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A. Background on Equivalence of Gaussian Measures

Throughout, when cross referencing to equations or theorems in blue color
we refer to the corresponding numbering in the main manuscript.

Equivalence and orthogonality of probability measures are useful tools
when assessing the asymptotic properties of both prediction and estimation
for stochastic processes. Denote with P;, 7 =0, 1, two probability measures
defined on the same measurable space {Q, F}. Py and P; are called equiv-
alent (denoted Py = P;) if Pi(A) =1 for any A € F implies Py(A) = 1 and
vice versa. On the other hand, Py and P, are orthogonal (denoted Py L P;)
if there exists an event A such that P;(A) =1 but Py(A) = 0. For a stochas-
tic process Z = {Z(s,t),(s,t) € R¢x R}, to define previous concepts, we
restrict the event A to the o-algebra generated by {Z(s,t),(s,t) e Dx T}
where D x T c R? x R. We emphasize this restriction by saying that the
two measures are equivalent on the paths of Z.

Gaussian measures are completely characterized by their mean and co-
variance function. We write P(C') for a Gaussian measure with zero mean
and covariance function C'. It is well known that two Gaussian measures are
either equivalent or orthogonal on the paths of Z (Ibragimov and Rozanov,
1978).

Let d be a positive integer. Let P(C;), i = 0,1 be two zero mean Gaus-



sian measures associated with a process Z defined over a bounded set D x T
of R? x R, with covariance function C; such that C; = 02K, for K; € 4
and associated spectral density C;(z,7) = o2f;(| 2] ,|7]), with f; as in (2.1).
Using results in Skorokhod and Yadrenko (1973), Ibragimov and Rozanov
(1978) and Stein (2004), Ip and Li (2017) have shown that, if for some a > 0,
Co(z,7) |(z,7)|" is bounded away from 0 and oo as (|z,7||) - oo, where

(lz,7]) = &, 22+ 72 and for some finite and positive c,

de—l {G%fl(zﬂ—) —03fo(2,7) }2 dzdT < oo, (A1)

O'gfo(Z,T)

where A = A;u Ay U A3U Ay U A5 with A ={z>c¢,7>¢c}; A ={2>¢,0<
T<ch Ay ={0<z<em>chAr={2>c,0<7<ch A = {0 <2<
¢, T > co}, and ¢, ¢ be two constants satisfying 0 < ¢;,¢y < ¢ such that
c2+c2 < c? (Ip and Li, 2017). Then, for any bounded subset Dx T c R4 xR,
P(Cy) = P(CY) on the paths of Z(s,t),(s,t) e DxT. For the reminder
of the paper, we denote with P(c2Kpnm(0)), P(02Kpgw(X), zero mean
Gaussian measure induced by o2 Kpa(+,+;0) and 02 Kpgw (-, +; X ) covariance

functions, respectively.



B. Equivalence of Gaussian measures under DGV and DM classes

The following result is due to Ip and Li (2017). It characterizes the equiva-
lence of two gaussian measures under DM covariance models, with a com-

mon smoothness parameter v.

Theorem 1. For a given v > 0, let P(6?Kpm(0;)), i = 0,1, be two zero
mean Gaussian measures, with 6; = (v,(;,v;)T. For any bounded infinite set

DxTcRIxR,d=1,2,

1. fore=1, P(65Kpm(6o)) = P(01Kpam(61)) if and only if 053 w3 =

C2l/ d 21/ 1;

2. fore=0, P(6c2Kpm(600)) = P(ciKpam(61)) if and only if 03(;%v3v 1t =

o2¢rwP =t and vo[Co = v1/Ci;

3. for0<e <1, P(62Kpm(00)) = P(63Kpm(04)) if 02loeg® = o2lie7?,

(vt Ir ()2
where ¢; = m

We now provide a characterization of the compatibility of two DGW

functions having common spatial smoothness at the origin. In the following,

we assume that lim z/7 =k < oo, with k a positive constant.

Theorem 2. Let x; = (i, K, 5i, 0, \,7:)7, 1 = 0,1, with v; >0 and B; > 0.Let
ni = (d+1)/2+K;. For a given k>0, let P(6?Kpgw(x;)), i =0,1, be two
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zero mean Gaussian measures, and let ji; > n;i+1+a;, A; > max((d+3)/2,2k;+
3) and 6; > (d+1)/2. For any bounded infinite set D xT cR¢xR, d=1,2,
P(USK'DQW(XO)) = P(U%KDQW(XI)) on the paths of Z(Svt)v (Sat) €eDxT

if and only if

—-(2k+1 -(2k+1
Y T

)

: (B.1)
Yo M

Proofs are deferred to Section C. Given Theorems 1 and 2, it becomes
natural to ask whether the P(02Kpp(-,;0)) and P(02Kpgw(+,+;x)) might
be equivalent on the paths of a Gaussian field Z defined over the product
space D x T being a bounded set of R? x R. The following result provides

an answer when d=1 or d = 2.

Theorem 3. For given pn>n+1+a, A > max((d+3)/2,2k+3), d = 1+2K, € €
(0,1] and xy = (. %, 8,0,A,7)7, let P(03Kpgw(X,)) and P(0®Kpm(6))

be two zero mean Gaussian measures. Let ((0) be as defined at (2.5). If
U%QA,nCELgﬁ_(H%) — 0'26(9)6_21’, with v=n,

then, for any bounded infinite set DxT c R4xR, d =1,2, P(03Kpgw(Xxs)) =

P(0?Kppm(0)) on the paths of Z(s,t),(s,t) e D xT.



C. Proofs

C.1 Proof of Theorem 2

We first consider the case xk > 0. Let us start with the sufficient part of the
assertion. By Theorem 1 (Point 3), there exist constants ¢; and C;, i =0, 1

such that

¢ < 22777'5+1f'pgw(2,7';xi) <y, (2,7) € (0,00)? with x; = (1,5, Bi, 6, \,%)7.

We proceed by direct construction, and, using Theorem 1 (Points 2 and 3),

we find that, as z > 0o and 7 - oo with z/7 converging to a constant k,

o1 foow (2,75 x1) — 03 fpaw (2, T3 Xo)
og foow (2,75 Xo)

< 20 [oRBILS S (2) P

( [Q)\J]T*(ué) ) (T—(1+25))] + [Q/\’m”r(lﬂi) 0 (7_7(1+25))] O(zQ))
+ [QA,OT_(lJr&) -0 (T—(1+25))] O(Z_(l“??)) - Ugﬁg[ﬁcg(zﬁo)—%( [Q)\,nT_(H(S) -0 (7_—(1+26))]

+ [QA777+17-—(1+6) -0 (T—(1+25))] O(Z_Q)) n [Q)\’OT—(H&) -0 (T—(1+25))] (’)(z‘(“”’))

For some positive and finite ¢, condition (A.1) can be written as

2
f Zd—l(”%ngW(Za? Xi1) — UnggW(Z’T;XO)) dzdr < o0, (C.1)
A UofDQW(zaT;XO)

where A has been defined around Equation (A.1).



It is easy to verify that (C.1) is satisfied if

v o

for y>n+1+a, > %, A>2k+3 and d =1,2. Following the steps in the
proof of Theorem 1 of Zhang (2004), we obtain the necessity part. O

C.2 Proof of Theorem 3

We need to find conditions such that for some positive and finite c,

[ Zdl(anggW(za ) XQ) - a2fDM(za ) 0)
A

o?fpm(z,7;0)

where A depends on ¢ as specified through (A.1). It is known that fpa(z,7;0)z2

2
) dzdr < oo, (C.2)

is bounded away from 0 and oo as z,7 — oo, with z/7 converging to a con-
stant k& (Ip and Li, 2017). Using Theorem 1 (Point 2) and Theorem 2

(Point 2) when € € (0,1], we have, as z,7 — oo,

U%fDQW(ZaT;Xz) - U2fDM(Z77';0) _
o2 fpm(z,7;0)

o? fpm(z,7:0)

o5 fogw (2, Ti X2) ‘

) |f<0>-1(w)w{wcg(z@)_znx
( [QMT—(MS) -0 (7.—(1+26))] + [QMHT—(MS) -0 (T—(1+25))] 0(2_2))
+[orom @9 = 0 (r~(120)] 0(2_(#“7))})(

27,2 2 2
(1+ S S +O(7'_47’_4)) -1

€2r22 €212 €22

Y

and, d=1,2ifv=n,0=1+2k, A>2k+3, u2n+1+«a and
T30 g5 LB = 20(0)
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so that (C.2) holds. O

C.3 Proof of Theorem 1

The proof of Points 1, 2 and 3 are based results on results of Bevilacqua
et al. (2019) and Lim and Teo (2009). In particular, to prove Point 1, we

note that

1 —iT —i<zel,x
foow(z,75x) = W/ﬂ;e tfRde =% Kpgw (|| . t; x)dedt,

where e; denotes a unit vector. Next, using the arguments in Bevilacqua

et al. (2019), and by standard Fourier calculus, we get

BULs [ pooop 1 (2B hey(1)
foow(z,7x) = o fRe tha,fy(t)dMle(U;THE,U+§+§;—+)dt-

Using the definition of the function | F5 in concert with the fact that stan-

dard arguments allow for exchange of series and integrals, we obtain

) = . (=1)7(n);(2B/2)¥ 1
foow(z,m5x) = BL ;)j!(ﬂ+u/2)j(77+u/2+1/2)j§

/e—itT h57ry(t)d+)\+2jdt.
R

We can now make use of dominated convergence (because §(A+d) > 1) to
exchange series and integrals and replace the series within the integral by

1F5, to obtain

foow(z,71x) = -B4T2V/ 293232 L5 x

Zﬁ 1 ei"5/2t5 -1)\2
ooK1/2(7t7)1F2<n;n+%’n+g+%;_( (1+ - 71 )
xJ [ - e
0 (1 +exp(|%‘5)t5)>\+d
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Point 2 can be verified by showing that, as z - oo and for n = % + K,

fogw (2, 71 x) —6d71/2\/§73/2ﬂ—3/2L<3( 12(717)

0 (1+exp(i%)td)r+d

X

(cg(zﬁ(l + 6”5/2155)1)2"(1 +O0((1+ ei“6/2t5)222))

+

O((1 + ™/ )M*nz-W*")))tl/?dt).

Note that we replaced cjz‘(l“"){ cos(zB8-c5)+ O (z71) } by O (2= ().

Now, by letting 7 tend to infinity we obtain

Joow(2,T;x) = ﬁdL‘cg(zB)‘Q"( [QmT—(ua) ) (T—(1+25))]

+ [Q/\,n+17_(1+5) -0 (7-—(1+26))] 0(2—2)) + [Q)\voT—(lJrzS) -0 (T—(1+25))] (9(2‘(/“’7)),

Point & comes from Bevilacqua et al. (2019). The last point is a direct
application of the arguments from Lim and Teo (2009)[Proposition 3.2] and

Bevilacqua et al. (2019)[Theorem 2]. O

C.4 Proof of Theorem 3

The proof of Point 1. follows the same arguments of the proof of Theorem 3
in Zhang (2004), so that we omit it.

For the proof of Point 2., we follow the arguments in Wang and Loh
(2011) and Wang (2010), applied to the DGW case. As in Wang and Loh
(2011), without loss of generality, we assume D x T = [0,T]%1, 0 < T < oo,

is a bounded subset of R4, d =1,2. Let Ry = Ryn(x) and 62, = 62,,(x)
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for notation convenience, and let o2, 5 and ~ be three positive constants

such that 028, ** /42 = ¢23-(25+1) |4 Then, we have

Vi (628704270 - o 807505

—(1+2k) _ _
— 0-(2)60( )'7 ’ izT R_lznm _ %ZT R—l an
vnm 2 on

o nm* tx nm*lx,
2 n—(142r) __§
+0'060 Yo (1

—Z! R'Z,.,- .
N ”m)

nm= Y
0

Under the measure P(02Kpgw(0o)), we have 0522, R:' Zpm ~ X2 (&

nm*Yxg

centered chi-squared distribution with n x m degrees of freedom) and

-(1+2r) __
960 0" (L g1 Rz, - nm) B (0, 2025,0755)
Vnm gz X oo 0

as nm — oo. To prove the result, it is sufficient to show that

1 1 1 p
—Z' R\Z,. -—=Z' RI1Z. |—0, as nm - oo (C.3)
\/m (02 nmtlx 0_8 nm*lx, ) ) )

where — denotes convergence under P(o2Kpgw(6o)).

Specifically, we need to show that for any 9 > 0,

1 1
—Z} R} Zon = 2 B Zon
%

g2 Tnmtix nm=xq

)

>19)—>O, as m,m — oo,

P (_1
2,807
v (C.4)

nm

1 _
()‘k,lnm - 1)Yk‘2
1

=P52 80,70 (ﬁ

where Y, and Aj ,, are defined below.

k=
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Following Wang and Loh (2011), the quantity in (C.3) can be written

as

1 nm

0

nm -
where (Y1,...,Yum)™ ~ Mo (0, Iyy,) under P(02Kpgw(600)) and Agpm, k =

1,...,nm, satisfy
1 e T 1 .
0'2[0'01RX%)/2:| Rx[aolei/z] = dlag(/\k,nm)ke{l,...,nm}‘

Here, I,,, denotes the identity matrix of dimension nm x nm. For the
rest of the proof |-| denotes the Euclidean norm, and [X|max = max{|z1|, ..., |z41]}
with x = (21,...,2q:1)7 € R&L

Let & : R? > R be defined as &(w,v) = [5 [pa e/ @y (x, u)dxdu,

where co(x,u) = [(%, )|~ 1 jx,u)<1y and ¢* = M%, with p = [0 +d +

2

1+2k]+1. Here, |z] is the largest integer less than or equal to z. Next, we

show that &, is a positive function for d > 1.

Lemma 1. The function & : R¥*1 — R is a continuous, isotropic strictly

positive function and &y(w,v) X [(w,v)[< as |wl,|v] = co.

Proof of Lemma 1. Let Uy be the uniform probability measure on S¢ = {u €

11



Ré+1: Ju| = 1}. By isotropy, we have for all (w,v) € R?+!

gﬂ(w,?]) = / [d e*i(xTerUU)CO(X’u)dxdu
R JR
= -/(xu)|<1 de e_i(|(“””)|yT)(x’u)|(XaU)|_C*_d_1Ud(dy)d(x,u)
+ _ L a
= ) F |, o)'F [ T (@, o)
0

+ * |(w,v)| *_d+
- 2m) w0 < [ T (r)ar
0

d+1
=2(C*)_17r(d+1)/2f( ;‘

)_ 1F2(C*/2; 2+ 1,(d+1)/2;—(|(w, v)|/2)2)‘
(C.6)

From Lemmas 2 and 3 of Bevilacqua et al. (2019) we have &, is a continuous,
isotropic and strictly positive on R4*1,

Moreover, from Luke (1969, p. 203 (4)) we have, as |w| — oo,

PG5 C2 1 df2~(Wlj2)?) = g Dol
r'(d/2)

_Aajz) ()2 ) 4
+7T1/2F(C/2)|w| exp(4w3|w| + O(|w| ))

w(d+1)
—

X cos<|w| - 2wylw|™ - ws|w| ™ + (’)(|w|_5)),

where {wy}x-345 are constants not depending on w € R%. Thus

¢ p(deL
G221, (e D)2 (w0, 0I/2)) % o T, )

(5 -¢/2)

Under the assumption that there exists a positive constant A such that

| |l|ir|n H = h, in concert with Equation (C.6), we have that & (w,v) X
|(w,v)|¢", as |w],|v] = co. The proof is completed. O

12



Let & (w,v) = [gan e @ xvWer(x u)dxdu = &(w,v)?, for all (w,v) €
R where ¢} = ¢o*. ..*co denote the 2p-fold self convolution of the function

cy. We define

fogw(|wl, [v]; 8) = fogw (], [v]; B0)

d+1
&1 (w,v) ; V(w,v) e R

77*(‘*’77]) =
From Theorem 1, Point 3 and Lemma 1, we have

fogw(lw, [vl; 60)

51(w7v)

<1, as |wl, [v] - oo.

Furthermore, this ratio is well defined and continuous on any arbitrary
compact interval of R, with &; > 0, so there exist two constants c¢, and C¢,

not depending on |w|, neither on |v|, such that

JDQW(|w|a|U|§90)
< < w — 00. .
Cey < 51( ,v) < Cgl, as | |, |v| (C 7)

Thus, for an arbitrary constant C,, > 0, we have

. _ And? GOt fpow(r,t;0) = fogw(r,t;600) >
fR(Mn (w,v)2dwdv = F(d/2)[/o fo ( ) ) drdt

+[OC'7 fcj(fDQW(T,t;gl)(;ff)gw(ﬁt?%))erdt
+[C:° foc" (fDQW(T,t;gl)(;ff)gw(ﬁt?%))erdt

+[C:O [C:’ (ngw(T>t;gf(;f5)gw(Tat;90))2drdt :

(C.8)
where (r,v) e R xR, with |r| =7, t = [v| and § - h when 7, - oco.
Since d = 1,2, p > n+1+a, A >2k+3, 6 > &L and 28 (1#20)0 =

13



028, (1+2r) 75°, all terms of Equation (C.8) are finite. Thus, n* is square

integrable. From the theory of Fourier transforms of LZ(R%!) functions,

there exists a square integrable function g : R*! — R such that

fd 1(n*(ww)_gk(ww)fdwdv—>O, as k — oo,
Ra+

where

gr(w,v) = fd e @ ) 6% 1) 1) <k} XA, V(w,v) e R™ k>0,
R
(C.9)
In order to illustrate the following Lemma, some notation is needed. Ac-

cording to Equation (2.44) of Wang (2010), define

Cnm (X, 1) = ! 61( X , 4 ), V(x,u) e RYx R, (C.10)

d (T
Ceeld €l \€m €nm

and
& (w,v) = fd ) eiWxru)e (x v)dxdu,
R +
where C, = [pan ¢1(x, u)dxdu, ¢ =& * ... * & with

a+d+1

Go(x,u) = [(x,u)| Ze ML uyerys

with p, = |a+d+ 1|+ 1. Here a is an arbitrary positive constant. Write

i(wT 3 nm%, €pm
énm(wa U) — e—l(w x+uv)enm(x’ U)dXdU _ 51(6 € U,)

Rd+1 (je

14



for the Fourier transform of e,,,. Note that there exists a constant C; not

depending on w, v, n and m such that

Ce

(1+ €p)(w, v)|)rrd+1’ Y(w.v) R (G-11)

|€m(w,v)| <

Lemma 2. Let (€ )nm : €nm € (0,1], Yn,m e N, and additionally, €,,, - 0,
when n,m — oo. Let g as in Equation (C.9), e,m as in Equation (C.10),
and 1y a constant satisfying 0 < 1o < min{2(u-n-«),20-d-1,3-d}. Then,

there exists a constant C,, such that

2
fRd ‘enm * g(x,u) - g(x,u)‘ dx < C, €. (C.12)

Proof. Lemma 2 can be proved by noting that
2 1
Ad+1 g(x~y,v-u) - g(x,v)| dx = (amyi Ad+1

22-19 (y,u) Lo ) )
: Wfﬂw |(w, w)|[n* (w,u)*dwds

(e~ wiy+su) _ 1 )p* (w, s)‘2 dwds

and

.
| L.

2(27L0)/2(2ma6nm)m/2

1/2
L0 [0 * 2
: (27T)d+1 [Adﬂ \(w,v)\ |77 (wva deU] .

A simple calculus shows that [pu. |[(w,v)[*n(w,v)]?dwdv is finite if

1/2
e % g(%,0) - g(x,v>|2dxdv]

1/2
2
S oo, (0= =) =g ))en(y, u)dydu dxdv]

max{0,1/A\-d-a} <ig<min{2(p-r-d/2-5/2),3—-d} and the conditions
of Theorem 2 hold. Thus, the proof is completed. O]

15



Let b(XaY) = Engw(9)[Z(X)Z(Y)] - Efpgw(eo)[Z(X)Z(Y)]a Vx,y € D x
T =[0,T]%.
From Wang and Loh (2011, (2.24)), and observing that supp(c;) <

[-2p, 2p]™*!, we obtain for x, y € D,

bxy) = oy [ [ gls=t)e(x-s)aly - )dsdt
- (27?)‘1[]&[“1 fR e * 9(5 - t)er (x = 8)er (y — t)dsdt
+ (2r)¢ fR fR B (s, t)en(x - s)er(y - t)dsdt,
where by (s, t) = [g(s -t)-e,*g(s— t)]1{|s+t‘maxg4p+2T}, Vs, t € R+,

Let n** : R? - C denote the Fourier transform of g — e,,, * g. This

implies that

(W) = g p(w)dw - 0, as k > oo, (C.13)

Ad#—l

where g (W) = fpan € X[g(X) = €nm * 9(%) |1 {jxpmueciy dX.

Thus, as in Wang (2010, (2.27)), we have

(2m)™ '/RM1 i Ry (s,t)cr(x—s)c(y —t)dsdt

_ _d i(WTx—vTy), ** w+Vv w-V
) [ T (A ) (@) (v)dwd,
(C.14)
where (S(X) = 2-(d+1) fRdH e_ith1{|t|maX§4p+2T}dt7 x € Rd+1,
We observe that A is continuous and
2
/RM A(w)*dw < oo. (C.15)

16



Now we define

h;:n(sa t) = enm(s - u)g(u - t)du, VS, te Rd+17

|u\max32p+2pa+T
so that
(27) (D) f f enm * g(s —t)c1(x —8)ci(y — t)dsdt
Rd+1 JRd+1
= (27) (D) [ B (s,8)er(x - s)er (y - t)dsdt
R2(d+1)

(C.16)

= @m)TE [ €T G (@)G(Y)

x (/ e‘i(“’T““’T“)énm(w)n(v)du)dvdw.
|u|maxﬁ2p+2pa+T
It follows, from equations (C.14) and (C.16), that for x,y € D x T =

[07 T]d+1,

1 (wTxvTy) s (W TV w-V
b(x,y) = W.&wm o' y)nnm( 5 )9( 5 )51(W)§1(V)d‘-‘)d"
1

’ W ‘/]REQ(d+1) ei(WTX_VTy)gl(w)gl(V)

X (/ e_i(“’T“_"T“)énm(w)n*(V)du)dvdw.
[U|max<2p+2pa+T

Let {t1,...,¥nm} be as in (2.15) of Wang (2010). Then using (2.16)

and (2.60) in Wang (2010), we have

<V i >3, = <k Uk >3 = Ak = 1= W+ D

17



where

wz,nm=# fR o, U (@) ()05 )6 (@) (v)dwdv, and

T = T o I (@) ()

X (/ e’i(“’T“"’T“)énm(w)n*(v)du)dvdw.
|U|max<2p+2pa+T

Using Bessel’s inequality, we have

Sl <217 sy SO [ ) [l

seRd“ ¢X

and

nm 2
Z |l < 242 (A1) &(S) / du
k=1 SERd+1 I/JX (S) u|max<2p+2pa+T

x(f |enm(w)|2dw+f n*(v)de).
Rd+1 Rd+1
From Equations (C.7), (C.8), (C.11), (C.12), (C.13), (C.15), there exists

constants C, C}, Cs not depending on n such that

nm
Z |co nm|2 <Ceb . Z | ol <V Cnmer,  and
k=1

Z [l < (C’l/edJr1 +C T)
with Y = [Rd“ n*(v)2dv being finite.

So we conclude that

Zp‘k,"m_” <\ Onmed, +€i+C’2T. (C.17)
k=1

nm

18



We further observe that there exist constants ¢** > 0 and C** such that
C**SA—SCH, VweRd+1.

This implies that ¢* < A\ pm < C* VEk € {1,2,...,nm}.
Finally for any ¢ > 0, using Markov’s inequality, (C.17), and using (C.5)

we obtain

1

1
P?ﬁmo(—%

o2

—Z! RZ,m - 1ZT R} Z,.| >

nm=x nm= "X
>19)

Z P‘g,lnm - 1|Yk2 > 19)

19) (C.18)

1

Pzﬁovo(ﬁ

1
spm(_

Z()\k nm ]')Yk2
k=1

Memm — 1
’19\/_16 1,nm] an};| k, |
O1/2¢40/2 1

d+1
c* +c*19(nm)1/2(01/€ +CQT)

Choose €, such that €, - 0 and (nm)/2ed! - 0o as n,m — oo. It follows

that (C.18) tends to 0 as n,m — oo. O

C.5 Proof of Theorem 4

The spectral density fpgw(z,T;X,) is bounded away from zero and infinity.

Also, from Theorem 1, Point 3. and if y > n+ 1+ «, then for all £ > 0, there
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exists a constant C. > 0 such that

o2 2T
sup i foow (2,7 X1) il <s

|z [>0: | bG foow (2,75 Xo)

—(2k+1) __
‘7%/81( " )'716

—(2rtl)__5*
‘7350( " )'706

Using Theorem 1 of Stein (1993), we obtain (5.4). If ¢23, 4o =

with b=

0237 =3 and using Theorem 2 of Stein (1993), we obtain (5.6). Simi-
larly, since fpa(z,7;600) is bounded away from zero and infinity see Ip and
Li (2017), then for all € > 0, exists a constant C, > 0 such that

Toow (2,75 x1)

-1
kfpm(z,7:60)

sup <e€

I1(z,u)[>Ce

. 2 quﬁ—(u-Qn)
with k = UQQ)‘Z](CB“O)(QV 1{66(071]}.

Using Theorem 1 of Stein (1993), we obtain (5.5). If

Ufg,\mcgﬁ‘Q"(/\dea—Z(nJr1))1 _q
E(eo)E_QV {66(0,1]}

and using Theorem 2 of Stein (1993), we obtain (5.7).
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