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Lemma 1. Under Assumption 1, for any π > 0, there exists a constant Cπ = C0(Ch ∨

log(rτ/π)∨1), where C0 is a universal constant, Ch is a constant depending on γ, r, τ, ψ(z), h(z)

but independent of π, p, n, δ and g, such that for any δ ≥ 0, the following hold:

(a) The sample gradient converges uniformly to the population gradient in Euclidean norm,

i.e., if n ≥ Cπp logn, we have

P

(
sup

θ∈Bp2 (0,r)

||∇R̂n(θ)−∇R(θ)||2 ≤ τ
√
Cπp logn

n

)
≥ 1− π. (1)

(b) The sample Hessian converges uniformly to the population Hessian in operator norm, i.e.,

if n ≥ Cπp logn, we have

P

(
sup

θ∈Bp2 (0,r)

||∇2R̂n(θ)−∇2R(θ)||op ≤ τ2
√
Cπp logn

n

)
≥ 1− π. (2)

Proof of Lemma 1: In order to prove the uniform convergency theorem, it is suffice to ver-

ify assumption 1, 2 and 3 in Mei et al. (2018). Specifically, first, we will verify that the directional

gradient of the population risk is sub-Gaussian (Assumption 1 in Mei et al. (2018)). Note the di-

rectional gradient of the population risk is given by 〈∇ρ(Y − 〈X, θ〉), ν〉 = ψ(Y − 〈X, θ〉)〈X, ν〉.
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Since |ψ(Y − 〈X, θ〉)| ≤ Lψ, and 〈X, ν〉 is mean zero and τ2-sub-Gaussian by our assump-

tion 1, due to Lemma 1 in Mei et al. (2018), there exists a universal constant C1, such that

〈∇ρ(Y − 〈X, θ〉), ν〉 is C1Lψτ
2−sub-Gaussian. Second, we will verify that the directional Hes-

sian of the loss is sub-exponential (Assumption 2 in Mei et al. (2018)). The directional Hessian

of the loss gives 〈∇2ρ(Y − 〈X, θ〉)ν, ν〉 = ψ′(Y − 〈X, θ〉)〈X, ν〉2. Since |ψ′(Y − 〈X, θ〉)| ≤ Lψ,

by Lemma 1 in Mei et al. (2018), 〈∇2ρ(Y − 〈X, θ〉)ν, ν〉 is C2τ
2-sub-exponential. Third, let

H = ||∇2R(θ0)||op and J∗ = E

[
sup
θ1 6=θ2

||(ψ′(Y−〈X,θ1〉)−ψ′(Y−〈X,θ2〉))xxT ||op
||θ1−θ2||2

]
. Then, we can show

H ≤ Lψτ
2 and J∗ ≤ Lψ(pτ2)3/2. Therefore, there exists a constant Ch such that H ≤ τ2pCh

and J∗ ≤ τ3pCh , which verifies the assumption 3 in Mei et al. (2018). Therefore, the uniform

convergency of gradient and Hessian in theorem 1 in Mei et al. (2018) holds for our gross error

model.

Proof of Theorem 1: Part (a): It is suffice to show that 〈θ − θ0,∇R(θ)〉 > 0 for all

||θ − θ0||2 > η0. Note by Assumption 1(d), we have h(z) =
∫ +∞
−∞ ψ(z + ε)f0(ε)dε > 0 as z > 0

and h′(0) > 0. Define H(s) := inf
0≤z≤s

h(z)
z
, it is easy to see that H(s) > 0 for all s > 0. Then, we
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have

〈θ − θ0,∇R(θ)〉 = E [E[ψ(z + ε)z|z = 〈θ0 − θ,X〉]]

= (1− δ)E[h(〈θ − θ0, X〉)〈θ − θ0, X〉] + δE [Eg(ψ(z + ε)z|z = 〈θ0 − θ,X〉)]

≥ (1− δ)H(s)E[〈θ − θ0, X〉2I(|〈θ−θ0,X〉|≤s)]− δLψE|〈θ0 − θ,X〉|

= (1− δ)H(s)E[〈θ − θ0, X〉2 − 〈θ − θ0, X〉2I(|〈θ−θ0,X〉|>s)]− δLψE|〈θ − θ0, X〉|

≥ (1− δ)H(s)
[
E[〈θ − θ0, X〉2]−

(
E[〈θ − θ0, X〉4] ·P(|〈θ − θ0, X〉| > s)

)1/2]
−δLψ(E|〈θ − θ0, X〉|2)1/2

(i)

≥ (1− δ)H(s)||θ − θ0||22τ2
(
γ −

√
c2P(|〈θ − θ0, X〉| > s)

)
− δLψ||θ − θ0||2τ

(ii)

≥ (1− δ)H(s)||θ − θ0||22τ2
(
γ −

√
c2E(|〈θ − θ0, X〉|4)

s4

)
− δLψ||θ − θ0||2τ

≥ (1− δ)H(s)||θ − θ0||22τ2
(
γ −

√
c2 · c2τ4||θ − θ0||42

s4

)
− δLψ||θ − θ0||2τ

≥ (1− δ)H(s)||θ − θ0||22τ2
(
γ − c2τ

2||θ − θ0||22
s2

)
− δLψ||θ − θ0||2τ

≥ (1− δ)H(s)||θ − θ0||22τ2
(
γ − 16c2τ

2r2

9s2

)
− δLψ||θ − θ0||2τ.

Here (i) holds from the fact that if X has mean zero and is τ2-sub-Gaussian, then for all u ∈ Rp,

E|〈u,X〉|2 ≤ ||u||22τ2,

E|〈u,X〉|4 ≤ c2||u||42τ4,

where c2 is a constant (Boucheron et al., 2013). (ii) holds from Chebyshev’s inequality. Thus,

a choice of s̃ = 8τr
3

√
c2
γ

will ensure that

〈θ − θ0,∇R(θ)〉 ≥ (1− δ)3

4
H(

8τr

3

√
c2
γ

)||θ − θ0||22τ2γ − δLψ||θ − θ0||2τ, (3)

which is greater than 0 when

||θ − θ0||2 >
δLψ

(1− δ) 3
4
H( 8τr

3

√
c2
γ

)τγ
:= η0. (4)
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Therefore, there are no stationary point outside of the ball Bp2 (θ0, η0).

Part(b): We first look at the minimum eigenvalue of the Hessian ∇2R(θ) at θ = θ0. For

any u ∈ Rp, ||u||2 = 1,

〈u,∇2R(θ0)u〉 = (1− δ)Ef0 [ψ′(ε)〈X,u〉2] + δEg[ψ
′(ε)〈X,u〉2]

= (1− δ)Ef0 [ψ′(ε)]E[〈X,u〉2] + δEg[ψ
′(ε)〈X,u〉2]

≥ (1− δ)h′(0)γτ2 − δLψτ2.

Therefore, we have the minimum eigenvalue of ∇2R(θ0) is greater than 0 as long as δ <

h′(0)γ
h′(0)γ+Lψ

.

Similarly, we can get 〈u,∇2R(θ0)u〉 ≤ (1− δ)h′(0)γτ2 + δLψτ
2.

Then we look at the operator norm of ∇2R(θ)−∇2R(θ0). For any u ∈ Rp, ||u||2 = 1,

|〈u, (∇2R(θ)−∇2R(θ0))u〉| = |E[(ψ′(〈X, θ0 − θ〉+ ε)− ψ′(ε))〈X,u〉2]|

= |E[ψ′′(ξ)〈X, θ0 − θ〉〈X,u〉2]|

≤ E|ψ′′(ξ)|E|〈X, θ0 − θ〉〈X,u〉2|

≤ Lψ{E[〈X, θ0 − θ〉2]E[〈X,u〉4]}1/2

≤ Lψ(||θ0 − θ||22τ2c2τ4)1/2

= Lψ
√
c2||θ0 − θ||2τ3.

Hence, taking

||θ − θ0||2 ≤ η1 :=
(1− δ)h′(0)γ − δLψ

2
√
c2τLψ

(5)

guarantees that (∇2R(θ)−∇2R(θ0))op ≤
(1−δ)h′(0)γτ2−δLψτ2

2
. Therefore, for all θ ∈ Bp2 (θ0, η1),

we have

λmin(∇2R(θ)) ≥ κ :=
(1− δ)h′(0)γ − δLψ

2
τ2, (6)

λmax(∇2R(θ)) ≤ κ′ := [
3

2
(1− δ)h′(0)γ +

1

2
δLψ]τ2, (7)
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which yields there is at most one minimizer of R(θ) in the ball Bp2 (θ0, η1), as long as δ <

h′(0)γ
h′(0)γ+Lψ

.

Part (c): Note R(θ) is a continuous function on Bp2 (r). Thus there exists a global minimizer,

denoted by θ∗. Since we have shown that there is no stationary points outside the ball Bp2 (θ0, η0),

θ∗ should be in the ball Bp2 (θ0, η0). Therefore, as long as η1 > η0, i.e.,

(1− δ)h′(0)γ − δLψ
2
√
c2τLψ

>
δLψ

(1− δ) 3
4
H( 8τr

3

√
c2
γ

)τγ
, (8)

there exists and only exists a unique stationary point of R(θ), which is also the global optimum

θ∗.

Proof of Theorem 2 Based on Lemma 1, there exists a constant Cπ such that as n is

large enough when n ≥ Cπp logn,

P

(
sup

θ∈Bp(0,r)
||∇R̂n(θ)−∇R(θ)||2 ≤ τ

√
Cπp logn

n

)
≥ 1− π (9)

P

(
sup

θ∈Bp(0,r)
||∇2R̂n(θ)−∇2R(θ)||op ≤ τ2

√
Cπp logn

n

)
≥ 1− π. (10)

Let ε0 = h′(0)H( 8τr
3

√
c2
γ

)γ2τ/(4
√
c2Lψ), which is a constant that does not depend on π, δ. Thus,

if n is further large such that τ
√

Cπp logn
n

≤ ε0 and τ2
√

Cπp logn
n

≤ κ/2, i.e., n ≥ Cp logn, where

C = max{Cπ, τ2Cπ/ε20, 4τ4Cπ/κ2}, we have

P

(
sup

θ∈Bp(0,r)
||∇R̂n(θ)−∇R(θ)||2 ≤ τ

√
Cπp logn

n
≤ ε0

)
≥ 1− π (11)

P

(
sup

θ∈Bp(0,r)
||∇2R̂n(θ)−∇2R(θ)||op ≤ τ2

√
Cπp logn

n
≤ κ/2

)
≥ 1− π. (12)

Part (a): Note

〈θ − θ0,∇R̂n(θ)〉 ≥ 〈θ − θ0,∇R(θ)〉 − ||∇R̂n(θ)−∇R(θ)||2||θ − θ0||2 (13)

≥ (1− δ)3

4
H(

8τr

3

√
c2
γ

)||θ − θ0||22τ2γ − (τδLψ + ε0)||θ − θ0||2 (14)
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which is greater than 0 when

||θ − θ0||2 >
τδLψ + ε0

(1− δ) 3
4
H( 8τr

3

√
c2
γ

)τ2γ
= η0 +

1

1− δ ζ, (15)

where ζ := h′(0)γ
3
√
c2τLψ

is a constant does not depend on δ. Therefore, there are no stationary

points outside of the ball Bp2 (θ0, η0 + 1
1−δ ζ).

Part (b): For the least eigenvalue of the empirical Hessian in Bp2 (θ0, η1), we have

inf
||θ−θ0||2≤η1

λmin(∇2R̂n(θ)) ≥ inf
||θ−θ0||2≤η1

λmin(∇2R(θ))− sup
θ∈Bp(0,η1)

||∇2R̂n(θ)−∇2R(θ)||op

≥ κ− κ/2 = κ/2 > 0. (16)

This lead to the conclusion that, R̂n(θ) is strong convex inside the ball Bp2 (θ0, η1).

For the largest eigenvalue of the empirical Hessian in Bp2 (θ0, η1), we have

sup
||θ−θ0||2≤η1

λmax(∇2R̂n(θ)) ≤ sup
||θ−θ0||2≤η1

λmax(∇2R(θ)) + sup
θ∈Bp(0,η1)

||∇2R̂n(θ)−∇2R(θ)||op

≤ κ′ + κ/2 < 2κ′, (17)

where κ′ is defined in (6) .

Part(c): When η0 + 1
1−δ ζ < η1, by strong convexity of R̂n(θ) in Bp2 (θ0, η1), there exists a

unique local minimizer, which is in Bp2 (θ0, η0 + 1
1−δ ζ). We denote the unique local minimizer as

θ̂n.

By Theorem 1, there is a unique stationary point of the population risk function R(θ) in

the ball Bp2 (θ0, η0). Suppose θ∗ is the unique stationary point of R(θ). By Taylor expansion of

R̂n(θ) at the point θ∗, there exists a θ̃ in Bp2 (θ0, η0 + 1
1−δ ζ), such that

R̂n(θ̂n) = R̂n(θ∗) + 〈θ̂n − θ∗,∇R̂n(θ∗)〉+
1

2
(θ̂n − θ∗)′∇2R̂n(θ̃)(θ̂n − θ∗) ≤ R̂n(θ∗). (18)

Since by equation (16), the least eigenvalue of ∇2R̂n(θ̃) is greater than κ/2, which lead to

κ

4
||θ̂n − θ∗||22 ≤ 〈θ∗ − θ̂n,∇R̂n(θ∗)〉 ≤ ||θ∗ − θ̂n||2||∇R̂n(θ∗)||2, (19)
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which yield

||θ̂n − θ∗||2 ≤
4

κ
||∇R̂n(θ∗)||2. (20)

By Theorem 1, ||θ0 − θ∗||2 < η0, combined with equation (20) and the uniform convergency

theorem in Lemma 1 yield

||θ̂n − θ0||2 ≤ η0 +
4τ

κ

√
Cp logn

n
. (21)

Part(d): Let θn(k) be the k−th iterate of gradient descent defined by

θn(k + 1) = θn(k)− h∇R̂n(θn(k))

First, we assume that we initialize at θn(0) /∈ Bp2 (θ0, η1) and all the iterates up to θn(k) are

outside the ball Bp2 (θ0, η1). We will show that the gradient descent will converge exponentially

to the ball Bp2 (θ0, η1). Note

‖θn(k + 1)− θ0‖22 − ‖θn(k)− θ0‖22 = −2h〈∇R̂n(θn(k)), θn(k)− θ0〉+ h2‖∇R̂n(θn(k))‖22 (22)

The lower bound of the inner product term can be derived by (13).

〈∇R̂n(θn(k)), θn(k)− θ0〉 ≥ δLψτ

[
1

η0
‖θn(k)− θ0‖22 − 2‖θn(k)− θ0‖2

]
≥ (η1 − 2η0)

η0η1
‖θn(k)− θ0‖22δLψτ, (23)

where the last inequality holds by the fact that θn(k) /∈ Bp2 (θ0, η1). Moreover, since ‖∇R(θ)‖2 ≤

2Lψτ, under the event (11), with probability 1 − π, ‖∇R̂n(θ)‖2 ≤ (2 + δ)Lψτ. Thus, by (22)

and (23),

‖θn(k + 1)− θ0‖22 ≤ ‖θn(k)− θ0‖22
[
1− 2h

(η1 − 2η0)

η0η1
δLψτ

]
+ h2(2 + δ)2L2

ψτ
2. (24)

Thus, by choosing h ≤ hmax,1 := η1(η1−2η0)δ

η0(2+δ)2Lψτ
, for all θn(k) /∈ Bp2 (θ0, η1), we have

‖θn(k + 1)− θ0‖22 ≤ ‖θn(k)− θ0‖22
[
1− 2h

(η1 − 2η0)

η0η1
δLψτ

]
+ h2(2 + δ)2L2

ψτ
2

≤ ‖θn(k)− θ0‖22
[
1− h (η1 − 2η0)

η0η1
δLψτ

]
.
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Define r1 = 1− h (η1−2η0)
η0η1

δLψτ < 1. We have the following chain of inequalities

‖θn(k)− θ̂n‖2 ≤ ‖θn(k)− θ0‖2 + ‖θ̂n − θ0‖2 ≤ ‖θn(k)− θ0‖2 + 2η0

≤ 2‖θn(k)− θ0‖2 ≤ 2r
k/2
1 ‖θn(0)− θ0‖2 ≤ 2r

k/2
1 (‖θn(0)− θ̂n‖2 + ‖θ̂n − θ0‖2)

≤ 4r
k/2
1 (‖θn(0)− θ̂n‖2, (25)

which implies the exponential convergence of the gradient descent outside Bp2 (θ0, η1).

Next, we will establish an exponential convergence inside Bp2 (θ0, η1). By (16), we have

inf
||θ−θ0||2≤η1

λmin(∇2R̂n(θ)) ≥ κ/2, sup
||θ−θ0||2≤η1

λmax(∇2R̂n(θ)) ≤ 2κ′.

Thus, R̂n(θ) is κ/2-strongly convex in Bp2 (θ0, η1). By standard convex optimization results, if

we start from a point inside Bp2 (θ0, η1), and take h ≤ hmax,2 := 1/(2κ′), we have

‖θn(k)− θ̂n‖2 ≤ 2

√
κ′

κ
(1− 1

2
κh)k/2‖θn(0)− θ̂n‖2.

Combined with the result (25) in the first step yields for any initialization θn(0) ∈ Bp2 (0, r),

running gradient descent gives

‖θn(k)− θ̂n‖2 ≤ 4

√
κ′

κ
sk‖θn(0)− θ̂n‖2, (26)

where s = max{
√

1− h (η1−2η0)
η0η1

δLψτ ,
√

1− 1
2
κh}, and the step size h satisfies h ≤ hmax =

min{hmax,1, hmax,2} = min{ η1(η1−2η0)δ

η0(2+δ)2Lψτ
, 1/(2κ′)}.

Lemma 2. Under assumption 1 and 2, there exist constants C1, C2, T0, L0 that depend on

r, τ, π, δ, Lψ, but independent of n, p, and g, such that the following hold:

a The sample directional gradient converges uniformly to the population directional gradient,

along the direction (θ − θ0).

P

(
sup

θ∈Bp2 (r)\{0}

|〈∇Rn(θ)−∇R(θ), θ − θ0〉|
||θ − θ0||1

≤ (T0 + L0τ)

√
C1 log(np)

n

)
≥ 1− π.
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b As n ≥ C2s0 log(np), we have

P

(
sup

θ∈Bp2 (r)∩Bp2 (s0),ν∈B
p
2 (1)∩Bp0 (s0)

|〈ν,
(
∇2Rn(θ)−∇2R(θ)

)
ν〉| ≤ τ2

√
C2s0 log(np)

n

)
≥ 1− π.

Proof of Lemma 2: From the Theorem 3 in Mei et al. (2018), the uniform convergency

theorem of our Lemma 2 holds if Assumption 4, 5 in Mei et al. (2018) hold under the con-

taminated model with outliers. Here we will show under our assumption 1 and 2, there exist

constants T0 and L0 such that

a For all θ ∈ Bp2 (r), Y ∈ R, X ∈ Rp, ||∇θρ(Y − 〈X, θ〉)||∞ ≤ T0M

b There exist functions h1 : R× Rp+1 → R, and h2 : Rp+1 → Rp, such that

〈∇θρ(Y − 〈X, θ〉), θ − θ0〉 = h1(〈θ − θ0, h2(Y,X)〉), Y,X). (27)

In addition, h1(t, Y,X) is L0M - Lipschitz to its first argument t, h1(0, Y,X) = 0, and

h2(Y,X) is mean-zero and τ2-sub-Gaussian.

Part (a). The gradient of the loss is

∇θρ(Y − 〈X, θ〉) = −ψ(Y − 〈X, θ〉)X. (28)

By assumption 1, we have | − ψ(Y − 〈X, θ〉)| ≤ Lψ. By assumption 2, we have ||X||∞ ≤ Mτ.

Therefore, (a) is satisfied with parameter T0 = Lψτ.

Part (b). Note

〈∇θρ(Y − 〈X, θ〉), θ − θ0〉 = −ψ(Y − 〈X, θ〉)〈X, θ − θ0〉. (29)

We take h2(Y,X) = X, t = 〈X, θ− θ0〉 and h1(t, Y,X) = −ψ(Y − t−〈X, θ0〉)t. Clearly, we have

h1(0, Y,X) = 0 and h2(Y,X) is mean 0 and τ2-sub-Gaussian. Furthermore, note |t| ≤ 2rMτ,

9
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we have

| ∂
∂t
h1(t, Y,X)| = |ψ′(Y − t− 〈X, θ0〉)t− ψ(Y − t− 〈X, θ0〉)| (30)

≤ 2MLψrτ + Lψ (31)

≤ (2Lψrτ + Lψ)M. (32)

Therefore, h1(t,X, Y ) is at most (2Lψrτ + Lψ)M -Lipschitz in its first argument t. By part (a)

and part (b), we can see assumption 4, 5 are satisfied under the gross error model, which prove

the uniform convergency theorem in our Lemma 2.

Proof of Theorem 3: We decompose the proof into four technical lemmas. First, in

Lemma 3, we prove there cannot be any stationary points of the regularized empirical risk L̂n

in (10) outside the region A, which is a cone with A = {θ0 + ∆ : ||∆Sc0
||1 ≤ 3||∆S0 ||1}. Then in

Lemma 4, we show there cannot be any stationary points outside the region Bp2 (θ0, rs) where

rs is the statistical radius which is not less than η0 in Theorem 1. In Lemma 5, we argue that

all stationary points should have support size less or equal to cs0 log p. Finally, in Lemma 6,

we show there cannot be two stationary points in Bp2 (θ0, η1) ∩ A. Note L̂n(θ) is a continuous

function, which indicates the existence of the global minimizer. Therefore, we can conclude

there is and only is one unique stationary point of the regularized empirical risk L̂n as long as

rs < η1.

To start with those lemmas, we define the subgradient of L̂n at θ as:

∂L̂n(θ) = {∇Rn(θ) + λnν : ν ∈ ∂||θ||1} . (33)

Therefore, the optimality condition implies that θ is a stationary point of L̂n if and only if

0 ∈ ∂L̂n(θ). To simplify notations, all constants in the following lemmas are dependent on

(ρ, Lψ, τ
2, r, γ, π) but independent on δ, s0, n, p,M.
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Lemma 3. Let S0 = supp(θ0) and s0 = |S0|. Define a cone A = {θ0 + ∆ : ||∆Sc0
||1 ≤

3||∆S0 ||1} ⊆ Rp. For any π > 0, there exist constants Cπ, such that letting λn ≥ 2CπM
√

log p
n

+

2δLψτ, with probability at least 1− π, L̂n(θ) has no stationary points in Bp2 (0, r) ∩ Ac :

〈z(θ), θ − θ0〉 > 0, ∀θ ∈ Bp2 (0, r) ∩ Ac, z(θ) ∈ ∂L̂n(θ) (34)

Proof of Lemma 3: For any z(θ) ∈ ∂L̂n(θ), it can be written as z(θ) = ∇R̂n(θ)+λnν(θ),

where ν(θ) ∈ ∂||θ||1. Therefore, we have

〈z(θ), θ − θ0〉 = 〈∇R(θ), θ − θ0〉+ 〈∇R̂n(θ)−∇R(θ), θ − θ0〉+ λn〈ν(θ), θ − θ0〉 (35)

Note by (3) we have

〈θ − θ0,∇R(θ)〉 ≥ (1− δ)3

4
H(

8τr

3

√
c2
γ

)||θ − θ0||22τ2γ − δLψ||θ − θ0||2τ. (36)

By Lemma 2, for any π > 0, there exists a constant Cπ such that

P( sup
0<||θ||2<r

|〈∇R̂n(θ)−∇R(θ), θ − θ0〉|
||θ − θ0||1

≤ CπM
√

log p

n
) > 1− π. (37)

Letting ∆ = θ − θ0, we have

〈ν(θ), θ − θ0〉 = 〈ν(θ)Sc0 ,∆Sc0
〉+ 〈ν(θ)S0 ,∆S0〉 ≥ ||∆Sc0

||1 − ||∆S0 ||1 (38)

Plugging (36),(37),(38) into (35) yields

〈z(θ), θ − θ0〉 ≥ (1− δ)3

4
H(

8τr

3

√
c2
γ

)||θ − θ0||22τ2γ − δLψ||θ − θ0||2τ (39)

− CπM

√
log p

n
(||∆Sc0

||1 + ||∆S0 ||1) + λn(||∆Sc0
||1 − ||∆S0 ||1). (40)

Let λn ≥ 2CπM
√

log p
n

+ C2, we have

〈z(θ), θ − θ0〉 ≥ (1− δ)3

4
H(

8τr

3

√
c2
γ

)||θ − θ0||22τ2γ − δLψ||θ − θ0||2τ

+ CπM

√
log p

n
(||∆Sc0

||1 − 3||∆S0 ||1) + C2(||∆Sc0
||1 − ||∆S0 ||1). (41)

11
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Next, we will find the lower bound of ||∆Sc0
||1 − ||∆S0 ||1 under the constraint of ||∆Sc0

||1 −

3||∆S0 ||1 ≥ 0. Note

||∆Sc0
||1 − ||∆S0 ||1 =

1

2
(||∆Sc0

||1 − 3||∆S0 ||1 + ||∆Sc0
||1 + ||∆S0 ||1)

=
1

2
(||∆Sc0

||1 − 3||∆S0 ||1 + ‖∆‖1)

≥ 1

2
‖∆‖1 ≥

1

2
‖∆‖2. (42)

Combined with (41), setting C2 ≥ 2δLψτ yield C2/2 ≥ δLψτ, which implies 〈z(θ), θ − θ0〉 > 0,

as long as θ ∈ Ac, i.e., ||∆Sc0
||1 − 3||∆S0 ||1 > 0.

Lemma 4. For any π > 0, θ ∈ A, z(θ) ∈ ∂L̂n(θ), there exist constants C0, C1 such that with

probability at least 1− π,

〈z(θ), θ − θ0〉 > 0 (43)

as long as ||θ − θ0||2 > rs, where

rs =
δ

1− δC0 +
4
√
s0

1− δ (M

√
log p

n
+ λn)C1. (44)

Proof of Lemma 4: Since for any θ ∈ A, we have ||θ−θ0||1 ≤ 4
√
s0||θ−θ0||2. Combining

with (35) yields

〈z(θ), θ − θ0〉 ≥ 〈∇R(θ), θ − θ0〉 − CπM
√

log p

n
||θ − θ0||1 − λn||θ − θ1||1 (45)

≥ (1− δ)3

4
H(

8τr

3

√
c2
γ

)||θ − θ0||22τ2γ − δLψ||θ − θ0||2τ (46)

−(CπM

√
log p

n
+ λn)4

√
s0||θ − θ0||2, (47)

which is greater than 0 as long as

||θ − θ0||2 ≥
δLψ + (CπM

√
log p
n

+ λn)4
√
s0

(1− δ) 3
4
H( 8τr

3

√
c2
γ

)τγ
:= rs. (48)

Taking C0 =
Lψ

3
4
H( 8τr

3

√
c2
γ

)τγ
and C1 = max(1,Cπ)

3
4
H( 8τr

3

√
c2
γ

)τγ
give the result of rs in equation (44).
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Lemma 5. If δ ≤ 1/2, for any π, there exist constants C0, C1 such that letting λn ≥ 2Lψτ(C0

√
log p
n

+

δ), with probability at least (1−π), any stationary points of L̂n(θ) in Bp2 (θ0, rs)∩A has support

size |S(θ̂)| ≤ C1s0 log p.

Proof of Lemma 5: Let θ̂ ∈ Bp2 (θ0, rs) ∩A be a stationary point of L̂n(θ) in (10). Then

we have

∇Rn(θ̂) + λnν(θ̂) = 0, (49)

where ν(θ̂) ∈ ||θ̂||1. Thus, we have

(
∇Rn(θ̂)

)
j

= ±λn, ∀j ∈ S(θ̂) (50)

Note |ψ(yi−〈xi, θ0〉)| ≤ Lψ and 〈xi, ej〉 is τ2-subgaussian with mean 0. Then there exists an ab-

solute constant c0 such that ψ(yi−〈xi, θ0〉)〈xi, ej〉 is c0L
2
ψτ

2-subgaussian, see Lemma 1(d) in Mei

et al. (2018). Thus we have 1
n

∑n
i=1 ψ(yi − 〈xi, θ0〉)〈xi, ej〉 is c0L

2
ψτ

2/n-subgaussian with mean

〈∇R(θ0), ej〉. Moreover, note |〈∇R(θ0), ej〉| = |δEgψ(yi − 〈xi, θ0〉)〈xi, ej〉| ≤ δLψE|〈xi, ej〉| ≤

δLψτ, we have for any t > 0,

P(| 1
n

n∑
i=1

ψ(yi − 〈xi, θ0〉)〈xi, ej〉| ≥ t+ δLψτ)

≤ P(| 1
n

n∑
i=1

ψ(yi − 〈xi, θ0〉)〈xi, ej〉 − 〈∇R(θ0), ej〉| ≥ t) ≤ 2 exp(− t2n

2c0L2
ψτ

2
). (51)

Thus, we can get

P (||∇Rn(θ0)||∞ > t+ δLψτ) ≤ p max
1≤j≤p

P

(
| 1
n

n∑
i=1

ψ(yi − 〈xi, θ0〉)〈xi, ej〉| > t+ δLψτ

)

≤ 2p exp(− t2n

2c0L2
ψτ

2
). (52)

Thus, a choice of t = Lψτ
√

2c0(log p+log 6/π)
n

and C =
√
c0 log 6/π will guarantee that

P

(
||∇R̂n(θ0)||∞ > Lψτ(C

√
log p

n
+ δ)

)
≤ π/3 (53)

13
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Let λn ≥ 2Lψτ(C
√

log p
n

+ δ), we have the event (||∇Rn(θ0)||∞ < λn/2) happens with the

probability at least 1− π/3. Under this event, combing with (50) yields

λn/2 ≤
∣∣∣∣(∇Rn(θ0)−∇Rn(θ̂)

)
j

∣∣∣∣ , ∀j ∈ S(θ̂). (54)

Squaring and summing over j ∈ S(θ̂), we have

λ2
n|S(θ̂)| ≤ 4

∥∥∥∥(∇R̂n(θ0)−∇R̂n(θ̂)
)
S(θ̂)

∥∥∥∥2
2

(55)

= 4

∥∥∥∥∥∥
(

1

n

n∑
i=1

(
ψ(yi − 〈θ0, xi〉)− ψ(yi − 〈θ̂, xi〉)

)
xi

)
S(θ̂)

∥∥∥∥∥∥
2

2

(56)

= 4

∥∥∥∥∥∥
(

1

n

n∑
i=1

(
ψ′(yi − 〈βi, xi〉)

)
〈θ0 − θ̂, xi〉xi

)
S(θ̂)

∥∥∥∥∥∥
2

2

(57)

≤ 4L2
ψ

∥∥∥∥∥∥
(

1

n

n∑
i=1

〈θ0 − θ̂, xi〉xi

)
S(θ̂)

∥∥∥∥∥∥
2

2

(58)

where βi are located on the line between θ0 and θ̂ obtained by intermediate value theorem.

Moreover, by Minkowski inequality and Cauchy-Schwarz inequality yield∥∥∥∥∥∥
(

1

n

n∑
i=1

〈θ0 − θ̂, xi〉xi

)
S(θ̂)

∥∥∥∥∥∥
2

≤ 1

n

n∑
i=1

|〈θ0 − θ̂, xi〉|
∥∥∥(xi)S(θ̂)

∥∥∥
2

≤ 1

n

(
(

n∑
i=1

|〈θ0 − θ̂, xi〉|2)(

n∑
i=1

‖ (xi)S(θ̂) ‖
2
2)

)1/2

(59)

Due to the restricted smoothness property of the sub-Gaussian random variables Mei et al.

(2018), there exists a constant c1 depending on π such that with probability at least 1 − π/3,

as n ≥ c1s0 log p, we have

sup
θ∈A

1
n

(
∑n
i=1 |〈θ0 − θ, xi〉|

2)

||θ − θ0||22
≤ 3τ2. (60)

Therefore, with probability at least 1− π/3, we have

sup
θ∈A∩Bp(θ0,rs)

1

n
(

n∑
i=1

|〈θ0 − θ̂, xi〉|2) ≤ 3τ2 sup
θ∈A∩Bp(θ0,rs)

||θ − θ0||22 ≤ 3τ2r2s . (61)
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Moreover, by Lemma 13 in Mei et al. (2018), for any π, there exists constant c2 depending on

π such that

P(
1

n

n∑
i=1

‖ (xi)S(θ̂) ‖
2
2 > c2τ

2 log p) ≤ π/3. (62)

By (53),(61),(62), as well as (59), at least 1− π,

λ2
n|S(θ̂)| ≤ 4L2

ψ3τ2r2sc2τ
2 log p

= Cr2s log p

By equation (44) we have

r2s ≤ C0(
δ

1− δ )2 +
s0

(1− δ)2 (M2 log p

n
+ λ2

n)C1 (63)

Taking λn ≥ 2Lψτ(C
√

log p
n

+ δ) gives us

|S(θ̂)| ≤ (C4
s0

(1− δ)2 + s0C5) log p

= Cs0 log p

Lemma 6. For any positive constants C0 and π, letting r0 = C0s0 log p, there exist constant

C1 such that when n ≥ C1s0 log2 p,

P( sup
θ∈Bp2 (θ0,r)∩B

p
0 (0,r0)

sup
ν∈Bp2 (0,1)∩Bp0 (0,r0)

〈ν, (∇2R̂n(θ)−∇2R(θ))ν〉 ≤ κ/2) ≥ 1− π. (64)

Moreover, the regularized empirical risk L̂n(θ) in (10) cannot have two stationary points in the

region Bp2 (θ0, η1) ∩Bp0 (0, r0/2).

Proof of Lemma 6: According to (6), we have

inf
θ∈Bp2 (θ0,η1)

λmin(∇2R(θ)) ≥ κ. (65)
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By Lemma 2, there exists constant C such that when n ≥ Cs0 log2 p,

P

(
inf

θ∈Bp2 (θ0,η1)∩B
p
0 (0,r0)

inf
ν∈Bp2 (0,1)∩Bp0 (0,r0)

〈ν, (∇2R̂n(θ))ν〉 ≥ κ/2

)
≤ π. (66)

Suppose θ1, θ2 are two distinct stationary points of L̂n(θ) in Bp2 (θ0, η1) ∩ Bp0 (0, r0/2). Define

u = θ2−θ1
||θ1−θ2||2

. Since θ1 and θ2 are r0/2-sparse, u is r0 sparse, as well as θ1 + tu for any t ∈ R.

Therefore,

〈∇R̂n(θ2), u〉 = 〈∇R̂n(θ1), u〉+

∫ ||θ1−θ2||2
0

〈u,∇2R̂n(θ1 + tu)u〉dt

≥ 〈∇R̂n(θ1), u〉+
κ

2
||θ2 − θ1||2. (67)

Note the regularization term λn||θ||1 is convex, we have for any subgradients ν(θ1) ∈ ∂||θ1||1,

ν(θ2) ∈ ∂||θ2||1,

λn〈ν(θ2), u〉 ≥ λn〈ν(θ1), u〉. (68)

Adding (67) with (68) gives

〈∇R̂n(θ2) + λnν(θ2), u〉 ≥ 〈∇R̂n(θ1) + λnν(θ1), u〉+
κ

2
||θ2 − θ1||2, (69)

which is contradict with the assumption that θ1 and θ2 are two distinct stationary points of

L̂n(θ).

Proof of Theorem 3. Now we are ready to prove Theorem 3. By Lemma 3 and Lemma

4, as n ≥ Cs0 log p, letting λn ≥ 2CM
√

log p
n

+ 2δLψτ, all stationary points of Ln(θ) are in

Bp2 (θ0, rs) ∩ A ∩ Bp0 (C1s0 log p), where rs is defined in (44), A is the cone defined in Lemma 3.

This proves Theorem 3(a). Moreover, by Lemma 5, Lemma 6, as n ≥ C2s0 log2 p, L̂n(θ) cannot

have two distinct stationary points in Bp2 (θ0, η1)∩A∩Bp0 (C1s0 log p). Thus, as long as η1 ≥ rs,

there is only one unique stationary point of the regularized empirical risk function L̂n(θ), which

is the corresponding regularized M-estimator of (10). This proves Theorem 3 (b).
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Proof of Corollary 1: Note the Welsch’s loss function is defined by ρα(t) = 1−e−αt
2/2

α
.

The corresponding score function is ψα(t) = ρ′α(t) = te−αt
2/2. Moreover, we can get ψ′α(t) =

e−αt
2/2(1 − αt2) and ψ′′α(t) = e−αt

2/2α(αt2 − 3). Note for any α > 0, all of ψα(t), ψ′α(t) and

ψ′′α(t) are bounded.

|ψα(t)| ≤
√
e

α

|ψ′α(t)| ≤ max{1, 2e−1.5} = 1

|ψ′′α(t)| ≤ max{e−(3+
√

6)/2
√

(18 + 6
√

6)α, e−(3−
√
6)/2
√

(18− 6
√

6)α} ≤ 1.5
√
α.

Therefore, the Assumption 1 is satisfied. It is suffice to find the explicit expression of η0 and η1 in

equation (4) and (5). In order to have an accurate expression, we will use the individual bound

of ψα(t), ψ′α(t), ψ′′α(t) instead of the universal bound Lψ. Specifically, according to Assumption 4,

xi is τ2-sub-Gaussian, c2 = 3, γ = 1/3. Thus, we can calculate h(z) =
∫ +∞
−∞ ψα(z + ε)f0(ε)dε =

z

(1+ασ2)3/2
e
− αz2

2(1+ασ2) and H(s) = 1

(1+ασ2)3/2
e
− αs2

2(1+ασ2) . Similarly, we can calculate h′(0) =

Ef0ψ
′
α(ε) = 1

(1+ασ2)3/2
. By (15), we have ζ = h′(0)γ

3
√
c2τLψ

= 1

13.5
√
3α(1+ασ2)3/2τ

.

By equation (4) in the proof of Theorem 1 yields

η0(δ, α) =
δLψ

(1− δ) 3
4
H( 8τr

3

√
c2
γ

)τγ

=
δ

1− δ

√
e

α

4(1 + ασ2)3/2

τ
e

32αr2τ2

3(1+ασ2)

Note |ψ′α(t)| ≤ 1, |ψ′′α(t)| ≤ 1.5
√
α, by equation (5) in the proof of Theorem 1 yields

η1(δ, α) =
(1− δ)h′(0)γ − δ
2
√

3× 1.5
√
ατ

=
1

9
√

3α(1 + ασ2)3/2τ

[
1− δ(1 + 3(1 + ασ2)3/2)

]
.
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Proof of Corollary 2: Tukey’s bisquare loss function is defined by

ρα(t) =


1
6
α2
[
1− (1− (t/α)2)3

]
, if |t| ≤ α

0, if |t| > α.

(70)

The corresponding score function is

ψα(t) = ρ′α(t) =


t(1− t2/α2)2, if |t| ≤ α

0, if |t| > α.

(71)

Moreover, for any α > 0, all of ψ(t), ψ′(t) and ψ′′(t) are bounded. Specifically, we have

|ψα(t)| < α, |ψ′(t)| < 4, |ψ′′(t)| = 1/α. Therefore, the assumptions in Theorem 1 and Theorem

2 are satisfied. It is suffice to find the explicit expression of η0 and η1 in equation (4) and (5).

Specifically, according to Assumption 4, xi is τ2-sub-Gaussian, c2 = 3, γ = 1/3. Thus, we can

calculate

h(z) =

∫ +∞

−∞
ψα(z + ε)f0(ε)dε =

∫ α

0

ψα(t)[f0(t− z)− f0(t+ z)]dt

≥ 2√
2πσ3

∫ α

0

e
− (t+z)2

2σ2 tzψα(t)dt ≥ 2√
2πσ3

e
− (z+α)2

2σ2 z

∫ α

0

tψα(t)dt

>
1

7
√

2πσ3
e
− (z2+α2)

σ2 zα3

Thus, H(s) > 1

7
√
2πσ3 e

−α2/σ2

α3e−s
2/σ2

. By equation (4) in the proof of Theorem 1 yields

η0(δ, α) =
δLψ

(1− δ) 3
4
H( 8τr

3

√
c2
γ

)τγ

<
δ

1− δ
28
√

2π

τσ3α2
e
α2+64τ2r2

σ2

Similarly, we can calculate

h′(0) = Ef0ψ
′
α(ε) =

2

α4

∫ α

0

(α− t)(α+ t)(α2 − 5t2)f0(t)dt

= 2α

∫ 1

0

(1− t)(1 + t)(1− 5t2)f0(αt)dt

:= M(α, σ).
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For fixed σ > 0, α > 0, we have M(α, σ) > 0. Note |ψ′α(t)| ≤ 4, |ψ′′α(t)| ≤ 1/α, by equation (5)

in the proof of Theorem 1 yields

η1(δ, α) =
(1− δ)M(α, σ)τ2 − 4δ

2
√

3τ
α (72)

Moreover, according to equation (48) in the proof of Theorem 3, we have with high prob-

ability, all stationary points of the empirical risk function L̂n(θ) in (10) are inside the ball

Bp2 (θ0, rs), where

rs = η0 +
12Cπτ

√
(s0 log p)/n+ 2τδLψ

(1− δ) 3
4
H( 8τr

3

√
c2
γ

)τγ
(73)

= (1 + 2τ)η0 +
16Cπτ

√
(s0 log p)/n

(1− δ)H( 8τr
3

√
c2
γ

)τγ
. (74)

Therefore, as n� s0 log p, we have rs ≈ (1 + 2τ)η0, which completes the proof.
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