YN) if and

only if YN ≥ yN(c). Therefore, we let l̃N(c) = yN(c). Take k = N − 1 in (A.13) and let

y = f0(y) = cvN(y)

+ E0

(
[cvN+1((y + wN(y))ΛN)− (y + wN(y))ΛN ]+|YN−1 = y

)
.

Note that the two functions (y + wN(y)) and vN(y) are non-decreasing and non-

increasing on y ≥ 0, respectively. Therefore, the function f0(y) is non-increasing on

y ≥ 0, and it follows that there is a positive number yN−1 such that yN−1 = f0(yN−1);

that is,

yN−1 = cvN(yN−1)

+ E0

(
[cvN+1 − (yN−1 + wN(yN−1))ΛN ]+|YN−1 = yN−1

)
.

This implies that YN−1 ≥ lN−1(c) if and only if YN−1 ≥ yN−1. Therefore, we let

l̃N−1(c) = yN−1. Similarly, there are positive numbers yk, 1 ≤ k ≤ N − 2 such that

Yk ≥ lk(c) if and only if Yk ≥ yk for 1 ≤ k ≤ N − 2, where

yk = cvk+1(yk) + E0

(
[lk+1(c)− (yk + wk+1(yk))Λk+1]

+|Yk = yk

)
for 1 ≤ k ≤ N − 2. Taking l̃k(c) = yk for 1 ≤ k ≤ N , we know that the control

limit {l̃k(c)} is an equivalent control limit of the optimal sequential test T ∗M(c,N) and

it consists of a series of nonnegative non-random numbers. This proves (ii) of Theorem

3.
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Let 1 ≤ p ≤ N. As {(Yk, Xk), 0 ≤ k ≤ N} is a two-dimensional p-order Markov

chain, it follows that (A.12) and (A.11) hold for p ≤ k ≤ N and 0 ≤ k ≤ p− 1, respec-

tively. When k = N in (A.12), we take l̃N(c) = yN(c), where yN(c) = cvN+1(yN(c)).

For any fixed observation values ak,p = {xk, ..., xk−p+1} for p ≤ k ≤ N − 1 and

ak,0 = {xk, ..., x0} for 0 ≤ k ≤ p− 1, let

y = fp(y) = cvk+1(y, ak,p)

+ E0

(
[lk+1(c)− (y + wk+1(y, ak,p))Λk+1]

+|Yk = y, Ak,p = ak,p

)
for p ≤ k ≤ N − 1 and

y = gp(y) = cvk+1(y, ak,0)

+ E0

(
[lk+1(c)− (y + wk+1(y, ak,0))Λk+1]

+|Yk = y, Ak,0 = ak,0

)
for 0 ≤ k ≤ p − 1. As the two functions fp(y) and gp(y) are non-increasing on y ≥ 0,

it follows that there are positive numbers yk = yk(c, ak,p) for p ≤ k ≤ N − 1 and

yk = yk(c, ak,0) for 1 ≤ k ≤ p − 1 such that yk = fp(yk) for p ≤ k ≤ N − 1 and

yk = gp(yk) for 1 ≤ k ≤ p − 1. Therefore, Yk ≥ lk(c) if and only if Yk ≥ yk. Taking

l̃k(c) = yk(c,Xk, ..., Xk−p+1) for p ≤ k ≤ N and l̃k(c) = yk(c,Xk, ..., X0) for 1 ≤ k ≤

p− 1, we have T̃ ∗M(c,N) = T ∗M(c,N). That is, {l̃k(c), 1 ≤ k ≤ N + 1} is an equivalent

control limit of the optimal sequential test T ∗M(c,N) that does not directly depend on

the statistic, Yk, 1 ≤ k ≤ N. This completes the proof of (i) of Theorem 3.


