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In the Supplementary Material, we will provide the technical proofs to the

Theorems 1-4 and Corollary 1 in the main paper as well as the results for addi-

tional simulation studies. Note that all expectations are evaluated at the true

values. For convenience, we will utilize the following simplified notations:

E(ggT) = E(g(D,γ0)g
T(D,γ0)), E(∂g/∂γT) = E(∂g(D,γ0)/∂γ

T);

E(g1g
T
1 ) = E(g1(D,γ0)g

T
1 (D,γ0)), E(∂g1/∂γ

T) = E(∂g1(D,γ0)/∂γ
T);

E(g2g
T
2 ) = E(g2(D,γ0)g

T
2 (D,γ0)), E(∂g2/∂γ

T) = E(∂g2(D,γ0)/∂γ
T);

E(g1g
T
2 ) = E(g2g

T
1 )T = E(g1(D,γ0)g

T
2 (D,γ0)).
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S1. Technical proofs

S1.1 Proof of Theorem 1

In order to show Theorem 1 in the main paper, we need the following lemma:

Lemma 1. Under Condition 1 and Condition 2 in the main paper, we have the

following relationship:

γ̂EL = γ̂EE + op(n
− 1

2 ),

λ̂EL = λ̂EE + op(n
− 1

2 ).

Proof. Let γ̃0 = (γT
0 ,0

T)T. Along the lines with the proof of Lemma 1 and

Theorem 1 in Qin and Lawless (1994) under Condition 1, and based on asymp-

totic theory in generalized method of moment (Newey and McFadden, 1994),

we have

γ̂EL − γ0 = −Γ−1E
( ∂g

∂γT

)T(
EggT

)−1 1

n

n∑
i=1

g(Di,γ0) + op(n
− 1

2 ),

γ̂EE − γ0 = −E
( ∂g1

∂γT

)−1 1

n

n∑
i=1

g1(Di, γ̃0) + op(n
− 1

2 ),

(S1.1)

with Γ = E(∂g/∂γT)T(EggT)−1E(∂g/∂γT). Note that g1(Di, γ̃0) = g1(Di,γ0).
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So we can keep using g1(Di,γ0) in the following proof. Thus, we have:

Γ =

(
E
( ∂g1

∂γT

)T

,−E
( ∂g1

∂γT

)T

(Eg1g
T

1 )−1E(g1g
T

2 ) + E
( ∂g2

∂γT

)T
)
×E(g1g

T
1 )−1 0

0 A


 E( ∂g1

∂γT )

−E(g2g
T
1 )E(g1g

T
1 )−1E( ∂g1

∂γT ) + E( ∂g2

∂γT ),

 ,

with A = E(g2g
T
2 ) − E(g2g

T
1 )(Eg1g

T
1 )−1E(g1g

T
2 ). By Condition 2, we have

E(∂g2/∂γ
T)T = E(∂g1/∂γ

T)T(Eg1g
T
1 )−1E(g1g

T
2 ), which leads to

Γ = E
( ∂g

∂γT

)T

(EggT)−1E
( ∂g

∂γT

)
= E

( ∂g1

∂γT

)T

(Eg1g
T

1 )−1E
( ∂g1

∂γT

)
.

(S1.2)

Similarly, applying Condition 2 again, we have

E
( ∂g

∂γT

)T

(EggT)−1
1

n

n∑
i=1

g(Di,γ0) = E
( ∂g1

∂γT

)T

(Eg1g
T

1 )−1
1

n

n∑
i=1

g1(Di,γ0).

(S1.3)

Substituting (S1.2) and (S1.3) into (S1.1), and by noticing that E(∂g1/∂γ
T) is

invertible, we have

γ̂EL − γ0 =− E
( ∂g1

∂γT

)−1 1

n

n∑
i=1

g1(Di,γ0) + op(n
− 1

2 )

=γ̂EE − γ0 + op(n
− 1

2 ).
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Finally, by Taylor expansion of the equation (2.4) in the main paper at γ0

and λ0 = 0, we can derive the following equation

1

n

n∑
i=1

g(Di,γ0) + E
( ∂g

∂γT

)
(γ̂EE − γ0)− E(ggT)λ̂EE + op(n

− 1
2 ) = 0,

leading to λ̂EL = λ̂EE + op(n
−1/2) by applying γ̂EL = γ̂EE + op(n

−1/2).

Now we are ready to show Theorem 1, and the proof is shown next.

Proof. Now consider any random variablesλ and γ satisfyingλ−λ0 = OP (n−1/2)

and γ − γ0 = OP (n−1/2) and expand logRF (λ,γ) at λ∗ and γ∗ such that

logRF (λ∗,γ∗) is maximized. Indeed, these two λ∗ and γ∗ are the maximum

empirical likelihood estimates λ̂EL and γ̂EL, respectively; given l = − logRF (λ,γ),

we have

logRF (λ,γ) = logRF (λ̂EL, γ̂EL)− ∂l

∂λ

∣∣∣
λ=λ̂EL,γ=γ̂EL

(λ− λ̂EL)

− ∂l

∂γ

∣∣∣
λ=λ̂EL,γ=γ̂EL

(γ − γ̂EL)

− 1

2
(λ− λ̂EL)T

∂2l

∂λ∂λT

∣∣∣
λ=λ̂EL,γ=γ̂EL

(λ− λ̂EL)

− (λ− λ̂EL)T
∂2l

∂λ∂γT

∣∣∣
λ=λ̂EL,γ=γ̂EL

(γ − γ̂EL)

− 1

2
(γ − γ̂EL)T

∂2l

∂γ∂γT

∣∣∣
λ=λ̂EL,γ=γ̂EL

(γ − γ̂EL) + op(1).

To be noted that (∂l/∂λ) |λ=λ̂EL,γ=γ̂EL
= (∂l/∂γ) |λ=λ̂EL,γ=γ̂EL

= 0 by defi-
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nition of λ̂EL and γ̂EL. Furthermore, applying the weak law of large number, we

have (1/n)∂2l/(∂γ∂γT)
P−→ 0, (1/n)∂2l/(∂λ∂λT)

P−→ −E{g(D,γ0)g
T(D,γ0)},

and (1/n)∂2l/(∂λ∂γT)
P−→ E{∂g(D,γ0)/∂γ

T}. By utilizing all the derived re-

sults, we rewrite the logarithm of empirical likelihood ratio as

logRF (λ,γ) =− 1

2

(
(λ− λ̂EL)T, (γ − γ̂EL)T

)T

−nΣ11 nΣ12

nΣ21 0


λ− λ̂EL
γ − γ̂EL


+ logRF (λ̂EL, γ̂EL) + op(1),

where Σ11 = E{g(D,γ0)g
T(D,γ0)}, Σ12 = E{∂g(D,γ0)/∂γ

T}, Σ21 = ΣT
12.

By Lemma 1 and some algebra, we can have logRF (λ,γ) = logRF (λ̂EE, γ̂EE)−

(1/2)δT(nΣ)δ + op(1) with

Σ =

−Σ11 0

0 Σ21Σ
−1
11 Σ12

 and δ =

δ1
δ2

 ,

where δ1 = λ− λ̂EE + Σ21Σ
−1
11 (γ − γ̂EE) and δ2 = γ − γ̂EE .

In the end, by integrating out the random variables δ, the marginal probabil-
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ity will become

P (Y|M) =RF (λ̂EE, γ̂EE)

∫
exp

{
− 1

2
δT(nΣ)δ

}
ρδ(δ)dδ + op(1)

=RF (λ̂EE, γ̂EE)

∫
exp

{1

2
δT

1 (nΣ11)δ1

}
ρδ1(δ1)dδ1

·
∫

exp
{
− 1

2
δT

2 (nΣ21Σ
−1
11 Σ12)δ2

}
ρδ2(δ2)dδ2 + op(1)

Thus, by applying non-informative prior to δ2, i.e., ρδ2(δ2) = 1, and applying the

Laplace approximation, we can have P (Y|M) = RF (λ̂EE, γ̂EE)(2π)p/2
∣∣nΣ21Σ

−1
11 Σ12

∣∣−1/2Ã+

op(1), with Ã =
∫

exp
{

1
2
δT
1 (nΣ11)δ1

}
ρδ1(δ1)dδ1, which finally leads to the

conclusion by taking negative two logarithm of marginal probability: −2 logP (Y|M) =

−2 logRF (λ̂EE, γ̂EE) + p log n + log |Σ21Σ
−1
11 Σ12| − p log(2π) − 2 log(Ã) +

op(1).

S1.2 Proof of Theorem 2

Proof. Given Condition 1 and along the lines of the proofs in Owen (2001), for

any γ satisfying ‖γ − γ0‖ ≤ Cn−1/3 with a large enough constant C > 0, we

have λ̂(γ) = op(n
−1/3) and max1≤i≤n‖g(Di,γ)‖ = op(n

−1/3). Accordingly,

max1≤i≤n λ̂
T(γ)g(Di,γ) = op(1) uniformly for ‖γ − γ0‖ ≤ Cn−1/3. On the

other hand, by the definition of λ̂EE and taking first order Taylor expansion at
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γ0 and λ0 = 0, we have the following equation:

0 =
1

n

∂l

∂λ

∣∣∣
λ=λ̂EE ,γ=γ̂EE

=
1

n

n∑
i=1

g(Di, γ̂EE)

1 + λ̂EEg(Di, γ̂EE)

=
1

n

n∑
i=1

g(Di,γ0) +
1

n

n∑
i=1

g(Di,γ0)

∂γT
(γ̂EE − γ0)

− 1

n

n∑
i=1

g(Di,γ0)g
T(Di,γ0)(λ̂EE − 0) + op(εn),

where εn = ‖γ̂EE − γ0‖+‖λ̂EE‖. By solving λ̂EE from the above formula, we

have

λ̂EE = S−1n

{ 1

n

n∑
i=1

g(Di,γ0)+
1

n

n∑
i=1

g(Di,γ0)

∂γT
(γ̂EE−γ0)+op(εn)

}
, (S1.4)

where Sn = (1/n)
∑n

i=1 g(Di,γ0)g
T(Di,γ0). Also, γ̂EE−γ0 = Op(n

−1/2) and

(1/n)
∑n

i=1 g(Di,γ0) = Op(n
−1/2), we conclude that εn = Op(n

−1/2). Thus,

by Condition 1 and the weak law of large number, λ̂EE is rewritten as

λ̂EE = Σ−111

{ 1

n

n∑
i=1

g(Di,γ0) + Σ12

(
γ̂EE − γ0

)}
+ op(n

− 1
2 ). (S1.5)
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Now let us expand l in the following manner:

l =
n∑
i=1

log
{

1 + λ̂EEg(Di, γ̂EE)
}

=λ̂T

EE

n∑
i=1

g(Di, γ̂EE)− 1

2
λ̂T

EE

{ n∑
i=1

g(Di, γ̂EE)gT(Di, γ̂EE)
}
λ̂T

EE

+Op

( n∑
i=1

{
λ̂T

EEg(Di, γ̂EE)
}3)

.

It is noted that

n∑
i=1

{
λ̂T

EEg(Di, γ̂EE)
}3 ≤ n∑

i=1

{
λ̂T

EEg(Di, γ̂EE)
}2

max
1≤i≤n

λ̂T

EEg(Di, γ̂EE).

Thus, by realizing that max1≤i≤n λ̂
T
EEg(Di, γ̂EE) = op(1) and

∑n
i=1

{
λ̂T
EEg(Di, γ̂EE)

}2
=

Op(1) by Condition 1, uniformly hold for ‖γ̂EE − γ0‖ ≤ Cn−1/3, we have

l = λ̂T

EE

n∑
i=1

g(Di, γ̂EE)− 1

2
λ̂T

EE

{ n∑
i=1

g(Di, γ̂EE)gT(Di, γ̂EE)
}
λ̂EE + op(1).

Furthermore, by applying the Taylor expansion for n−1/2g(Di, γ̂EE), we get

λ̂T

EE

n∑
i=1

g(Di, γ̂EE)

=n
1
2 λ̂T

EE

{
n−

1
2

n∑
i=1

g(Di,γ0) + n−
1
2

n∑
i=1

∂g(Di,γ0)

∂γT
(γ̂EE − γ0) + op(1)

}
=
(
n

1
2 λ̂T

EE

)
Sn
(
n

1
2 λ̂EE

)
+ op(1).
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The last equation is derived from (S1.4). Therefore, by Condition 1 again, we

have l = (1/2)(n
1
2 λ̂T

EE)Σ11(n
1
2 λ̂EE) + op(1). Substituting λ̂EE by (S1.5),

l = (1/2)(n
1
2 QT

n)Σ−111 (n
1
2 Qn) + op(1) with Qn = (1/n)

∑n
i=1 g(Di,γ0) +

Σ12(γ̂EE − γ0), which completes the proof of Theorem 2.

S1.3 Proof of Corollary 1

Proof. Let us rewrite Qn in the following manner:

Qn =
1

n

n∑
i=1

g(Di,γ0)−Σ12

(
E
∂g1

∂γT

)−1 1

n

n∑
i=1

g1(Di,γ0) + op(n
− 1

2 )

=Σ∗
1

n

n∑
i=1

g(Di,γ0) + op(n
− 1

2 ),

with Σ∗ = IL×L −
(
Σ12{E(∂g1/∂γ

T)}−1, 0L×(L−p)
)

. Here IL×L is an identity

matrix. Accordingly, we rewrite l as

l =
1

2

{
n−

1
2

n∑
i=1

Σ
− 1

2
11 g(Di,γ0)

}T

Σ
1
2
11Σ

T

∗Σ
−1
11 Σ∗Σ

1
2
11

{
n−

1
2

n∑
i=1

Σ
− 1

2
11 g(Di,γ0)

}
+ op(1).

Furthermore, according to the square-root decomposition, we have Ω =

Σ
1/2
11 ΣT

∗Σ
−1
11 Σ∗Σ

1/2
11 = PΛPT with an orthogonal matrix PL×L̃ and a diagonal

matrix ΛL×L̃ containing positive eigenvalues Λ1,. . . ,ΛL̃ of Ω. Here L̃ represents

the rank of the matrix Ω and L is the length of g(D,γ). Therefore, l can be
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expressed as

l =
1

2

L̃∑
j=1

Λj

[
n−

1
2

n∑
i=1

Σ
− 1

2
11 g(Di,γ0)

]2
j
+op(1),

where [J]j indicates the jth element in vector J. Together with the fact of[
n−1/2

∑n
i=1 Σ

−1/2
11 g(Di,γ0)

]
j

asymptotically followed by an independent stan-

dard normal distribution for j = 1, . . . , L̃, we conclude that 2l converges in dis-

tribution to
∑L̃

j=1 Λjχ
2
1, which is a weighted sum of standard χ2 distributions.

S1.4 Proof of Theorem 3

Proof. For any γ in the neighbourhood of γ∗ 6= γ0, we define λ̃(γ) = n−c(log n)ḡn,

with ḡn = (1/n)
∑n

i=1 g(Di,γ) and 1/2 < c < 1.

First by Markov inequality and Condition 3 with some δ > 0, we have

∞∑
i=1

P
(
‖g(Di,γ)‖2 > i

)
≤

∞∑
i=1

E‖g(Di,γ)‖2+δ

i1+δ/2
<∞.

Applying the Borel-Cantelli Lemma, we conclude that we can always find a

large enough N such that for any i > N , we have‖g(Di,γ)‖ ≤ i−1/2 holds with
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probability one, which further implies max1≤i≤n‖g(Di,γ)‖ = op(n
1/2). Thus,

max
1≤i≤n

‖λ̃T(γ)g(Di,γ)‖

≤‖λ̃(γ)‖ max
1≤i≤n

‖g(Di,γ)‖ = n
1
2
−c log(n)‖ḡn‖ = op(1),

where the the first inequality holds by Cauchy-Schwartz inequality and the last

equality holds by Condition 4. Therefore, with probability approaching to 1, we

have for all 1 ≤ i ≤ n, 1 + λ̃T(γ)g(Di,γ) > 0. Finally,

l = sup
λ

n∑
i=1

log
{

1 + λTg(Di,γ)
}
≥

n∑
i=1

log
{

1 + λ̃T(γ)g(Di,γ)
}

=
n∑
i=1

λ̃T(γ)g(Di,γ) + op(1) = n1−c‖ḡn‖2 log(n) + op(1),

where the first equality holds by the property of the dual problem, the second

equality holds by the first-order Taylor expansion of the function log(1 + x) at

0, and the final result holds under Condition 4.

S1.5 Proof of Theorem 4

Proof. Given the fixed number of parameters in the full model, and p and p0

as the cardinalities of candidate model M and the true model M0, respectively,

we show Theorem 4 in the following manner, which can be easily proved by

the results from Theorems 2 and 3. (I) ELCIC(M) − ELCIC(M0) > 0 with
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probability tending to 1 for M0 *M .

(II) ELCIC(M)− ELCIC(M0) > 0 with probability tending to 1 for M0 ⊆M

and p0 < p.

First, for M0 * M , applying Theorem 2 to ELCIC(M0) and Theorem 3 to

ELCIC(M), we derive

ELCIC(M)− ELCIC(M0) = 2l(M) + p log(n)−
{

2l(M0) + p0 log(n)
}

= 2n1−c‖ḡn‖2 log(n)− (n
1
2 QT

n0)Σ
−1
110(n

1
2 Qn0)

+ (p− p0) log(n) + op(1),

where Qn0 and Σ110 denote Qn and Σ11 under the true model M0. Notice that

P
[
(n

1
2 QT

n0)Σ
−1
110(n

1
2 Qn0) ≥ log n

]
≤
E
(
nQT

n0Σ
−1
110Qn0

)
log(n)

=
tr(Σ−1110V)

log(n)
.

Applying Condition 5, we have (n1/2QT
n0)Σ

−1
110(n

1/2Qn0) = op(log n), which

further indicates that n1−c‖ḡn‖2 log(n) is the dominant term going to infinity

under Condition 4. Therefore, we have ELCIC(M) − ELCIC(M0) > 0 with

probability tending to 1 for M0 *M .

Second, for M0 ⊆ M and p0 < p, applying Theorem 2 to ELCIC(M) and
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ELCIC(M0), we can derive

ELCIC(M)− ELCIC(M0) =(n
1
2 QT

n)Σ−111 (n
1
2 Qn)− (n

1
2 QT

n0)Σ
−1
110(n

1
2 Qn0)

+ (p− p0) log(n) + op(1).

Since (n1/2QT
n0)Σ

−1
110(n

1/2Qn0) and (n1/2QT
n)Σ−111 (n1/2Qn) have the same order

op(log n) by the same argument above, we conclude that, for M0 ⊆ M and

p0 < p, lim
n→∞

P (ELCIC(M)− ELCIC(M0) > 0) = 1.

S2. Additional Simulation Studies

S2.1 Variable selection in Case 2 under the GEE framework

We consider the same setups in Case 2 in the main paper to only implement

the variable selection by using the first part estimating equations in (3.11) in

the main paper as our full estimating equations, and thus treating correlation

coefficients as nuisance parameters. The selection rates by ELCIC and QIC are

summarized in table 1, which further confirm the outperformance of ELCIC.
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S2.2 Variable selection for the augmented inverse probability weighting

method

To show unique and more general applications of our proposed criteria com-

pared to the existing approaches, we provide an example for illustration, and

under such context, the current existing criteria are not applicable. Here, we

consider the augmented inverse probability weighted (AIPW) models with main

focus on variable selection in the mean structure. Note the AIPW method has

been popularly used to deal with missing data (Robins et al., 1994) with exten-

sive work in longitudinal data, survival analysis and causal inference (Bang and

Robins, 2005; Seaman and Copas, 2009; Scharfstein et al., 1999; Long et al.,

2011) because of efficiency improvement and double robustness. For simplicity,

here we only consider a simple linear regression with missing outcomes under

the assumption of missing at random (MAR), but the extension to more compli-

cated scenarios should be doable and straightforward.

Suppose, for i = 1, . . . , n, we have the data where the outcomes Yi poten-

tially missing, with Ri as an observation indicator, i.e., Ri = 1 if Yi is observed

and Ri = 0 otherwise. The covariates include Xi and Si. Also, we denote the

observing probability of Yi as π(Xi,Si) = E(Ri|Xi,Si) parameterized by γ.

The AIPW estimators are obtained by solving the following estimating equa-
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tions

1

n

n∑
i=1

{
Ri

π̂(Xi,Si)
U(Yi,Xi,β)− Ri − π̂(Xi,Si)

π̂(Xi,Si)
Ũ(Xi,Si,β)

}
= 0 (S2.6)

where U(Yi,Xi,β) = Xi(Yi − µi(β)) and Ũ(Xi,Si,β) = Xi(â(Xi,Si) −

µi(β)), where a(·) is a function of Xi and Si parameterized by α with â as

some estimate of E(Yi|Xi,Si).

As indicated in the literature, in addition to possible efficiency gains, one

advantage of the AIPW estimator is that it is doubly robust, in the sense that

it yields consistent results if either the missingness mechanism or the outcome

regression model is correctly specified (Scharfstein et al., 1999). However, it

is challenging to correct specify π̂(Xi,Si) or â(Xi,Si) in practice due to lim-

ited prior knowledge, and thus the methods based on expectation of weighted

quadratic mean square loss may not work (Shen and Chen, 2012, 2018). Also,

likelihood based criteria are not applicable since semi-parametric approach is

implemented here. In addition, the estimated quantities π̂(Xi,Si) and â(Xi,Si)

make the model selection harder. However, our proposed ELCIC has great po-

tential to deal with these issues, as we indicated in our method section, and the

implementation is easy and straightforward. In particular, we take the formula

on the left hand side of (S2.6) as the full estimating equations in (2.5) in the
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main text, and also the nuisance parameters involved in π̂(Xi,Si) and â(Xi,Si)

can be estimated from plug-in estimators. The consistency property still holds

as long as these parameter estimates satisfy Condition 5 in the main text.

We conduct extensive simulation studies to empirically evaluate the perfor-

mance of ELCIC under the AIPW framework. Along with similar data structure

and generation procedure in Han (2014), we first generate four mutually inde-

pendent covariates x1i ∼N(5, 1), x2i ∼Bernoulli(0.5), x3i ∼N(0, 1), x4i ∼N(0, 1)

and four auxiliary variables s1i = 1 + x1i + 2x2i + ε2i, s2i = I{(s1i + 0.3ε3i) >

5.8}, s3i = ε4i,s4i = x2 + ε5i, where εi = (ε1i, . . . , ε5i)
T follow a multi-

variate normal distribution with mean zeros and the covariance matrix Σ =

with the diagonal elements valued by 1, the (1, 2) and (2, 1) entries as 0.5

and all others as 0. The outcomes are generated from the linear model Yi =

β0 + β1x1i + β2x2i + β3x3i + β4x4i + ε1i with β = (1, 1, 2, 1, 1)T . The true

observing probability model is set to be logit(π(Xi,Si)) = γ0 + γ1s1i + γ2s2i

with γ = (5,−1, 3)T , leading to the observing probability around 0.65. We

can also easily learn that the true imputation model should be a(Xi,Si) =

α0 + αix1i + α2x2i + α3x3i + α4x4i + α5s1i. To further evaluate the effect of

misspecification of either the model for missingness or the outcome regression

model on our proposal’s performance, we consider the following misspecified

models: logit(πm(Xi,Si)) = γm0 + γm1 x1i + γm2 x2i + γm3 x3i + γm4 x4i + γm5 s1i



S2.2 17

and am(Xi,Si) = αm0 + αm1 s1i + αm2 s2i + αm3 s3i.

Thereafter, the variable selection is implemented based on our proposed EL-

CIC under four combinations evaluated: correct-specified π(Xi,Si) and correct-

specified a(Xi,Si), correct-specified π(Xi,Si) and misspecified am(Xi,Si), mis-

specified πm(Xi,Si) and correct-specified a(Xi,Si), denoted by PC IC, PC IM,

and PM IC, respectively. Note that we do not consider the case with both mis-

specified πm(Xi,Si) and am(Xi,Si) because the estimates will not be consis-

tent,and the results based upon these inconsistent estimates are not reliable any

more. For each scenario, we generate 500 Monte carlo data with sample size

n = 250, 500. Seven candidate models are considered for variable selection

with selection rates recorded. The results are summarized in Table 2 in the Ap-

pendix. Overall, the selection rates for the correct mean structure are satisfactory

with a high level (i.e., > 90%) when either of the models for missingness and

outcome regression is correctly-specified, and increase as sample size becomes

larger. In particular, when sample size n = 250, the selection rate is up to 93.2%

when both models are correctly specified. For larger sample size (i.e., n = 500),

the results for PC IC, PC IM, PM IC are comparable, indicating our proposal is

workable in the APIW framework.
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S2.3 Variable Selection in Ultra-high-dimensional Cases

As suggested by the editor and one of the reviewers of the present paper, we

conducted additional investigations via simulation studies into a potential exten-

sion of ELCIC to in ultra-high-dimensional cases. The theoretical proofs for

(ultra-)high-dimensional cases with empirical likelihood will differ completely

from those with our current strategy and will not be trivial to extend without ex-

pending more effort, which we will pursue separately and fully in future work.

Here, we provide some empirical studies to show the challenges and numerical

performance via simulation.

Note that this extension involves two main issues. One is that the full model

in ultra-high-dimensional cases could be substantially large, which may prevent

the use of the classic empirical likelihood (Chen et al., 2009). A tentative strat-

egy is to consider the following modified criterion:

ELCIC∗ =− 2 logRR(λ̂, γ̂)− n
L∑
j=1

P2,ν(|λ̂j|)

+ n

p∑
k=1

P1,π(|γ̂k|) + Cn log(n)dfπ,

(S2.7)

where λ̂ and γ̂ are solved using penalized empirical likelihood (Chang et al.,

2018). P1,π(·) and P2,ν(·) are two penalty functions regulating γ and λ with

tuning parameters π and ν, respectively. Cn is a scaling factor that diverges to
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infinity at a slow rate (Tang and Leng, 2010). dfπ is the number of nonzero co-

efficients in γ. Suggested by Tang and Leng (2010) and Chang et al. (2018),

the ad hoc criterion (S2.7) works well numerically, but its theoretical properties

would be difficult to investigate because of the penalty functions with two extra

tuning parameters. The second issue is the complicated and unstable computa-

tional algorithm with high computational burden, which may lead to unsatisfac-

tory results especially when using generalized estimating equations embedded

with empirical likelihood (Chang et al., 2018). Therefore, it would be neither

straightforward nor feasible to apply (S2.7) in ultra-high-dimensional cases.

Here, we propose an alternative two-stage selection procedure to resolve

these issues but still allow our proposed criterion to be easily implemented and

perform satisfactorily. In the first stage, we apply a nonparametric screening

method, such as SIRS (Zhu et al., 2011), to reduce the ultra-high dimension to

a relatively low one. Then, in the second stage, we use the reduced model as

the full model for ELCIC to capture the true one. Note that our proposed strat-

egy has two advantages. The first is consistency: both the SIRS procedure and

ELCIC are proven to be consistent, thereby the combined two-stage selection

in consistent. The second is easy and flexible implementation in practice: be-

low, we provide some numerical evaluations to show the utility and advantage

of ELCIC over other popular criteria.
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We consider the mean structure log(µi) = XT
i β for i = 1, . . . , n, where

Xi is a covariate vector from a pn = 1500−dimensional multivariate normal

distribution MVN(0,V) with the covariance matrix V as an AR1 matrix with

unit variance and a correlation coefficient of 0.5. We generate outcomes from

a Poisson distribution and a negative binomial distribution with k = 2, 4, or 8

failures. First, we apply SIRS to reduce the ultra-high dimension (i.e., pn =

1500) to a relatively low one (pn = 20). Then, we apply the SCAD learning

procedure to implement variable selection to the reduced candidate pool, where

the tuning parameter is selected by cross-validation, BIC, and ELCIC. Note that

BIC is always set under the assumption of a Poisson distribution, so that we can

observe how misspecification of distribution affects the performance of variable

selection. We generate 200 Monte Carlo data with sample size n = 250 or 500,

and we record several important measurements, such as consistency, prediction

error, and false-negative, false-positive, and exact-selection rates. The results

are summarized in Table 3 herein.

As shown, when the outcomes are generated from a Poisson distribution,

BIC performs best in terms of its low false-positive rate and high exact-selection

rate. However, when the true distribution is a negative binomial, BIC tends to

select an over-fitted model, and the performance deteriorates as the data have

higher over-dispersion. By contrast, ELCIC is robust in handling distribution
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misspecification and having more-stable selection performance. The perfor-

mance of cross-validation is between those of ELCIC and BIC but more time

consuming. In addition, as the sample size increases up to 750, ELCIC tends

to have a better selection rate and fewer false positives while BIC has negligi-

bly improved performance, and cross-validation does not always lead to fewer

false positives. Therefore, these numerical results support the potential feasibil-

ity of applying ELCIC to ultra-high-dimensional cases, having a much-reduced

computational burden and highly stable performance in the meantime without

sacrificing the distribution-free advantage.

S3. Further Discussion

Note that in the main context, we assume that the full model is specified cor-

rectly. However, with reference to Conditions 1 and 4, note also that the identifi-

ability of ELCIC indeed does not require the full model to be specified correctly.

We require only the existence of parameters that make the full estimating equa-

tions equal to zero. Consequently, if the full model that we use is misspecified,

ELCIC will still work but only by locating the “true” values that make the current

estimating equations equal to zero. However, the existence of such “true” values

is theoretically nontrivial and also not always guaranteed, which may require

more investigation in future work. Thus, in practice, we recommend inputting
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all potentially important variables so that the selected full model fits the data

well if a sufficient sample size is provided.

Extensive numerical studies show that ELCIC outperforms other alterna-

tives. GIC is somewhat sensitive to distribution misspecification, even under a

large sample size, for two possible reasons. 1) A relatively complicated bias-

correction term must be estimated based upon the data structure and candidate

models, thereby leading to more variability to the selection. 2) The underlying

measurement of GIC is defined as the Kullback–Leibler distance evaluated at

the misspecified distribution, which could introduce a systematic discrepancy to

the truth, no matter how accurate is the bias correction. Therefore, GIC would

intrinsically lose some power to capture the true model, particularly when the

specified distribution deviates farther from the truth. The same issue also per-

tains to QIC, regarding its misspecification of quasi-likelihood by considering

the independent correlation structure (Pan, 2001).
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Table 1: Performance of ELCIC compared with QIC for the scenarios under
longitudinal count data. 500 Monte Carlo datasets are generated with sample
size n = 100, 300 and the number of observations within-subject T = 3, 5. The
true mean structure is {x1, x2} and an exchangeable (EXC) correlation structure
with the correlation coefficient ρ = 0.5 is the true model. Only variable selection
is considered.

Cluster Size n Criteria
Candidate Models

x1, x2, x3 x1, x2 x1, x3 x2, x3 x1 x3

T = 3 100 ELCIC 0.042 0.956 0 0.002 0 0
QIC 0.14 0.86 0 0 0 0

300 ELCIC 0.022 0.978 0 0 0 0
QIC 0.116 0.884 0 0 0 0

T = 5 100 ELCIC 0.034 0.966 0 0 0 0
QIC 0.11 0.89 0 0 0 0

300 ELCIC 0.018 0.982 0 0 0 0
QIC 0.1 0.9 0 0 0 0

Table 2: Performance of ELCIC for variable selection in the mean structure un-
der the AIPW framework. 500 Monte Carlo data are generated with sample size
n = 250, 500. The model with {x1, x2, x3, x4} is the true model. PC IC: correct-
specified π(Xi,Si) and correct-specified a(Xi,Si); PC IM: correct-specified
π(Xi,Si) and misspecified am(Xi,Si); PM IC: misspecified πm(Xi,Si) and
correct-specified a(Xi,Si).

x1, x2 x1, x2, x3 x1, x2 x1, x2 x1, x2, x3 x1, x2, x3 x1, x2, x3
Model n x3, s3 x3, x4 x4, s3 x4, s4 x4, s3, s4

PC IC 250 0 0 0 0.932 0.028 0.040 0
PC IC 500 0 0 0 0.950 0.026 0.024 0
PC IM 250 0 0 0 0.916 0.036 0.046 0.002
PC IM 500 0 0 0 0.952 0.028 0.020 0
PM IC 250 0 0 0 0.928 0.03 0.042 0
PM IC 500 0 0 0 0.958 0.022 0.020 0
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Table 3: Performance of ELCIC compared with cross-validation (CV) and BIC
(under Poisson distribution specification without over-dispersion) for two stage
ultra-high variable selection in the mean structure under Poisson distribution
with potential over-dispersed outcomes. 500 Monte Carlo data are generated
with sample size n = 250, 500, 750. NB: negative binomial; MS: consistency
‖β̂−β0‖2; PS: prediction ‖Xβ̂−Xβ0‖2; FN: false negative; FP: false positive;
ES: exact selection rate; OS: over selection rate; US: under selection rate

Scenario n Criterion MS PS FN FP ES OS US

POISSON 250 CV 0.22 0.15 0.34 1.32 0.52 0.24 0.10
BIC 0.17 0.10 0.23 1.27 0.74 0.06 0.03
ELCIC 0.17 0.11 0.27 1.05 0.59 0.20 0.12

500 CV 0.07 0.06 0.09 0.70 0.71 0.25 0.04
BIC 0.04 0.02 0.02 0.09 0.96 0.03 0.01
ELCIC 0.03 0.03 0.04 0.26 0.89 0.10 0.02

750 CV 0.05 0.04 0.04 0.68 0.72 0.27 0.02
BIC 0.02 0.01 0.00 0.02 0.98 0.02 0.00
ELCIC 0.02 0.01 0.01 0.13 0.92 0.08 0.01

NB k = 2 250 CV 0.61 0.43 0.82 4.71 0.05 0.42 0.08
BIC 0.63 0.46 0.57 9.35 0.00 0.54 0.01
ELCIC 0.53 0.38 0.69 4.08 0.07 0.43 0.08

500 CV 0.19 0.14 0.13 4.06 0.17 0.74 0.05
BIC 0.20 0.17 0.02 10.19 0.00 0.99 0.00
ELCIC 0.15 0.12 0.07 2.68 0.27 0.69 0.04

750 CV 0.12 0.09 0.05 4.00 0.24 0.74 0.03
BIC 0.15 0.13 0.00 10.94 0.00 1.00 0.00
ELCIC 0.08 0.07 0.00 1.91 0.39 0.61 0.00

NB k=4 250 CV 0.32 0.20 0.45 3.44 0.13 0.52 0.05
BIC 0.32 0.22 0.33 7.28 0.03 0.67 0.00
ELCIC 0.28 0.18 0.37 2.66 0.23 0.46 0.07

500 CV 0.07 0.05 0.02 3.40 0.34 0.64 0.02
BIC 0.09 0.08 0.00 7.98 0.01 1.00 0.00
ELCIC 0.05 0.04 0.00 1.83 0.51 0.50 0.00

750 CV 0.05 0.04 0.00 3.05 0.47 0.54 0.00
BIC 0.07 0.06 0.00 8.65 0.01 0.99 0.00
ELCIC 0.04 0.03 0.00 1.34 0.59 0.42 0.00

NB k = 6 250 CV 0.27 0.17 0.40 3.36 0.24 0.45 0.06
BIC 0.29 0.19 0.33 6.27 0.08 0.63 0.00
ELCIC 0.26 0.16 0.37 2.55 0.28 0.42 0.09

500 CV 0.05 0.05 0.03 2.42 0.47 0.52 0.01
BIC 0.06 0.05 0.01 6.43 0.08 0.92 0.00
ELCIC 0.05 0.04 0.02 1.72 0.54 0.46 0.01

750 CV 0.03 0.03 0.00 2.99 0.49 0.51 0.00
BIC 0.05 0.04 0.00 7.41 0.02 0.98 0.00
ELCIC 0.03 0.02 0.00 1.33 0.61 0.39 0.00
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Table 4: Analysis of the ARIC study based on six candidate marginal mean and
potential correlation structures EXC: exchangeability; AR1: auto-correlation 1;
IND: independence

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Time -0.025
(0.002)*

-0.025
(0.002)*

-0.025
(0.002)*

-0.026
(0.002)*

-0.026
(0.002)*

-0.025
(0.002)*

Gender 0.167
(0.014)*

0.174
(0.013)*

0.171
(0.013)*

0.171
(0.013)*

0.162
(0.013)*

0.167
(0.014)*

Smoke 0.017
(0.014)

0.016
(0.014)

Age(year) -0.032
(0.012)*

-0.029
(0.012)*

-0.026
(0.012)*

-0.033
(0.012)*

-0.033
(0.012)*

Diabetes -0.058
(0.020)*

-0.054
(0.019)*

-0.055
(0.019)*

-0.056
(0.019)*

BMI 0.001
(0.001)

Cholesterol 0.024
(0.006)*

0.025
(0.006)*

0.024
(0.006)*

Triglycerides 0.002
(0.005)

0.002
(0.005)

ELCIC EXC 91.8 81.6 82.9 80.3 69.5 84.4
AR1 86.7 84.5 85.4 85.4 68.4 80.6
IND 963.1 893.4 949.4 959.1 956 948.8

QIC AR1 -183571.2 -183485.4 -183508.6 -183529 -183572 -183571.6

Note that estimations with standard errors (in parenthesis) are reported; the
criteria of ELCIC and QIC are summarized for model selection; *denotes
the p-value< 0.05.
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