Supplementary Material to "Robustness and Tractability for Non-convex M-estimators"

Ruizhi Zhang ${ }^{1}$, Yajun Mei ${ }^{2}$, Jianjun Shi ${ }^{2}$, Huan Xu^{3}
${ }^{1}$ University of Nebraska-Lincoln, ${ }^{2}$ Georgia Institute of Technology
${ }^{3}$ Alibaba Inc.

Lemma 1. Under Assumption 1, for any $\pi>0$, there exists a constant $C_{\pi}=C_{0}\left(C_{h} \vee\right.$ $\log (r \tau / \pi) \vee 1)$, where C_{0} is a universal constant, C_{h} is a constant depending on $\gamma, r, \tau, \psi(z), h(z)$ but independent of π, p, n, δ and g, such that for any $\delta \geq 0$, the following hold:
(a) The sample gradient converges uniformly to the population gradient in Euclidean norm, i.e., if $n \geq C_{\pi} p \log n$, we have

$$
\begin{equation*}
\mathbf{P}\left(\sup _{\theta \in B_{2}^{p}(0, r)}\left\|\nabla \hat{R}_{n}(\theta)-\nabla R(\theta)\right\|_{2} \leq \tau \sqrt{\frac{C_{\pi} p \log n}{n}}\right) \geq 1-\pi \tag{1}
\end{equation*}
$$

(b) The sample Hessian converges uniformly to the population Hessian in operator norm, i.e., if $n \geq C_{\pi} p \log n$, we have

$$
\begin{equation*}
\mathbf{P}\left(\sup _{\theta \in B_{2}^{p}(0, r)}\left\|\nabla^{2} \hat{R}_{n}(\theta)-\nabla^{2} R(\theta)\right\|_{o p} \leq \tau^{2} \sqrt{\frac{C_{\pi} p \log n}{n}}\right) \geq 1-\pi \tag{2}
\end{equation*}
$$

Proof of Lemma 1: In order to prove the uniform convergency theorem, it is suffice to verify assumption 1, 2 and 3 in Mei et al. (2018). Specifically, first, we will verify that the directional gradient of the population risk is sub-Gaussian (Assumption 1 in Mei et al. (2018)). Note the directional gradient of the population risk is given by $\langle\nabla \rho(Y-\langle X, \theta\rangle), \nu\rangle=\psi(Y-\langle X, \theta\rangle)\langle X, \nu\rangle$.

Since $|\psi(Y-\langle X, \theta\rangle)| \leq L_{\psi}$, and $\langle X, \nu\rangle$ is mean zero and τ^{2}-sub-Gaussian by our assumption 1, due to Lemma 1 in Mei et al. (2018), there exists a universal constant C_{1}, such that $\langle\nabla \rho(Y-\langle X, \theta\rangle), \nu\rangle$ is $C_{1} L_{\psi} \tau^{2}$-sub-Gaussian. Second, we will verify that the directional Hessian of the loss is sub-exponential (Assumption 2 in Mei et al. (2018)). The directional Hessian of the loss gives $\left\langle\nabla^{2} \rho(Y-\langle X, \theta\rangle) \nu, \nu\right\rangle=\psi^{\prime}(Y-\langle X, \theta\rangle)\langle X, \nu\rangle^{2}$. Since $\left|\psi^{\prime}(Y-\langle X, \theta\rangle)\right| \leq L_{\psi}$, by Lemma 1 in Mei et al. (2018), $\left\langle\nabla^{2} \rho(Y-\langle X, \theta\rangle) \nu, \nu\right\rangle$ is $C_{2} \tau^{2}$-sub-exponential. Third, let $H=\left\|\nabla^{2} R\left(\theta_{0}\right)\right\|_{o p}$ and $J^{*}=\mathbf{E}\left[\sup _{\theta_{1} \neq \theta_{2}} \frac{\left\|\left(\psi^{\prime}\left(Y-\left\langle X, \theta_{1}\right\rangle\right)-\psi^{\prime}\left(Y-\left\langle X, \theta_{2}\right\rangle\right)\right) x x^{T}\right\|_{o p}}{\left\|\theta_{1}-\theta_{2}\right\|_{2}}\right]$. Then, we can show $H \leq L_{\psi} \tau^{2}$ and $J^{*} \leq L_{\psi}\left(p \tau^{2}\right)^{3 / 2}$. Therefore, there exists a constant C_{h} such that $H \leq \tau^{2} p^{C_{h}}$ and $J^{*} \leq \tau^{3} p^{C_{h}}$, which verifies the assumption 3 in Mei et al. (2018). Therefore, the uniform convergency of gradient and Hessian in theorem 1 in Mei et al. (2018) holds for our gross error model.

Proof of Theorem 1: Part (a): It is suffice to show that $\left\langle\theta-\theta_{0}, \nabla R(\theta)\right\rangle>0$ for all $\left\|\theta-\theta_{0}\right\|_{2}>\eta_{0}$. Note by Assumption 1(d), we have $h(z)=\int_{-\infty}^{+\infty} \psi(z+\epsilon) f_{0}(\epsilon) d \epsilon>0$ as $z>0$ and $h^{\prime}(0)>0$. Define $H(s):=\inf _{0 \leq z \leq s} \frac{h(z)}{z}$, it is easy to see that $H(s)>0$ for all $s>0$. Then, we
have

$$
\begin{aligned}
\left\langle\theta-\theta_{0}, \nabla R(\theta)\right\rangle= & \mathbf{E}\left[\mathbf{E}\left[\psi(z+\epsilon) z \mid z=\left\langle\theta_{0}-\theta, X\right\rangle\right]\right] \\
= & (1-\delta) \mathbf{E}\left[h\left(\left\langle\theta-\theta_{0}, X\right\rangle\right)\left\langle\theta-\theta_{0}, X\right\rangle\right]+\delta \mathbf{E}\left[\mathbf{E}_{g}\left(\psi(z+\epsilon) z \mid z=\left\langle\theta_{0}-\theta, X\right\rangle\right)\right] \\
\geq & (1-\delta) H(s) \mathbf{E}\left[\left\langle\theta-\theta_{0}, X\right\rangle^{2} I_{\left.\left(\left|\left\langle\theta-\theta_{0}, X\right\rangle\right| \leq s\right)\right]-\delta L_{\psi} \mathbf{E}\left|\left\langle\theta_{0}-\theta, X\right\rangle\right|}=(1-\delta) H(s) \mathbf{E}\left[\left\langle\theta-\theta_{0}, X\right\rangle^{2}-\left\langle\theta-\theta_{0}, X\right\rangle^{2} I_{\left.\left(\left|\left\langle\theta-\theta_{0}, X\right\rangle\right|>s\right)\right]-\delta L_{\psi} \mathbf{E}\left|\left\langle\theta-\theta_{0}, X\right\rangle\right|}\right.\right. \\
\geq & (1-\delta) H(s)\left[\mathbf{E}\left[\left\langle\theta-\theta_{0}, X\right\rangle^{2}\right]-\left(\mathbf{E}\left[\left\langle\theta-\theta_{0}, X\right\rangle^{4}\right] \cdot \mathbf{P}\left(\left|\left\langle\theta-\theta_{0}, X\right\rangle\right|>s\right)\right)^{1 / 2}\right] \\
& -\delta L_{\psi}\left(\mathbf{E}\left|\left\langle\theta-\theta_{0}, X\right\rangle\right|^{2}\right)^{1 / 2} \\
\quad & (1-\delta) H(s)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2}\left(\gamma-\sqrt{c_{2} \mathbf{P}\left(\left|\left\langle\theta-\theta_{0}, X\right\rangle\right|>s\right)}\right)-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau \\
\geq & (1-\delta) H(s)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2}\left(\gamma-\sqrt{\frac{c_{2} \mathbf{E}\left(\left|\left\langle\theta-\theta_{0}, X\right\rangle\right|^{4}\right)}{s^{4}}}\right)-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau \\
\geq & (1-\delta) H(s)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2}\left(\gamma-\sqrt{\frac{c_{2} \cdot c_{2} \tau^{4}| | \theta-\theta_{0} \|_{2}^{4}}{s^{4}}}\right)-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau \\
\geq & (1-\delta) H(s)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2}\left(\gamma-\frac{c_{2} \tau^{2}\left\|\mid \theta-\theta_{0}\right\|_{2}^{2}}{s^{2}}\right)-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau \\
\geq & (1-\delta) H(s)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2}\left(\gamma-\frac{16 c_{2} \tau^{2} r^{2}}{9 s^{2}}\right)-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau .
\end{aligned}
$$

Here (i) holds from the fact that if X has mean zero and is τ^{2}-sub-Gaussian, then for all $u \in \mathbb{R}^{p}$,

$$
\begin{aligned}
\mathbf{E}|\langle u, X\rangle|^{2} & \leq\|u\|_{2}^{2} \tau^{2}, \\
\mathbf{E}|\langle u, X\rangle|^{4} & \leq c_{2}\|u\|_{2}^{4} \tau^{4},
\end{aligned}
$$

where c_{2} is a constant (Boucheron et al., 2013). (ii) holds from Chebyshev's inequality. Thus, a choice of $\tilde{s}=\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}$ will ensure that

$$
\begin{equation*}
\left\langle\theta-\theta_{0}, \nabla R(\theta)\right\rangle \geq(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2} \gamma-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau \tag{3}
\end{equation*}
$$

which is greater than 0 when

$$
\begin{equation*}
\left\|\theta-\theta_{0}\right\|_{2}>\frac{\delta L_{\psi}}{(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau \gamma}:=\eta_{0} . \tag{4}
\end{equation*}
$$

Therefore, there are no stationary point outside of the ball $B_{2}^{p}\left(\theta_{0}, \eta_{0}\right)$.
Part(b): We first look at the minimum eigenvalue of the Hessian $\nabla^{2} R(\theta)$ at $\theta=\theta_{0}$. For any $u \in \mathbb{R}^{p},\|u\|_{2}=1$,

$$
\begin{aligned}
\left\langle u, \nabla^{2} R\left(\theta_{0}\right) u\right\rangle & =(1-\delta) \mathbf{E}_{f_{0}}\left[\psi^{\prime}(\epsilon)\langle X, u\rangle^{2}\right]+\delta \mathbf{E}_{g}\left[\psi^{\prime}(\epsilon)\langle X, u\rangle^{2}\right] \\
& =(1-\delta) \mathbf{E}_{f_{0}}\left[\psi^{\prime}(\epsilon)\right] \mathbf{E}\left[\langle X, u\rangle^{2}\right]+\delta \mathbf{E}_{g}\left[\psi^{\prime}(\epsilon)\langle X, u\rangle^{2}\right] \\
& \geq(1-\delta) h^{\prime}(0) \gamma \tau^{2}-\delta L_{\psi} \tau^{2}
\end{aligned}
$$

Therefore, we have the minimum eigenvalue of $\nabla^{2} R\left(\theta_{0}\right)$ is greater than 0 as long as $\delta<$ $\frac{h^{\prime}(0) \gamma}{h^{\prime}(0) \gamma+L_{\psi}}$.

Similarly, we can get $\left\langle u, \nabla^{2} R\left(\theta_{0}\right) u\right\rangle \leq(1-\delta) h^{\prime}(0) \gamma \tau^{2}+\delta L_{\psi} \tau^{2}$.
Then we look at the operator norm of $\nabla^{2} R(\theta)-\nabla^{2} R\left(\theta_{0}\right)$. For any $u \in \mathbb{R}^{p},\|u\|_{2}=1$,

$$
\begin{aligned}
\left|\left\langle u,\left(\nabla^{2} R(\theta)-\nabla^{2} R\left(\theta_{0}\right)\right) u\right\rangle\right| & =\left|\mathbf{E}\left[\left(\psi^{\prime}\left(\left\langle X, \theta_{0}-\theta\right\rangle+\epsilon\right)-\psi^{\prime}(\epsilon)\right)\langle X, u\rangle^{2}\right]\right| \\
& =\left|\mathbf{E}\left[\psi^{\prime \prime}(\xi)\left\langle X, \theta_{0}-\theta\right\rangle\langle X, u\rangle^{2}\right]\right| \\
& \leq \mathbf{E}\left|\psi^{\prime \prime}(\xi)\right| \mathbf{E}\left|\left\langle X, \theta_{0}-\theta\right\rangle\langle X, u\rangle^{2}\right| \\
& \leq L_{\psi}\left\{\mathbf{E}\left[\left\langle X, \theta_{0}-\theta\right\rangle^{2}\right] \mathbf{E}\left[\langle X, u\rangle^{4}\right]\right\}^{1 / 2} \\
& \leq L_{\psi}\left(\left\|\theta_{0}-\theta\right\|_{2}^{2} \tau^{2} c_{2} \tau^{4}\right)^{1 / 2} \\
& =L_{\psi} \sqrt{c_{2}}| | \theta_{0}-\theta \|_{2} \tau^{3} .
\end{aligned}
$$

Hence, taking

$$
\begin{equation*}
\left\|\theta-\theta_{0}\right\|_{2} \leq \eta_{1}:=\frac{(1-\delta) h^{\prime}(0) \gamma-\delta L_{\psi}}{2 \sqrt{c_{2}} \tau L_{\psi}} \tag{5}
\end{equation*}
$$

guarantees that $\left(\nabla^{2} R(\theta)-\nabla^{2} R\left(\theta_{0}\right)\right)_{o p} \leq \frac{(1-\delta) h^{\prime}(0) \gamma \tau^{2}-\delta L_{\psi} \tau^{2}}{2}$. Therefore, for all $\theta \in B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$, we have

$$
\begin{align*}
\lambda_{\min }\left(\nabla^{2} R(\theta)\right) \geq \kappa & :=\frac{(1-\delta) h^{\prime}(0) \gamma-\delta L_{\psi}}{2} \tau^{2} \tag{6}\\
\lambda_{\max }\left(\nabla^{2} R(\theta)\right) \leq \kappa^{\prime} & :=\left[\frac{3}{2}(1-\delta) h^{\prime}(0) \gamma+\frac{1}{2} \delta L_{\psi}\right] \tau^{2} \tag{7}
\end{align*}
$$

which yields there is at most one minimizer of $R(\theta)$ in the ball $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$, as long as $\delta<$ $\frac{h^{\prime}(0) \gamma}{h^{\prime}(0) \gamma+L_{\psi}}$.

Part (c): Note $R(\theta)$ is a continuous function on $B_{2}^{p}(r)$. Thus there exists a global minimizer, denoted by θ^{*}. Since we have shown that there is no stationary points outside the ball $B_{2}^{p}\left(\theta_{0}, \eta_{0}\right)$, θ^{*} should be in the ball $B_{2}^{p}\left(\theta_{0}, \eta_{0}\right)$. Therefore, as long as $\eta_{1}>\eta_{0}$, i.e.,

$$
\begin{equation*}
\frac{(1-\delta) h^{\prime}(0) \gamma-\delta L_{\psi}}{2 \sqrt{c_{2}} \tau L_{\psi}}>\frac{\delta L_{\psi}}{(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau \gamma} \tag{8}
\end{equation*}
$$

there exists and only exists a unique stationary point of $R(\theta)$, which is also the global optimum θ^{*}.

Proof of Theorem 2 Based on Lemma 1, there exists a constant C_{π} such that as n is large enough when $n \geq C_{\pi} p \log n$,

$$
\begin{gather*}
\mathbf{P}\left(\sup _{\theta \in B^{p}(0, r)}\left\|\nabla \hat{R}_{n}(\theta)-\nabla R(\theta)\right\|_{2} \leq \tau \sqrt{\frac{C_{\pi} p \log n}{n}}\right) \geq 1-\pi \tag{9}\\
\mathbf{P}\left(\sup _{\theta \in B^{p}(0, r)}\left\|\nabla^{2} \hat{R}_{n}(\theta)-\nabla^{2} R(\theta)\right\|_{o p} \leq \tau^{2} \sqrt{\frac{C_{\pi} p \log n}{n}}\right) \geq 1-\pi . \tag{10}
\end{gather*}
$$

Let $\epsilon_{0}=h^{\prime}(0) H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \gamma^{2} \tau /\left(4 \sqrt{c_{2}} L_{\psi}\right)$, which is a constant that does not depend on π, δ. Thus, if n is further large such that $\tau \sqrt{\frac{C_{\pi} p \log n}{n}} \leq \epsilon_{0}$ and $\tau^{2} \sqrt{\frac{C_{\pi} p \log n}{n}} \leq \kappa / 2$, i.e., $n \geq C p \log n$, where $C=\max \left\{C_{\pi}, \tau^{2} C_{\pi} / \epsilon_{0}^{2}, 4 \tau^{4} C_{\pi} / \kappa^{2}\right\}$, we have

$$
\begin{gather*}
\mathbf{P}\left(\sup _{\theta \in B^{p}(0, r)}\left\|\nabla \hat{R}_{n}(\theta)-\nabla R(\theta)\right\|_{2} \leq \tau \sqrt{\frac{C_{\pi} p \log n}{n}} \leq \epsilon_{0}\right) \geq 1-\pi \tag{11}\\
\mathbf{P}\left(\sup _{\theta \in B^{p}(0, r)}\left\|\nabla^{2} \hat{R}_{n}(\theta)-\nabla^{2} R(\theta)\right\|_{o p} \leq \tau^{2} \sqrt{\frac{C_{\pi} p \log n}{n}} \leq \kappa / 2\right) \geq 1-\pi . \tag{12}
\end{gather*}
$$

Part (a): Note

$$
\begin{align*}
\left\langle\theta-\theta_{0}, \nabla \widehat{R}_{n}(\theta)\right\rangle & \geq\left\langle\theta-\theta_{0}, \nabla R(\theta)\right\rangle-\left\|\nabla \hat{R}_{n}(\theta)-\nabla R(\theta)\right\|_{2}\left\|\theta-\theta_{0}\right\|_{2} \tag{13}\\
& \geq(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2} \gamma-\left(\tau \delta L_{\psi}+\epsilon_{0}\right)\left\|\theta-\theta_{0}\right\|_{2} \tag{14}
\end{align*}
$$

which is greater than 0 when

$$
\begin{equation*}
\left\|\theta-\theta_{0}\right\|_{2}>\frac{\tau \delta L_{\psi}+\epsilon_{0}}{(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau^{2} \gamma}=\eta_{0}+\frac{1}{1-\delta} \zeta, \tag{15}
\end{equation*}
$$

where $\zeta:=\frac{h^{\prime}(0) \gamma}{3 \sqrt{c_{2} \tau L}}$ is a constant does not depend on δ. Therefore, there are no stationary points outside of the ball $B_{2}^{p}\left(\theta_{0}, \eta_{0}+\frac{1}{1-\delta} \zeta\right)$.

Part (b): For the least eigenvalue of the empirical Hessian in $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$, we have

$$
\begin{align*}
\inf _{\left\|\theta-\theta_{0}\right\|_{2} \leq \eta_{1}} \lambda_{\min }\left(\nabla^{2} \widehat{R}_{n}(\theta)\right) & \geq \inf _{\left\|\theta-\theta_{0}\right\|_{2} \leq \eta_{1}} \lambda_{\min }\left(\nabla^{2} R(\theta)\right)-\sup _{\theta \in B^{p}\left(0, \eta_{1}\right)}\left\|\nabla^{2} \hat{R}_{n}(\theta)-\nabla^{2} R(\theta)\right\|_{o p} \\
& \geq \kappa-\kappa / 2=\kappa / 2>0 \tag{16}
\end{align*}
$$

This lead to the conclusion that, $\widehat{R}_{n}(\theta)$ is strong convex inside the ball $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$.
For the largest eigenvalue of the empirical Hessian in $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$, we have

$$
\begin{align*}
\sup _{\left\|\theta-\theta_{0}\right\|_{2} \leq \eta_{1}} \lambda_{\max }\left(\nabla^{2} \widehat{R}_{n}(\theta)\right) & \leq \sup _{\left\|\theta-\theta_{0}\right\|_{2} \leq \eta_{1}} \lambda_{\max }\left(\nabla^{2} R(\theta)\right)+\sup _{\theta \in B^{p}\left(0, \eta_{1}\right)}\left\|\nabla^{2} \hat{R}_{n}(\theta)-\nabla^{2} R(\theta)\right\|_{o p} \\
& \leq \kappa^{\prime}+\kappa / 2<2 \kappa^{\prime} \tag{17}
\end{align*}
$$

where κ^{\prime} is defined in (6).
Part(c): When $\eta_{0}+\frac{1}{1-\delta} \zeta<\eta_{1}$, by strong convexity of $\widehat{R}_{n}(\theta)$ in $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$, there exists a unique local minimizer, which is in $B_{2}^{p}\left(\theta_{0}, \eta_{0}+\frac{1}{1-\delta} \zeta\right)$. We denote the unique local minimizer as $\widehat{\theta}_{n}$.

By Theorem 1, there is a unique stationary point of the population risk function $R(\theta)$ in the ball $B_{2}^{p}\left(\theta_{0}, \eta_{0}\right)$. Suppose θ^{*} is the unique stationary point of $R(\theta)$. By Taylor expansion of $\widehat{R}_{n}(\theta)$ at the point θ^{*}, there exists a $\tilde{\theta}$ in $B_{2}^{p}\left(\theta_{0}, \eta_{0}+\frac{1}{1-\delta} \zeta\right)$, such that

$$
\begin{equation*}
\widehat{R}_{n}\left(\widehat{\theta}_{n}\right)=\widehat{R}_{n}\left(\theta^{*}\right)+\left\langle\widehat{\theta}_{n}-\theta^{*}, \nabla \widehat{R}_{n}\left(\theta^{*}\right)\right\rangle+\frac{1}{2}\left(\widehat{\theta}_{n}-\theta^{*}\right)^{\prime} \nabla^{2} \widehat{R}_{n}(\tilde{\theta})\left(\widehat{\theta}_{n}-\theta^{*}\right) \leq \widehat{R}_{n}\left(\theta^{*}\right) . \tag{18}
\end{equation*}
$$

Since by equation (16), the least eigenvalue of $\nabla^{2} \widehat{R}_{n}(\tilde{\theta})$ is greater than $\kappa / 2$, which lead to

$$
\begin{equation*}
\frac{\kappa}{4}\left\|\widehat{\theta}_{n}-\theta^{*}\right\|_{2}^{2} \leq\left\langle\theta^{*}-\widehat{\theta}_{n}, \nabla \widehat{R}_{n}\left(\theta^{*}\right)\right\rangle \leq\left\|\theta^{*}-\widehat{\theta}_{n}\right\|_{2}\left\|\nabla \widehat{R}_{n}\left(\theta^{*}\right)\right\|_{2} \tag{19}
\end{equation*}
$$

which yield

$$
\begin{equation*}
\left\|\widehat{\theta}_{n}-\theta^{*}\right\|_{2} \leq \frac{4}{\kappa}\left\|\nabla \widehat{R}_{n}\left(\theta^{*}\right)\right\|_{2} \tag{20}
\end{equation*}
$$

By Theorem 1, $\left\|\theta_{0}-\theta^{*}\right\|_{2}<\eta_{0}$, combined with equation (20) and the uniform convergency theorem in Lemma 1 yield

$$
\begin{equation*}
\left\|\widehat{\theta}_{n}-\theta_{0}\right\|_{2} \leq \eta_{0}+\frac{4 \tau}{\kappa} \sqrt{\frac{C p \log n}{n}} \tag{21}
\end{equation*}
$$

$\operatorname{Part}(\mathrm{d}):$ Let $\theta_{n}(k)$ be the $k-$ th iterate of gradient descent defined by

$$
\theta_{n}(k+1)=\theta_{n}(k)-h \nabla \widehat{R}_{n}\left(\theta_{n}(k)\right)
$$

First, we assume that we initialize at $\theta_{n}(0) \notin B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$ and all the iterates up to $\theta_{n}(k)$ are outside the ball $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$. We will show that the gradient descent will converge exponentially to the ball $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$. Note

$$
\begin{equation*}
\left\|\theta_{n}(k+1)-\theta_{0}\right\|_{2}^{2}-\left\|\theta_{n}(k)-\theta_{0}\right\|_{2}^{2}=-2 h\left\langle\nabla \widehat{R}_{n}\left(\theta_{n}(k)\right), \theta_{n}(k)-\theta_{0}\right\rangle+h^{2}\left\|\nabla \widehat{R}_{n}\left(\theta_{n}(k)\right)\right\|_{2}^{2} \tag{22}
\end{equation*}
$$

The lower bound of the inner product term can be derived by (13).

$$
\begin{align*}
\left\langle\nabla \widehat{R}_{n}\left(\theta_{n}(k)\right), \theta_{n}(k)-\theta_{0}\right\rangle & \geq \delta L_{\psi} \tau\left[\frac{1}{\eta_{0}}\left\|\theta_{n}(k)-\theta_{0}\right\|_{2}^{2}-2\left\|\theta_{n}(k)-\theta_{0}\right\|_{2}\right] \\
& \geq \frac{\left(\eta_{1}-2 \eta_{0}\right)}{\eta_{0} \eta_{1}}\left\|\theta_{n}(k)-\theta_{0}\right\|_{2}^{2} \delta L_{\psi} \tau \tag{23}
\end{align*}
$$

where the last inequality holds by the fact that $\theta_{n}(k) \notin B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$. Moreover, since $\|\nabla R(\theta)\|_{2} \leq$ $2 L_{\psi} \tau$, under the event (11), with probability $1-\pi,\left\|\nabla \widehat{R}_{n}(\theta)\right\|_{2} \leq(2+\delta) L_{\psi} \tau$. Thus, by (22) and (23),

$$
\begin{equation*}
\left\|\theta_{n}(k+1)-\theta_{0}\right\|_{2}^{2} \leq\left\|\theta_{n}(k)-\theta_{0}\right\|_{2}^{2}\left[1-2 h \frac{\left(\eta_{1}-2 \eta_{0}\right)}{\eta_{0} \eta_{1}} \delta L_{\psi} \tau\right]+h^{2}(2+\delta)^{2} L_{\psi}^{2} \tau^{2} \tag{24}
\end{equation*}
$$

Thus, by choosing $h \leq h_{\max , 1}:=\frac{\eta_{1}\left(\eta_{1}-2 \eta_{0}\right) \delta}{\eta_{0}(2+\delta)^{2} L_{\psi} \tau}$, for all $\theta_{n}(k) \notin B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$, we have

$$
\begin{aligned}
\left\|\theta_{n}(k+1)-\theta_{0}\right\|_{2}^{2} & \leq\left\|\theta_{n}(k)-\theta_{0}\right\|_{2}^{2}\left[1-2 h \frac{\left(\eta_{1}-2 \eta_{0}\right)}{\eta_{0} \eta_{1}} \delta L_{\psi} \tau\right]+h^{2}(2+\delta)^{2} L_{\psi}^{2} \tau^{2} \\
& \leq\left\|\theta_{n}(k)-\theta_{0}\right\|_{2}^{2}\left[1-h \frac{\left(\eta_{1}-2 \eta_{0}\right)}{\eta_{0} \eta_{1}} \delta L_{\psi} \tau\right] .
\end{aligned}
$$

Define $r_{1}=1-h \frac{\left(\eta_{1}-2 \eta_{0}\right)}{\eta_{0} \eta_{1}} \delta L_{\psi} \tau<1$. We have the following chain of inequalities

$$
\begin{align*}
\left\|\theta_{n}(k)-\widehat{\theta}_{n}\right\|_{2} & \leq\left\|\theta_{n}(k)-\theta_{0}\right\|_{2}+\left\|\widehat{\theta}_{n}-\theta_{0}\right\|_{2} \leq\left\|\theta_{n}(k)-\theta_{0}\right\|_{2}+2 \eta_{0} \\
& \leq 2\left\|\theta_{n}(k)-\theta_{0}\right\|_{2} \leq 2 r_{1}^{k / 2}\left\|\theta_{n}(0)-\theta_{0}\right\|_{2} \leq 2 r_{1}^{k / 2}\left(\left\|\theta_{n}(0)-\widehat{\theta}_{n}\right\|_{2}+\left\|\widehat{\theta}_{n}-\theta_{0}\right\|_{2}\right) \\
& \leq 4 r_{1}^{k / 2}\left(\left\|\theta_{n}(0)-\widehat{\theta}_{n}\right\|_{2}\right. \tag{25}
\end{align*}
$$

which implies the exponential convergence of the gradient descent outside $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$.
Next, we will establish an exponential convergence inside $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$. By (16), we have

$$
\inf _{\left\|\theta-\theta_{0}\right\|_{2} \leq \eta_{1}} \lambda_{\min }\left(\nabla^{2} \widehat{R}_{n}(\theta)\right) \geq \kappa / 2, \quad \sup _{\left\|\theta-\theta_{0}\right\|_{2} \leq \eta_{1}} \lambda_{\max }\left(\nabla^{2} \widehat{R}_{n}(\theta)\right) \leq 2 \kappa^{\prime}
$$

Thus, $\widehat{R}_{n}(\theta)$ is $\kappa / 2$-strongly convex in $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$. By standard convex optimization results, if we start from a point inside $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)$, and take $h \leq h_{\max , 2}:=1 /\left(2 \kappa^{\prime}\right)$, we have

$$
\left\|\theta_{n}(k)-\widehat{\theta}_{n}\right\|_{2} \leq 2 \sqrt{\frac{\kappa^{\prime}}{\kappa}}\left(1-\frac{1}{2} \kappa h\right)^{k / 2}\left\|\theta_{n}(0)-\widehat{\theta}_{n}\right\|_{2}
$$

Combined with the result (25) in the first step yields for any initialization $\theta_{n}(0) \in B_{2}^{p}(0, r)$, running gradient descent gives

$$
\begin{equation*}
\left\|\theta_{n}(k)-\widehat{\theta}_{n}\right\|_{2} \leq 4 \sqrt{\frac{\kappa^{\prime}}{\kappa}} s^{k}\left\|\theta_{n}(0)-\widehat{\theta}_{n}\right\|_{2}, \tag{26}
\end{equation*}
$$

where $s=\max \left\{\sqrt{1-h \frac{\left(\eta_{1}-2 \eta_{0}\right)}{\eta_{0} \eta_{1}} \delta L_{\psi} \tau}, \sqrt{1-\frac{1}{2} \kappa h}\right\}$, and the step size h satisfies $h \leq h_{\max }=$ $\min \left\{h_{\max , 1}, h_{\max , 2}\right\}=\min \left\{\frac{\eta_{1}\left(\eta_{1}-2 \eta_{0}\right) \delta}{\eta_{0}(2+\delta)^{2} L_{\psi} \tau}, 1 /\left(2 \kappa^{\prime}\right)\right\}$.

Lemma 2. Under assumption 1 and 2, there exist constants $C_{1}, C_{2}, T_{0}, L_{0}$ that depend on $r, \tau, \pi, \delta, L_{\psi}$, but independent of n, p, and g, such that the following hold:
a The sample directional gradient converges uniformly to the population directional gradient, along the direction $\left(\theta-\theta_{0}\right)$.

$$
\begin{aligned}
& \mathbf{P}\left(\sup _{\theta \in B_{2}^{p}(r) \backslash\{0\}} \frac{\left|\left\langle\nabla R_{n}(\theta)-\nabla R(\theta), \theta-\theta_{0}\right\rangle\right|}{\left\|\theta-\theta_{0}\right\|_{1}} \leq\left(T_{0}+L_{0} \tau\right) \sqrt{\frac{C_{1} \log (n p)}{n}}\right) \\
& \geq 1-\pi .
\end{aligned}
$$

b As $n \geq C_{2} s_{0} \log (n p)$, we have

$$
\begin{aligned}
& \mathbf{P}\left(\sup _{\theta \in B_{2}^{p}(r) \cap B_{2}^{p}\left(s_{0}\right), \nu \in B_{2}^{p}(1) \cap B_{0}^{p}\left(s_{0}\right)}\left|\left\langle\nu,\left(\nabla^{2} R_{n}(\theta)-\nabla^{2} R(\theta)\right) \nu\right\rangle\right| \leq \tau^{2} \sqrt{\frac{C_{2} s_{0} \log (n p)}{n}}\right) \\
& \geq 1-\pi .
\end{aligned}
$$

Proof of Lemma 2: From the Theorem 3 in Mei et al. (2018), the uniform convergency theorem of our Lemma 2 holds if Assumption 4, 5 in Mei et al. (2018) hold under the contaminated model with outliers. Here we will show under our assumption 1 and 2, there exist constants T_{0} and L_{0} such that
a For all $\theta \in B_{2}^{p}(r), Y \in \mathbb{R}, X \in \mathbb{R}^{p},\left\|\nabla_{\theta} \rho(Y-\langle X, \theta\rangle)\right\|_{\infty} \leq T_{0} M$
b There exist functions $h_{1}: \mathbb{R} \times \mathbb{R}^{p+1} \rightarrow \mathbb{R}$, and $h_{2}: \mathbb{R}^{p+1} \rightarrow \mathbb{R}^{p}$, such that

$$
\begin{equation*}
\left.\left\langle\nabla_{\theta} \rho(Y-\langle X, \theta\rangle), \theta-\theta_{0}\right\rangle=h_{1}\left(\left\langle\theta-\theta_{0}, h_{2}(Y, X)\right\rangle\right), Y, X\right) . \tag{27}
\end{equation*}
$$

In addition, $h_{1}(t, Y, X)$ is $L_{0} M$ - Lipschitz to its first argument $t, h_{1}(0, Y, X)=0$, and $h_{2}(Y, X)$ is mean-zero and τ^{2}-sub-Gaussian.

Part (a). The gradient of the loss is

$$
\begin{equation*}
\nabla_{\theta} \rho(Y-\langle X, \theta\rangle)=-\psi(Y-\langle X, \theta\rangle) X \tag{28}
\end{equation*}
$$

By assumption 1, we have $|-\psi(Y-\langle X, \theta\rangle)| \leq L_{\psi}$. By assumption 2, we have $\|X\|_{\infty} \leq M \tau$. Therefore, (a) is satisfied with parameter $T_{0}=L_{\psi} \tau$.

Part (b). Note

$$
\begin{equation*}
\left\langle\nabla_{\theta} \rho(Y-\langle X, \theta\rangle), \theta-\theta_{0}\right\rangle=-\psi(Y-\langle X, \theta\rangle)\left\langle X, \theta-\theta_{0}\right\rangle . \tag{29}
\end{equation*}
$$

We take $h_{2}(Y, X)=X, t=\left\langle X, \theta-\theta_{0}\right\rangle$ and $h_{1}(t, Y, X)=-\psi\left(Y-t-\left\langle X, \theta_{0}\right\rangle\right) t$. Clearly, we have $h_{1}(0, Y, X)=0$ and $h_{2}(Y, X)$ is mean 0 and τ^{2}-sub-Gaussian. Furthermore, note $|t| \leq 2 r M \tau$,
we have

$$
\begin{align*}
\left|\frac{\partial}{\partial t} h_{1}(t, Y, X)\right| & =\left|\psi^{\prime}\left(Y-t-\left\langle X, \theta_{0}\right\rangle\right) t-\psi\left(Y-t-\left\langle X, \theta_{0}\right\rangle\right)\right| \tag{30}\\
& \leq 2 M L_{\psi} r \tau+L_{\psi} \tag{31}\\
& \leq\left(2 L_{\psi} r \tau+L_{\psi}\right) M \tag{32}
\end{align*}
$$

Therefore, $h_{1}(t, X, Y)$ is at most $\left(2 L_{\psi} r \tau+L_{\psi}\right) M$-Lipschitz in its first argument t. By part (a) and part (b), we can see assumption 4, 5 are satisfied under the gross error model, which prove the uniform convergency theorem in our Lemma 2.

Proof of Theorem 3: We decompose the proof into four technical lemmas. First, in Lemma 3, we prove there cannot be any stationary points of the regularized empirical risk \hat{L}_{n} in (10) outside the region \mathbb{A}, which is a cone with $\mathbb{A}=\left\{\theta_{0}+\Delta:\left\|\Delta_{S_{0}^{c}}\right\|_{1} \leq 3\left\|\Delta_{S_{0}}\right\|_{1}\right\}$. Then in Lemma 4, we show there cannot be any stationary points outside the region $B_{2}^{p}\left(\theta_{0}, r_{s}\right)$ where r_{s} is the statistical radius which is not less than η_{0} in Theorem 1. In Lemma 5, we argue that all stationary points should have support size less or equal to $c s_{0} \log p$. Finally, in Lemma 6, we show there cannot be two stationary points in $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right) \cap \mathbb{A}$. Note $\hat{L}_{n}(\theta)$ is a continuous function, which indicates the existence of the global minimizer. Therefore, we can conclude there is and only is one unique stationary point of the regularized empirical risk \hat{L}_{n} as long as $r_{s}<\eta_{1}$.

To start with those lemmas, we define the subgradient of \hat{L}_{n} at θ as:

$$
\begin{equation*}
\partial \hat{L}_{n}(\theta)=\left\{\nabla R_{n}(\theta)+\lambda_{n} \nu: \nu \in \partial\|\theta\|_{1}\right\} . \tag{33}
\end{equation*}
$$

Therefore, the optimality condition implies that θ is a stationary point of \hat{L}_{n} if and only if $\mathbf{0} \in \partial \hat{L}_{n}(\theta)$. To simplify notations, all constants in the following lemmas are dependent on ($\rho, L_{\psi}, \tau^{2}, r, \gamma, \pi$) but independent on δ, s_{0}, n, p, M.

Lemma 3. Let $S_{0}=\operatorname{supp}\left(\theta_{0}\right)$ and $s_{0}=\left|S_{0}\right|$. Define a cone $\mathbb{A}=\left\{\theta_{0}+\Delta:\left\|\Delta_{S_{0}^{c}}\right\|_{1} \leq\right.$ $\left.3\left\|\Delta_{S_{0}}\right\|_{1}\right\} \subseteq \mathbb{R}^{p}$. For any $\pi>0$, there exist constants C_{π}, such that letting $\lambda_{n} \geq 2 C_{\pi} M \sqrt{\frac{\log p}{n}}+$ $2 \delta L_{\psi} \tau$, with probability at least $1-\pi, \hat{L}_{n}(\theta)$ has no stationary points in $B_{2}^{p}(0, r) \cap \mathbb{A}^{c}$:

$$
\begin{equation*}
\left\langle z(\theta), \theta-\theta_{0}\right\rangle>0, \quad \forall \theta \in B_{2}^{p}(0, r) \cap \mathbb{A}^{c}, z(\theta) \in \partial \hat{L}_{n}(\theta) \tag{34}
\end{equation*}
$$

Proof of Lemma 3: For any $z(\theta) \in \partial \hat{L}_{n}(\theta)$, it can be written as $z(\theta)=\nabla \hat{R}_{n}(\theta)+\lambda_{n} \nu(\theta)$, where $\nu(\theta) \in \partial\|\theta\|_{1}$. Therefore, we have

$$
\begin{equation*}
\left\langle z(\theta), \theta-\theta_{0}\right\rangle=\left\langle\nabla R(\theta), \theta-\theta_{0}\right\rangle+\left\langle\nabla \hat{R}_{n}(\theta)-\nabla R(\theta), \theta-\theta_{0}\right\rangle+\lambda_{n}\left\langle\nu(\theta), \theta-\theta_{0}\right\rangle \tag{35}
\end{equation*}
$$

Note by (3) we have

$$
\begin{equation*}
\left\langle\theta-\theta_{0}, \nabla R(\theta)\right\rangle \geq(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2} \gamma-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau \tag{36}
\end{equation*}
$$

By Lemma 2, for any $\pi>0$, there exists a constant C_{π} such that

$$
\begin{equation*}
\mathbf{P}\left(\sup _{0<l\|\theta\|_{2}<r} \frac{\left|\left\langle\nabla \hat{R}_{n}(\theta)-\nabla R(\theta), \theta-\theta_{0}\right\rangle\right|}{\left\|\theta-\theta_{0}\right\|_{1}} \leq C_{\pi} M \sqrt{\frac{\log p}{n}}\right)>1-\pi \tag{37}
\end{equation*}
$$

Letting $\Delta=\theta-\theta_{0}$, we have

$$
\begin{equation*}
\left\langle\nu(\theta), \theta-\theta_{0}\right\rangle=\left\langle\nu(\theta)_{S_{0}^{c}}, \Delta_{S_{0}^{c}}\right\rangle+\left\langle\nu(\theta)_{S_{0}}, \Delta_{S_{0}}\right\rangle \geq\left\|\Delta_{S_{0}^{c}}\right\|_{1}-\left\|\Delta_{S_{0}}\right\|_{1} \tag{38}
\end{equation*}
$$

Plugging (36),(37),(38) into (35) yields

$$
\begin{align*}
\left\langle z(\theta), \theta-\theta_{0}\right\rangle & \geq(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2} \gamma-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau \tag{39}\\
& -C_{\pi} M \sqrt{\frac{\log p}{n}}\left(\left\|\Delta_{S_{0}^{c}}\right\|_{1}+\left\|\Delta_{S_{0}}\right\|_{1}\right)+\lambda_{n}\left(\left\|\Delta_{S_{0}^{c}}\right\|_{1}-\left\|\Delta_{S_{0}}\right\|_{1}\right) \tag{40}
\end{align*}
$$

Let $\lambda_{n} \geq 2 C_{\pi} M \sqrt{\frac{\log p}{n}}+C_{2}$, we have

$$
\begin{align*}
\left\langle z(\theta), \theta-\theta_{0}\right\rangle & \geq(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2} \gamma-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau \\
& +C_{\pi} M \sqrt{\frac{\log p}{n}}\left(\left\|\Delta_{S_{0}^{c}}\right\|_{1}-3\left\|\Delta_{S_{0}}\right\|_{1}\right)+C_{2}\left(\left\|\Delta_{S_{0}^{c}}\right\|_{1}-\left\|\Delta_{S_{0}}\right\|_{1}\right) \tag{41}
\end{align*}
$$

Next, we will find the lower bound of $\left\|\Delta_{S_{0}^{c}}\right\|_{1}-\left\|\Delta_{S_{0}}\right\|_{1}$ under the constraint of $\left\|\Delta_{S_{0}^{c}}\right\|_{1}-$ $3\left\|\Delta_{S_{0}}\right\|_{1} \geq 0$. Note

$$
\begin{align*}
\left\|\Delta_{S_{0}^{c}}\right\|_{1}-\left\|\Delta_{S_{0}}\right\|_{1} & =\frac{1}{2}\left(\left\|\Delta_{S_{0}^{c}}\right\|_{1}-3\left\|\Delta_{S_{0}}\right\|_{1}+\left\|\Delta_{S_{0}^{c}}\right\|_{1}+\left\|\Delta_{S_{0}}\right\|_{1}\right) \\
& =\frac{1}{2}\left(\left\|\Delta_{S_{0}^{c}}\right\|_{1}-3\left\|\Delta_{S_{0}}\right\|_{1}+\|\Delta\|_{1}\right) \\
& \geq \frac{1}{2}\|\Delta\|_{1} \geq \frac{1}{2}\|\Delta\|_{2} . \tag{42}
\end{align*}
$$

Combined with (41), setting $C_{2} \geq 2 \delta L_{\psi} \tau$ yield $C_{2} / 2 \geq \delta L_{\psi} \tau$, which implies $\left\langle z(\theta), \theta-\theta_{0}\right\rangle>0$, as long as $\theta \in \mathbb{A}^{c}$, i.e., $\left\|\Delta_{S_{0}^{c}}\right\|_{1}-3\left\|\Delta_{S_{0}}\right\|_{1}>0$.

Lemma 4. For any $\pi>0, \theta \in \mathbb{A}, z(\theta) \in \partial \hat{L}_{n}(\theta)$, there exist constants C_{0}, C_{1} such that with probability at least $1-\pi$,

$$
\begin{equation*}
\left\langle z(\theta), \theta-\theta_{0}\right\rangle>0 \tag{43}
\end{equation*}
$$

as long as $\left\|\theta-\theta_{0}\right\|_{2}>r_{s}$, where

$$
\begin{equation*}
r_{s}=\frac{\delta}{1-\delta} C_{0}+\frac{4 \sqrt{s_{0}}}{1-\delta}\left(M \sqrt{\frac{\log p}{n}}+\lambda_{n}\right) C_{1} . \tag{44}
\end{equation*}
$$

Proof of Lemma 4: Since for any $\theta \in \mathbb{A}$, we have $\left\|\theta-\theta_{0}\right\|_{1} \leq 4 \sqrt{s_{0}}\left\|\theta-\theta_{0}\right\|_{2}$. Combining with (35) yields

$$
\begin{align*}
\left\langle z(\theta), \theta-\theta_{0}\right\rangle \geq & \left\langle\nabla R(\theta), \theta-\theta_{0}\right\rangle-C_{\pi} M \sqrt{\frac{\log p}{n}}\left\|\theta-\theta_{0}\right\|_{1}-\lambda_{n}\left\|\theta-\theta_{1}\right\|_{1} \tag{45}\\
\geq & (1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right)\left\|\theta-\theta_{0}\right\|_{2}^{2} \tau^{2} \gamma-\delta L_{\psi}\left\|\theta-\theta_{0}\right\|_{2} \tau \tag{46}\\
& -\left(C_{\pi} M \sqrt{\frac{\log p}{n}}+\lambda_{n}\right) 4 \sqrt{s_{0}}\left\|\theta-\theta_{0}\right\|_{2}, \tag{47}
\end{align*}
$$

which is greater than 0 as long as

$$
\begin{equation*}
\left\|\theta-\theta_{0}\right\|_{2} \geq \frac{\delta L_{\psi}+\left(C_{\pi} M \sqrt{\frac{\log p}{n}}+\lambda_{n}\right) 4 \sqrt{s_{0}}}{(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau \gamma}:=r_{s} . \tag{48}
\end{equation*}
$$

Taking $C_{0}=\frac{L_{\psi}}{\frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau \gamma}$ and $C_{1}=\frac{\max \left(1, C_{\pi}\right)}{\frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau \gamma}$ give the result of r_{s} in equation (44).

Lemma 5. If $\delta \leq 1 / 2$, for any π, there exist constants C_{0}, C_{1} such that letting $\lambda_{n} \geq 2 L_{\psi} \tau\left(C_{0} \sqrt{\frac{\log p}{n}}+\right.$ δ), with probability at least $(1-\pi)$, any stationary points of $\hat{L}_{n}(\theta)$ in $B_{2}^{p}\left(\theta_{0}, r_{s}\right) \cap \mathbb{A}$ has support size $|S(\hat{\theta})| \leq C_{1} s_{0} \log p$.

Proof of Lemma 5: Let $\hat{\theta} \in B_{2}^{p}\left(\theta_{0}, r_{s}\right) \cap \mathbb{A}$ be a stationary point of $\hat{L}_{n}(\theta)$ in (10). Then we have

$$
\begin{equation*}
\nabla R_{n}(\hat{\theta})+\lambda_{n} \nu(\hat{\theta})=0 \tag{49}
\end{equation*}
$$

where $\nu(\hat{\theta}) \in\|\hat{\theta}\|_{1}$. Thus, we have

$$
\begin{equation*}
\left(\nabla R_{n}(\hat{\theta})\right)_{j}= \pm \lambda_{n}, \quad \forall j \in S(\hat{\theta}) \tag{50}
\end{equation*}
$$

Note $\left|\psi\left(y_{i}-\left\langle x_{i}, \theta_{0}\right\rangle\right)\right| \leq L_{\psi}$ and $\left\langle x_{i}, e_{j}\right\rangle$ is τ^{2}-subgaussian with mean 0 . Then there exists an absolute constant c_{0} such that $\psi\left(y_{i}-\left\langle x_{i}, \theta_{0}\right\rangle\right)\left\langle x_{i}, e_{j}\right\rangle$ is $c_{0} L_{\psi}^{2} \tau^{2}$-subgaussian, see Lemma 1(d) in Mei et al. (2018). Thus we have $\frac{1}{n} \sum_{i=1}^{n} \psi\left(y_{i}-\left\langle x_{i}, \theta_{0}\right\rangle\right)\left\langle x_{i}, e_{j}\right\rangle$ is $c_{0} L_{\psi}^{2} \tau^{2} / n$-subgaussian with mean $\left\langle\nabla R\left(\theta_{0}\right), e_{j}\right\rangle$. Moreover, note $\left|\left\langle\nabla R\left(\theta_{0}\right), e_{j}\right\rangle\right|=\left|\delta \mathbf{E}_{g} \psi\left(y_{i}-\left\langle x_{i}, \theta_{0}\right\rangle\right)\left\langle x_{i}, e_{j}\right\rangle\right| \leq \delta L_{\psi} \mathbf{E}\left|\left\langle x_{i}, e_{j}\right\rangle\right| \leq$ $\delta L_{\psi} \tau$, we have for any $t>0$,

$$
\begin{align*}
& \mathbf{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \psi\left(y_{i}-\left\langle x_{i}, \theta_{0}\right\rangle\right)\left\langle x_{i}, e_{j}\right\rangle\right| \geq t+\delta L_{\psi} \tau\right) \\
\leq & \mathbf{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \psi\left(y_{i}-\left\langle x_{i}, \theta_{0}\right\rangle\right)\left\langle x_{i}, e_{j}\right\rangle-\left\langle\nabla R\left(\theta_{0}\right), e_{j}\right\rangle\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2} n}{2 c_{0} L_{\psi}^{2} \tau^{2}}\right) . \tag{51}
\end{align*}
$$

Thus, we can get

$$
\begin{align*}
\mathbf{P}\left(\left\|\nabla R_{n}\left(\theta_{0}\right)\right\|_{\infty}>t+\delta L_{\psi} \tau\right) & \leq p \max _{1 \leq j \leq p} \mathbf{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \psi\left(y_{i}-\left\langle x_{i}, \theta_{0}\right\rangle\right)\left\langle x_{i}, e_{j}\right\rangle\right|>t+\delta L_{\psi} \tau\right) \\
& \leq 2 p \exp \left(-\frac{t^{2} n}{2 c_{0} L_{\psi}^{2} \tau^{2}}\right) \tag{52}
\end{align*}
$$

Thus, a choice of $t=L_{\psi} \tau \sqrt{\frac{2 c_{0}(\log p+\log 6 / \pi)}{n}}$ and $C=\sqrt{c_{0} \log 6 / \pi}$ will guarantee that

$$
\begin{equation*}
\mathbf{P}\left(\left\|\nabla \hat{R}_{n}\left(\theta_{0}\right)\right\|_{\infty}>L_{\psi} \tau\left(C \sqrt{\frac{\log p}{n}}+\delta\right)\right) \leq \pi / 3 \tag{53}
\end{equation*}
$$

Let $\lambda_{n} \geq 2 L_{\psi} \tau\left(C \sqrt{\frac{\log p}{n}}+\delta\right)$, we have the event $\left(\left\|\nabla R_{n}\left(\theta_{0}\right)\right\|_{\infty}<\lambda_{n} / 2\right)$ happens with the probability at least $1-\pi / 3$. Under this event, combing with (50) yields

$$
\begin{equation*}
\lambda_{n} / 2 \leq\left|\left(\nabla R_{n}\left(\theta_{0}\right)-\nabla R_{n}(\hat{\theta})\right)_{j}\right|, \quad \forall j \in S(\hat{\theta}) \tag{54}
\end{equation*}
$$

Squaring and summing over $j \in S(\hat{\theta})$, we have

$$
\begin{align*}
\lambda_{n}^{2}|S(\hat{\theta})| & \leq 4\left\|\left(\nabla \hat{R}_{n}\left(\theta_{0}\right)-\nabla \hat{R}_{n}(\hat{\theta})\right)_{S(\hat{\theta})}\right\|_{2}^{2} \tag{55}\\
& =4\left\|\left(\frac{1}{n} \sum_{i=1}^{n}\left(\psi\left(y_{i}-\left\langle\theta_{0}, x_{i}\right\rangle\right)-\psi\left(y_{i}-\left\langle\hat{\theta}, x_{i}\right\rangle\right)\right) x_{i}\right)_{S(\hat{\theta})}\right\|_{2}^{2} \tag{56}\\
& =4\left\|\left(\frac{1}{n} \sum_{i=1}^{n}\left(\psi^{\prime}\left(y_{i}-\left\langle\beta_{i}, x_{i}\right\rangle\right)\right)\left\langle\theta_{0}-\hat{\theta}, x_{i}\right\rangle x_{i}\right)_{S(\hat{\theta})}\right\|_{2}^{2} \tag{57}\\
& \leq 4 L_{\psi}^{2}\left\|\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\theta_{0}-\hat{\theta}, x_{i}\right\rangle x_{i}\right)_{S(\hat{\theta})}\right\|_{2}^{2} \tag{58}
\end{align*}
$$

where β_{i} are located on the line between θ_{0} and $\hat{\theta}$ obtained by intermediate value theorem. Moreover, by Minkowski inequality and Cauchy-Schwarz inequality yield

$$
\begin{align*}
\left\|\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\theta_{0}-\hat{\theta}, x_{i}\right\rangle x_{i}\right)_{S(\hat{\theta})}\right\|_{2} & \leq \frac{1}{n} \sum_{i=1}^{n}\left|\left\langle\theta_{0}-\hat{\theta}, x_{i}\right\rangle\right|\left\|\left(x_{i}\right)_{S(\hat{\theta})}\right\|_{2} \\
& \leq \frac{1}{n}\left(\left(\sum_{i=1}^{n}\left|\left\langle\theta_{0}-\hat{\theta}, x_{i}\right\rangle\right|^{2}\right)\left(\sum_{i=1}^{n}\left\|\left(x_{i}\right)_{S(\hat{\theta})}\right\|_{2}^{2}\right)\right)^{1 / 2} \tag{59}
\end{align*}
$$

Due to the restricted smoothness property of the sub-Gaussian random variables Mei et al. (2018), there exists a constant c_{1} depending on π such that with probability at least $1-\pi / 3$, as $n \geq c_{1} s_{0} \log p$, we have

$$
\begin{equation*}
\sup _{\theta \in \mathbb{A}} \frac{\frac{1}{n}\left(\sum_{i=1}^{n}\left|\left\langle\theta_{0}-\theta, x_{i}\right\rangle\right|^{2}\right)}{\left\|\theta-\theta_{0}\right\|_{2}^{2}} \leq 3 \tau^{2} . \tag{60}
\end{equation*}
$$

Therefore, with probability at least $1-\pi / 3$, we have

$$
\begin{equation*}
\sup _{\theta \in \mathbb{A}_{B^{p}\left(\theta_{0}, r_{s}\right)}} \frac{1}{n}\left(\sum_{i=1}^{n}\left|\left\langle\theta_{0}-\hat{\theta}, x_{i}\right\rangle\right|^{2}\right) \leq 3 \tau^{2} \sup _{\theta \in \mathbb{A} \cap B^{p}\left(\theta_{0}, r_{s}\right)}\left\|\theta-\theta_{0}\right\|_{2}^{2} \leq 3 \tau^{2} r_{s}^{2} \tag{61}
\end{equation*}
$$

Moreover, by Lemma 13 in Mei et al. (2018), for any π, there exists constant c_{2} depending on π such that

$$
\begin{equation*}
\mathbf{P}\left(\frac{1}{n} \sum_{i=1}^{n}\left\|\left(x_{i}\right)_{S(\hat{\theta})}\right\|_{2}^{2}>c_{2} \tau^{2} \log p\right) \leq \pi / 3 . \tag{62}
\end{equation*}
$$

By (53),(61),(62), as well as (59), at least $1-\pi$,

$$
\begin{aligned}
\lambda_{n}^{2}|S(\hat{\theta})| & \leq 4 L_{\psi}^{2} 3 \tau^{2} r_{s}^{2} c_{2} \tau^{2} \log p \\
& =C r_{s}^{2} \log p
\end{aligned}
$$

By equation (44) we have

$$
\begin{equation*}
r_{s}^{2} \leq C_{0}\left(\frac{\delta}{1-\delta}\right)^{2}+\frac{s_{0}}{(1-\delta)^{2}}\left(M^{2} \frac{\log p}{n}+\lambda_{n}^{2}\right) C_{1} \tag{63}
\end{equation*}
$$

Taking $\lambda_{n} \geq 2 L_{\psi} \tau\left(C \sqrt{\frac{\log p}{n}}+\delta\right)$ gives us

$$
\begin{aligned}
|S(\hat{\theta})| & \leq\left(C_{4} \frac{s_{0}}{(1-\delta)^{2}}+s_{0} C_{5}\right) \log p \\
& =C s_{0} \log p
\end{aligned}
$$

Lemma 6. For any positive constants C_{0} and π, letting $r_{0}=C_{0} s_{0} \log p$, there exist constant C_{1} such that when $n \geq C_{1} s_{0} \log ^{2} p$,

$$
\begin{equation*}
\mathbf{P}\left(\sup _{\theta \in B_{2}^{p}\left(\theta_{0}, r\right) \cap B_{0}^{p}\left(0, r_{0}\right) \nu \in B_{2}^{p}(0,1) \cap B_{0}^{p}\left(0, r_{0}\right)}\left\langle\nu,\left(\nabla^{2} \hat{R}_{n}(\theta)-\nabla^{2} R(\theta)\right) \nu\right\rangle \leq \kappa / 2\right) \geq 1-\pi . \tag{64}
\end{equation*}
$$

Moreover, the regularized empirical risk $\hat{L}_{n}(\theta)$ in (10) cannot have two stationary points in the region $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right) \cap B_{0}^{p}\left(0, r_{0} / 2\right)$.

Proof of Lemma 6: According to (6), we have

$$
\begin{equation*}
\inf _{\theta \in B_{2}^{p}\left(\theta_{0}, \eta_{1}\right)} \lambda_{\min }\left(\nabla^{2} R(\theta)\right) \geq \kappa . \tag{65}
\end{equation*}
$$

By Lemma 2, there exists constant C such that when $n \geq C s_{0} \log ^{2} p$,

$$
\begin{equation*}
\mathbf{P}\left(\inf _{\theta \in B_{2}^{p}\left(\theta_{0}, \eta_{1}\right) \cap B_{0}^{p}\left(0, r_{0}\right) \nu \in B_{2}^{p}(0,1) \cap B_{0}^{p}\left(0, r_{0}\right)}\left\langle\nu,\left(\nabla^{2} \hat{R}_{n}(\theta)\right) \nu\right\rangle \geq \kappa / 2\right) \leq \pi \tag{66}
\end{equation*}
$$

Suppose θ_{1}, θ_{2} are two distinct stationary points of $\hat{L}_{n}(\theta)$ in $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right) \cap B_{0}^{p}\left(0, r_{0} / 2\right)$. Define $u=\frac{\theta_{2}-\theta_{1}}{\left\|\theta_{1}-\theta_{2}\right\|_{2}}$. Since θ_{1} and θ_{2} are $r_{0} / 2$-sparse, u is r_{0} sparse, as well as $\theta_{1}+t u$ for any $t \in \mathbb{R}$. Therefore,

$$
\begin{align*}
\left\langle\nabla \hat{R}_{n}\left(\theta_{2}\right), u\right\rangle & =\left\langle\nabla \hat{R}_{n}\left(\theta_{1}\right), u\right\rangle+\int_{0}^{\left\|\theta_{1}-\theta_{2}\right\|_{2}}\left\langle u, \nabla^{2} \hat{R}_{n}\left(\theta_{1}+t u\right) u\right\rangle d t \\
& \geq\left\langle\nabla \hat{R}_{n}\left(\theta_{1}\right), u\right\rangle+\frac{\kappa}{2}\left\|\theta_{2}-\theta_{1}\right\|_{2} . \tag{67}
\end{align*}
$$

Note the regularization term $\lambda_{n}\|\theta\|_{1}$ is convex, we have for any subgradients $\nu\left(\theta_{1}\right) \in \partial\left\|\theta_{1}\right\|_{1}$, $\nu\left(\theta_{2}\right) \in \partial\left\|\theta_{2}\right\|_{1}$,

$$
\begin{equation*}
\lambda_{n}\left\langle\nu\left(\theta_{2}\right), u\right\rangle \geq \lambda_{n}\left\langle\nu\left(\theta_{1}\right), u\right\rangle . \tag{68}
\end{equation*}
$$

Adding (67) with (68) gives

$$
\begin{equation*}
\left\langle\nabla \hat{R}_{n}\left(\theta_{2}\right)+\lambda_{n} \nu\left(\theta_{2}\right), u\right\rangle \geq\left\langle\nabla \hat{R}_{n}\left(\theta_{1}\right)+\lambda_{n} \nu\left(\theta_{1}\right), u\right\rangle+\frac{\kappa}{2}\left\|\theta_{2}-\theta_{1}\right\|_{2}, \tag{69}
\end{equation*}
$$

which is contradict with the assumption that θ_{1} and θ_{2} are two distinct stationary points of $\hat{L}_{n}(\theta)$.

Proof of Theorem 3. Now we are ready to prove Theorem 3. By Lemma 3 and Lemma 4, as $n \geq C s_{0} \log p$, letting $\lambda_{n} \geq 2 C M \sqrt{\frac{\log p}{n}}+2 \delta L_{\psi} \tau$, all stationary points of $L_{n}(\theta)$ are in $B_{2}^{p}\left(\theta_{0}, r_{s}\right) \cap \mathbb{A} \cap B_{0}^{p}\left(C_{1} s_{0} \log p\right)$, where r_{s} is defined in (44), \mathbb{A} is the cone defined in Lemma 3. This proves Theorem 3(a). Moreover, by Lemma 5, Lemma 6, as $n \geq C_{2} s_{0} \log ^{2} p, \hat{L}_{n}(\theta)$ cannot have two distinct stationary points in $B_{2}^{p}\left(\theta_{0}, \eta_{1}\right) \cap \mathbb{A} \cap B_{0}^{p}\left(C_{1} s_{0} \log p\right)$. Thus, as long as $\eta_{1} \geq r_{s}$, there is only one unique stationary point of the regularized empirical risk function $\hat{L}_{n}(\theta)$, which is the corresponding regularized M-estimator of (10). This proves Theorem 3 (b).

Proof of Corollary 1: Note the Welsch's loss function is defined by $\rho_{\alpha}(t)=\frac{1-e^{-\alpha t^{2} / 2}}{\alpha}$. The corresponding score function is $\psi_{\alpha}(t)=\rho_{\alpha}^{\prime}(t)=t e^{-\alpha t^{2} / 2}$. Moreover, we can get $\psi_{\alpha}^{\prime}(t)=$ $e^{-\alpha t^{2} / 2}\left(1-\alpha t^{2}\right)$ and $\psi_{\alpha}^{\prime \prime}(t)=e^{-\alpha t^{2} / 2} \alpha\left(\alpha t^{2}-3\right)$. Note for any $\alpha>0$, all of $\psi_{\alpha}(t), \psi_{\alpha}^{\prime}(t)$ and $\psi_{\alpha}^{\prime \prime}(t)$ are bounded.

$$
\begin{aligned}
\left|\psi_{\alpha}(t)\right| & \leq \sqrt{\frac{e}{\alpha}} \\
\left|\psi_{\alpha}^{\prime}(t)\right| & \leq \max \left\{1,2 e^{-1.5}\right\}=1 \\
\left|\psi_{\alpha}^{\prime \prime}(t)\right| & \leq \max \left\{e^{-(3+\sqrt{6}) / 2} \sqrt{(18+6 \sqrt{6}) \alpha}, e^{-(3-\sqrt{6}) / 2} \sqrt{(18-6 \sqrt{6}) \alpha}\right\} \leq 1.5 \sqrt{\alpha}
\end{aligned}
$$

Therefore, the Assumption 1 is satisfied. It is suffice to find the explicit expression of η_{0} and η_{1} in equation (4) and (5). In order to have an accurate expression, we will use the individual bound of $\psi_{\alpha}(t), \psi_{\alpha}^{\prime}(t), \psi_{\alpha}^{\prime \prime}(t)$ instead of the universal bound L_{ψ}. Specifically, according to Assumption 4, x_{i} is τ^{2}-sub-Gaussian, $c_{2}=3, \gamma=1 / 3$. Thus, we can calculate $h(z)=\int_{-\infty}^{+\infty} \psi_{\alpha}(z+\epsilon) f_{0}(\epsilon) d \epsilon=$ $\frac{z}{\left(1+\alpha \sigma^{2}\right)^{3 / 2}} e^{-\frac{\alpha z^{2}}{2\left(1+\alpha \sigma^{2}\right)}}$ and $H(s)=\frac{1}{\left(1+\alpha \sigma^{2}\right)^{3 / 2}} e^{-\frac{\alpha s^{2}}{2\left(1+\alpha \sigma^{2}\right)}}$. Similarly, we can calculate $h^{\prime}(0)=$ $E_{f_{0}} \psi_{\alpha}^{\prime}(\epsilon)=\frac{1}{\left(1+\alpha \sigma^{2}\right)^{3 / 2}}$. By (15), we have $\zeta=\frac{h^{\prime}(0) \gamma}{3 \sqrt{c_{2} \tau L} \psi}=\frac{1}{13.5 \sqrt{3 \alpha}\left(1+\alpha \sigma^{2}\right)^{3 / 2} \tau}$.

By equation (4) in the proof of Theorem 1 yields

$$
\begin{aligned}
\eta_{0}(\delta, \alpha) & =\frac{\delta L_{\psi}}{(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau \gamma} \\
& =\frac{\delta}{1-\delta} \sqrt{\frac{e}{\alpha}} \frac{4\left(1+\alpha \sigma^{2}\right)^{3 / 2}}{\tau} e^{\frac{32 \alpha \alpha^{2} \tau^{2}}{3\left(1+\alpha \sigma^{2}\right)}}
\end{aligned}
$$

Note $\left|\psi_{\alpha}^{\prime}(t)\right| \leq 1,\left|\psi_{\alpha}^{\prime \prime}(t)\right| \leq 1.5 \sqrt{\alpha}$, by equation (5) in the proof of Theorem 1 yields

$$
\begin{aligned}
\eta_{1}(\delta, \alpha) & =\frac{(1-\delta) h^{\prime}(0) \gamma-\delta}{2 \sqrt{3} \times 1.5 \sqrt{\alpha} \tau} \\
& =\frac{1}{9 \sqrt{3 \alpha}\left(1+\alpha \sigma^{2}\right)^{3 / 2} \tau}\left[1-\delta\left(1+3\left(1+\alpha \sigma^{2}\right)^{3 / 2}\right)\right]
\end{aligned}
$$

Proof of Corollary 2: Tukey's bisquare loss function is defined by

$$
\rho_{\alpha}(t)= \begin{cases}\frac{1}{6} \alpha^{2}\left[1-\left(1-(t / \alpha)^{2}\right)^{3}\right], & \text { if }|t| \leq \alpha \tag{70}\\ 0, \quad \text { if }|t|>\alpha\end{cases}
$$

The corresponding score function is

$$
\psi_{\alpha}(t)=\rho_{\alpha}^{\prime}(t)=\left\{\begin{array}{l}
t\left(1-t^{2} / \alpha^{2}\right)^{2}, \quad \text { if }|t| \leq \alpha \tag{71}\\
0, \quad \text { if }|t|>\alpha
\end{array}\right.
$$

Moreover, for any $\alpha>0$, all of $\psi(t), \psi^{\prime}(t)$ and $\psi^{\prime \prime}(t)$ are bounded. Specifically, we have $\left|\psi_{\alpha}(t)\right|<\alpha,\left|\psi^{\prime}(t)\right|<4,\left|\psi^{\prime \prime}(t)\right|=1 / \alpha$. Therefore, the assumptions in Theorem 1 and Theorem 2 are satisfied. It is suffice to find the explicit expression of η_{0} and η_{1} in equation (4) and (5). Specifically, according to Assumption 4, x_{i} is τ^{2}-sub-Gaussian, $c_{2}=3, \gamma=1 / 3$. Thus, we can calculate

$$
\begin{aligned}
h(z) & =\int_{-\infty}^{+\infty} \psi_{\alpha}(z+\epsilon) f_{0}(\epsilon) d \epsilon=\int_{0}^{\alpha} \psi_{\alpha}(t)\left[f_{0}(t-z)-f_{0}(t+z)\right] d t \\
& \geq \frac{2}{\sqrt{2 \pi} \sigma^{3}} \int_{0}^{\alpha} e^{-\frac{(t+z)^{2}}{2 \sigma^{2}}} t z \psi_{\alpha}(t) d t \geq \frac{2}{\sqrt{2 \pi} \sigma^{3}} e^{-\frac{(z+\alpha)^{2}}{2 \sigma^{2}}} z \int_{0}^{\alpha} t \psi_{\alpha}(t) d t \\
& >\frac{1}{7 \sqrt{2 \pi} \sigma^{3}} e^{-\frac{\left(z^{2}+\alpha^{2}\right)}{\sigma^{2}}} z \alpha^{3}
\end{aligned}
$$

Thus, $H(s)>\frac{1}{7 \sqrt{2 \pi} \sigma^{3}} e^{-\alpha^{2} / \sigma^{2}} \alpha^{3} e^{-s^{2} / \sigma^{2}}$. By equation (4) in the proof of Theorem 1 yields

$$
\begin{aligned}
\eta_{0}(\delta, \alpha) & =\frac{\delta L_{\psi}}{(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau \gamma} \\
& <\frac{\delta}{1-\delta} \frac{28 \sqrt{2 \pi}}{\tau \sigma^{3} \alpha^{2}} e^{\frac{\alpha^{2}+64 \tau^{2} r^{2}}{\sigma^{2}}}
\end{aligned}
$$

Similarly, we can calculate

$$
\begin{aligned}
h^{\prime}(0) & =E_{f_{0}} \psi_{\alpha}^{\prime}(\epsilon)=\frac{2}{\alpha^{4}} \int_{0}^{\alpha}(\alpha-t)(\alpha+t)\left(\alpha^{2}-5 t^{2}\right) f_{0}(t) d t \\
& =2 \alpha \int_{0}^{1}(1-t)(1+t)\left(1-5 t^{2}\right) f_{0}(\alpha t) d t \\
& :=M(\alpha, \sigma) .
\end{aligned}
$$

For fixed $\sigma>0, \alpha>0$, we have $M(\alpha, \sigma)>0$. Note $\left|\psi_{\alpha}^{\prime}(t)\right| \leq 4,\left|\psi_{\alpha}^{\prime \prime}(t)\right| \leq 1 / \alpha$, by equation (5) in the proof of Theorem 1 yields

$$
\begin{equation*}
\eta_{1}(\delta, \alpha)=\frac{(1-\delta) M(\alpha, \sigma) \tau^{2}-4 \delta}{2 \sqrt{3} \tau} \alpha \tag{72}
\end{equation*}
$$

Moreover, according to equation (48) in the proof of Theorem 3, we have with high probability, all stationary points of the empirical risk function $\hat{L}_{n}(\theta)$ in (10) are inside the ball $B_{2}^{p}\left(\theta_{0}, r_{s}\right)$, where

$$
\begin{align*}
r_{s} & =\eta_{0}+\frac{12 C_{\pi} \tau \sqrt{\left(s_{0} \log p\right) / n}+2 \tau \delta L_{\psi}}{(1-\delta) \frac{3}{4} H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau \gamma} \tag{73}\\
& =(1+2 \tau) \eta_{0}+\frac{16 C_{\pi} \tau \sqrt{\left(s_{0} \log p\right) / n}}{(1-\delta) H\left(\frac{8 \tau r}{3} \sqrt{\frac{c_{2}}{\gamma}}\right) \tau \gamma} \tag{74}
\end{align*}
$$

Therefore, as $n \gg s_{0} \log p$, we have $r_{s} \approx(1+2 \tau) \eta_{0}$, which completes the proof.

References

Boucheron, S., G. Lugosi, and P. Massart (2013). Concentration inequalities: A nonasymptotic theory of independence. Oxford university press.

Mei, S., Y. Bai, A. Montanari, et al. (2018). The landscape of empirical risk for nonconvex losses. The Annals of Statistics 46(6A), 2747-2774.

