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A. Background on Equivalence of Gaussian Measures

Throughout, when cross referencing to equations or theorems in blue color

we refer to the corresponding numbering in the main manuscript.

Equivalence and orthogonality of probability measures are useful tools

when assessing the asymptotic properties of both prediction and estimation

for stochastic processes. Denote with Pi, i = 0,1, two probability measures

defined on the same measurable space {Ω,F}. P0 and P1 are called equiv-

alent (denoted P0 ≡ P1) if P1(A) = 1 for any A ∈ F implies P0(A) = 1 and

vice versa. On the other hand, P0 and P1 are orthogonal (denoted P0 ⊥ P1)

if there exists an event A such that P1(A) = 1 but P0(A) = 0. For a stochas-

tic process Z = {Z(s, t), (s, t) ∈ Rd × R}, to define previous concepts, we

restrict the event A to the σ-algebra generated by {Z(s, t), (s, t) ∈D × T }

where D × T ⊂ Rd × R. We emphasize this restriction by saying that the

two measures are equivalent on the paths of Z.

Gaussian measures are completely characterized by their mean and co-

variance function. We write P (C) for a Gaussian measure with zero mean

and covariance function C. It is well known that two Gaussian measures are

either equivalent or orthogonal on the paths of Z (Ibragimov and Rozanov,

1978).

Let d be a positive integer. Let P (Ci), i = 0,1 be two zero mean Gaus-
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sian measures associated with a process Z defined over a bounded set D×T

of Rd × R, with covariance function Ci such that Ci = σ2
iKi, for Ki ∈ Φd,T

and associated spectral density Ĉi(z, τ) = σ2
i fi(∥z∥ , ∣τ ∣), with fi as in (2.1).

Using results in Skorokhod and Yadrenko (1973), Ibragimov and Rozanov

(1978) and Stein (2004), Ip and Li (2017) have shown that, if for some a > 0,

Ĉ0(z, τ) ∥(z, τ)∥a is bounded away from 0 and ∞ as (∥z, τ∥) → ∞, where

(∥z, τ∥) = ∑di=1 z2
i + τ 2 and for some finite and positive c,

∫
A
zd−1 {σ

2
1f1(z, τ) − σ2

0f0(z, τ)
σ2

0f0(z, τ)
}

2

dzdτ < ∞, (A.1)

where A = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 with A1 = {z > c, τ > c};A2 = {z > c,0 ≤

τ < c};A3 = {0 ≤ z < c, τ > c};A4 = {z > c1,0 ≤ τ < c};A5 = {0 ≤ z <

c, τ > c2}, and c1, c2 be two constants satisfying 0 < c1, c2 < c such that

c2
1+c2

2 < c2 (Ip and Li, 2017). Then, for any bounded subset D×T ⊂ Rd×R,

P (C0) ≡ P (C1) on the paths of Z(s, t), (s, t) ∈ D × T . For the reminder

of the paper, we denote with P (σ2KDM(θ)), P (σ2KDGW(χ), zero mean

Gaussian measure induced by σ2KDM(⋅, ⋅;θ) and σ2KDGW(⋅, ⋅;χ) covariance

functions, respectively.
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B. Equivalence of Gaussian measures under DGW and DM classes

The following result is due to Ip and Li (2017). It characterizes the equiva-

lence of two gaussian measures under DM covariance models, with a com-

mon smoothness parameter ν.

Theorem 1. For a given ν > 0, let P (σ2
iKDM(θi)), i = 0,1, be two zero

mean Gaussian measures, with θi = (ν, ζi, υi)⊺. For any bounded infinite set

D × T ⊂ Rd ×R, d = 1,2,

1. for ε = 1, P (σ2
0KDM(θ0)) ≡ P (σ2

1KDM(θ1)) if and only if σ2
0ζ

2ν−d
0 υ2ν−1

0 =

σ2
1ζ

2ν−d
1 υ2ν−1

1 ;

2. for ε = 0, P (σ2
0KDM(θ0)) ≡ P (σ2

1KDM(θ1)) if and only if σ2
0ζ

−d
0 υ2ν−1

0 =

σ2
1ζ

−d
1 υ2ν−1

1 and υ0/ζ0 = υ1/ζ1;

3. for 0 < εi < 1, P (σ2
0KDM(θ0)) ≡ P (σ2

1KDM(θ1)) if σ2
0`0ε−2ν

0 = σ2
1`1ε−2ν

1 ,

where `i = ζ2ν−di υ2ν−1i Γ(ν)2

Γ(ν−d/2)Γ(ν−1/2) .

We now provide a characterization of the compatibility of two DGW

functions having common spatial smoothness at the origin. In the following,

we assume that lim
z,τ→∞

z/τ = k < ∞, with k a positive constant.

Theorem 2. Let χi = (µ,κ, βi, δ, λ, γi)⊺, i = 0,1, with γi > 0 and βi > 0.Let

ηi ∶= (d + 1)/2 + κi. For a given κ ≥ 0, let P (σ2
iKDGW(χi)), i = 0,1, be two
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zero mean Gaussian measures, and let µi > ηi+1+αi, λi > max((d+3)/2,2κi+

3) and δi > (d + 1)/2. For any bounded infinite set D × T ⊂ Rd ×R, d = 1,2,

P (σ2
0KDGW(χ0)) ≡ P (σ2

1KDGW(χ1)) on the paths of Z(s, t), (s, t) ∈ D × T

if and only if

σ2
0β

−(2κ+1)
0

γδ0
= σ

2
1β

−(2κ+1)
1

γδ1
. (B.1)

Proofs are deferred to Section C. Given Theorems 1 and 2, it becomes

natural to ask whether the P (σ2KDM(⋅, ⋅;θ)) and P (σ2KDGW(⋅, ⋅;χ)) might

be equivalent on the paths of a Gaussian field Z defined over the product

space D × T being a bounded set of Rd ×R. The following result provides

an answer when d = 1 or d = 2.

Theorem 3. For given µ > η+1+α, λ > max((d+3)/2,2κ+3), δ = 1+2κ, ε ∈

(0,1] and χ2 = (µ,κ, β, δ, λ, γ)⊺, let P (σ2
2KDGW(χ2)) and P (σ2KDM(θ))

be two zero mean Gaussian measures. Let `(θ) be as defined at (2.5). If

σ2
2%λ,ηc

ς
3L

ςβ−(1+2κ) = σ2`(θ)ε−2ν , with ν = η,

then, for any bounded infinite set D×T ⊂ Rd×R, d = 1,2, P (σ2
2KDGW(χ2)) ≡

P (σ2KDM(θ)) on the paths of Z(s, t), (s, t) ∈D × T .
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C. Proofs

C.1 Proof of Theorem 2

We first consider the case κ > 0. Let us start with the sufficient part of the

assertion. By Theorem 1 (Point 3), there exist constants ci and Ci, i = 0,1

such that

ci ≤ z2ητ δ+1fDGW(z, τ ;χi) ≤ Ci, (z, τ) ∈ (0,∞)2, with χi = (µ,κ, βi, δ, λ, γi)⊺.

We proceed by direct construction, and, using Theorem 1 (Points 2 and 3),

we find that, as z →∞ and τ →∞ with z/τ converging to a constant k,

RRRRRRRRRRR

σ2
1fDGW(z, τ ;χ1) − σ2

0fDGW(z, τ ;χ0)
σ2

0fDGW(z, τ ;χ0)

RRRRRRRRRRR

≤ c−1
0 z

2ητ δ+1 ×
RRRRRRRRRRR
σ2

1β
d
1L

ςcς3(zβ1)−2η×

( [%λ,ητ−(1+δ) −O (τ−(1+2δ))] + [%λ,η+1τ
−(1+δ) −O (τ−(1+2δ))]O(z−2))

+ [%λ,0τ−(1+δ) −O (τ−(1+2δ))]O(z−(µ+η)) − σ2
0β

d
0L

ςcς3(zβ0)−2η( [%λ,ητ−(1+δ) −O (τ−(1+2δ))]

+ [%λ,η+1τ
−(1+δ) −O (τ−(1+2δ))]O(z−2)) + [%λ,0τ−(1+δ) −O (τ−(1+2δ))]O(z−(µ+η))

RRRRRRRRRRR
.

For some positive and finite c, condition (A.1) can be written as

∫
A
zd−1(σ

2
1fDGW(z, τ ;χ1) − σ2

0fDGW(z, τ ;χ0)
σ2

0fDGW(z, τ ;χ0)
)

2

dzdτ < ∞, (C.1)

where A has been defined around Equation (A.1).
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It is easy to verify that (C.1) is satisfied if

σ2
0β

−(2κ+1)
0

γδ0
= σ

2
1β

−(2κ+1)
1

γδ1
,

for µ > η + 1 + α, δ > d+1
2 , λ > 2κ + 3 and d = 1,2. Following the steps in the

proof of Theorem 1 of Zhang (2004), we obtain the necessity part. ◻

C.2 Proof of Theorem 3

We need to find conditions such that for some positive and finite c,

∫
A
zd−1(σ

2
2fDGW(z, τ ;χ2) − σ2fDM(z, τ ;θ)

σ2fDM(z, τ ;θ) )
2

dzdτ < ∞, (C.2)

whereA depends on c as specified through (A.1). It is known that fDM(z, τ ;θ)z2ν

is bounded away from 0 and ∞ as z, τ →∞, with z/τ converging to a con-

stant k (Ip and Li, 2017). Using Theorem 1 (Point 2) and Theorem 2

(Point 2) when ε ∈ (0,1], we have, as z, τ →∞,

RRRRRRRRRRR

σ2
2fDGW(z, τ ;χ2) − σ2fDM(z, τ ;θ)

σ2fDM(z, τ ;θ)

RRRRRRRRRRR
=
RRRRRRRRRRR

σ2
2fDGW(z, τ ;χ2)
σ2fDM(z, τ ;θ) − 1

RRRRRRRRRRR

=
RRRRRRRRRRR
`(θ)−1(εrτ)2ν{βdLςcς3(zβ)−2η×

( [%λ,ητ−(1+δ) −O (τ−(1+2δ))] + [%λ,η+1τ
−(1+δ) −O (τ−(1+2δ))]O(z−2))

+ [%λ,0τ−(1+δ) −O (τ−(1+2δ))]O(z−(µ+η))}×

(1 + νζ2υ2

ε2r2τ 2
+ νυ2

ε2τ 2
+ νζ2

ε2r2
+O(τ−4r−4)) − 1

RRRRRRRRRRR
,

and, d = 1,2 if ν = η, δ = 1 + 2κ, λ > 2κ + 3, µ ≥ η + 1 + α and

σ2
2%λ,ηc

ς
3L

ςβ−(1+2κ) = σ2`(θ)ε−2ν ,
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so that (C.2) holds. ◻

C.3 Proof of Theorem 1

The proof of Points 1, 2 and 3 are based results on results of Bevilacqua

et al. (2019) and Lim and Teo (2009). In particular, to prove Point 1, we

note that

fDGW(z, τ ;χ) = 1

(2π)d+1 ∫R e
−iτt∫

Rd
e−i<ze1,x>KDGW(∥x∥ , t;χ)dxdt,

where e1 denotes a unit vector. Next, using the arguments in Bevilacqua

et al. (2019), and by standard Fourier calculus, we get

fDGW(z, τ ;χ) = βdLς

2π ∫R e
−iτthδ,γ(t)d+λ1F2(η; η + µ

2
, η + µ

2
+ 1

2
;−(zβ hδ,γ(t))2

4
)dt.

Using the definition of the function 1F2 in concert with the fact that stan-

dard arguments allow for exchange of series and integrals, we obtain

fDGW(z, τ ;χ) = βdLς
∞

∑
j=0

(−1)j(η)j(zβ/2)2j

j!(η + µ/2)j(η + µ/2 + 1/2)j
1

2π ∫R e
−itτ hδ,γ(t)d+λ+2jdt.

We can now make use of dominated convergence (because δ(λ + d) > 1) to

exchange series and integrals and replace the series within the integral by

1F2, to obtain

fDGW(z, τ ;χ) = −βdτ 1/2
√

2γ3/2π−3/2Lς ×

×I
⎛
⎝∫

∞

0

K1/2(γtτ)1F2(η; η + µ
2 , η +

µ
2 + 1

2 ;− (zβ(1+eiπδ/2tδ)−1)
2

4 )
(1 + exp(iπδ2 )tδ)λ+d

t1/2dt
⎞
⎠
.
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Point 2 can be verified by showing that, as z →∞ and for η = d+1
2 + κ,

fDGW(z, τ ;χ) = −βdτ 1/2
√

2γ3/2π−3/2LςI
⎛
⎝∫

∞

0

K1/2(γtτ)
(1 + exp(iπδ2 )tδ)λ+d

× (cς3(zβ(1 + eiπδ/2tδ)−1)−2η(1 +O((1 + eiπδ/2tδ)2z−2))

+ O((1 + eiπδ/2tδ)µ+ηz−(µ+η)))t1/2dt
⎞
⎠
.

Note that we replaced cς4z
−(µ+η){ cos(zβ − cς5) + O (z−1) } by O(z−(µ+η)).

Now, by letting τ tend to infinity we obtain

fDGW(z, τ ;χ) = βdLςcς3(zβ)−2η( [%λ,ητ−(1+δ) −O (τ−(1+2δ))]

+ [%λ,η+1τ
−(1+δ) −O (τ−(1+2δ))]O(z−2)) + [%λ,0τ−(1+δ) −O (τ−(1+2δ))]O(z−(µ+η)).

Point 3 comes from Bevilacqua et al. (2019). The last point is a direct

application of the arguments from Lim and Teo (2009)[Proposition 3.2] and

Bevilacqua et al. (2019)[Theorem 2]. ◻

C.4 Proof of Theorem 3

The proof of Point 1. follows the same arguments of the proof of Theorem 3

in Zhang (2004), so that we omit it.

For the proof of Point 2., we follow the arguments in Wang and Loh

(2011) and Wang (2010), applied to the DGW case. As in Wang and Loh

(2011), without loss of generality, we assume D × T = [0, T ]d+1, 0 < T < ∞,

is a bounded subset of Rd+1, d = 1,2. Let Rχ = Rnm(χ) and σ̂2
nm = σ̂2

nm(χ)
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for notation convenience, and let σ2, β and γ be three positive constants

such that σ2
0β

−(2κ+1)
0 /γδ0 = σ2β−(2κ+1)/γδ. Then, we have

√
nm(σ̂2

nβ
−(1+2κ)γ−δ − σ2

0β
−(1+2κ)
0 γ0−δ)

= σ
2
0β

−(1+2κ)
0 γ−δ√
nm

( 1

σ2
Z⊺
nmR

−1
χ Znm − 1

σ2
0

Z⊺
nmR

−1
χ0
Znm)

+ σ
2
0β

−(1+2κ)
0 γ−δ0√
nm

( 1

σ2
0

Z⊺
nmR

−1
χ0
Znm − nm) .

Under the measure P (σ2
0KDGW(θ0)), we have σ−2

0 Z
⊺
nmR

−1
χ0
Znm ∼ χ2

nm (a

centered chi-squared distribution with n ×m degrees of freedom) and

σ2
0β

−(1+2κ)
0 γ−δ0√
nm

( 1

σ2
0

Z⊺
nmR

−1
χ0
Znm − nm) DÐ→ N(0,2σ2

0β
−(1+2κ)
0 γ−δ0 )

as nm→∞. To prove the result, it is sufficient to show that

1√
nm

( 1

σ2
Z⊺
nmR

−1
χ Znm − 1

σ2
0

Z⊺
nmR

−1
χ0
Znm) pÐ→ 0, as nm→∞, (C.3)

where
pÐ→ denotes convergence under P (σ2

0KDGW(θ0)).

Specifically, we need to show that for any ϑ > 0,

Pσ2
0 ,β0,γ0

( 1√
nm

∣ 1

σ2
Z⊺
nmR

−1
χ Znm − 1

σ2
0

Z⊺
nmR

−1
χ0
Znm∣ > ϑ)

=Pσ2
0 ,β0,γ0

( 1√
n
∣
nm

∑
k=1

(λ−1
k,nm − 1)Y 2

k ∣ > ϑ) Ð→ 0, as n,m→∞,
(C.4)

where Yk and λk,nm are defined below.
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Following Wang and Loh (2011), the quantity in (C.3) can be written

as

1√
nm

nm

∑
k=0

(λ−1
k,nm − 1)Y 2

k , (C.5)

where (Y1, . . . , Ynm)⊺ ∼ Nnm(0, Inm) under P (σ2
0KDGW(θ0)) and λk,nm, k =

1, . . . , nm, satisfy

σ2[σ−1
0 R

−1/2
χ0

]⊺Rχ[σ−1
0 R

−1/2
χ0

] = diag(λk,nm)k∈{1,...,nm}.

Here, Inm denotes the identity matrix of dimension nm × nm. For the

rest of the proof ∣⋅∣ denotes the Euclidean norm, and ∣x∣max = max{∣x1∣, . . . , ∣xd+1∣}

with x = (x1, . . . , xd+1)⊺ ∈ Rd+1.

Let ξ0 ∶ Rd → R be defined as ξ0(ω, v) = ∫R ∫Rd e−i(x
⊺ω+vu)c0(x, u)dxdu,

where c0(x, u) = ∣(x, u)∣ζ∗−d−11{∣(x,u)∣≤1} and ζ∗ = δ+d+1+2κ
2p , with p = ⌊δ + d +

1+2κ⌋+1. Here, ⌊x⌋ is the largest integer less than or equal to x. Next, we

show that ξ0 is a positive function for d ≥ 1.

Lemma 1. The function ξ0 ∶ Rd+1 → R is a continuous, isotropic strictly

positive function and ξ0(ω, v) ≍ ∣(ω, v)∣−ζ∗ as ∣ω∣, ∣v∣ → ∞.

Proof of Lemma 1. Let Ud be the uniform probability measure on Sd = {u ∈
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Rd+1 ∶ ∣u∣ = 1}. By isotropy, we have for all (ω, v) ∈ Rd+1

ξ0(ω, v) = ∫
R
∫
Rd

e−i(x
⊺ω+vu)c0(x, u)dxdu

= ∫
∣(x,u)∣≤1

∫
Sd
e−i(∣(ω,v)∣y

⊺)(x,u)∣(x, u)∣−ζ∗−d−1Ud(dy)d(x, u)

= (2π) d+12 ∣(ω, v)∣ 1−d2 ∫
1

0
rζ

∗− d+1
2 J d−1

2
(∣(ω, v)∣r)dr

= (2π) d+12 ∣(ω, v)∣−ζ∗ ∫
∣(ω,v)∣

0
rζ

∗− d+1
2 J d−1

2
(r)dr

= 2(ζ∗)−1π(d+1)/2Γ(d + 1

2
)
−1

1F2

⎛
⎝
ζ∗/2; ζ∗/2 + 1, (d + 1)/2;−(∣(ω, v)∣/2)2

⎞
⎠
.

(C.6)

From Lemmas 2 and 3 of Bevilacqua et al. (2019) we have ξ0 is a continuous,

isotropic and strictly positive on Rd+1.

Moreover, from Luke (1969, p. 203 (4)) we have, as ∣ω∣ → ∞,

1F2(ζ/2; ζ/2 + 1, d/2;−(∣ω∣/2)2) = 2ζΓ(d/2)
Γ(d/2 − ζ/2) ∣ω∣−ζ

+ Γ(d/2)
π1/2Γ(ζ/2) ∣ω∣−(1+d)/2 exp(4w3∣ω∣−2 +O(∣ω∣−4))

× cos(∣ω∣ − π(d + 1)
2

− 2w4∣ω∣−1 − 8w5∣ω∣−3 +O(∣ω∣−5)),

where {wk}k=3,4,5 are constants not depending on ω ∈ Rd. Thus

1F2(ζ∗/2; ζ∗/2 + 1, (d + 1)/2;−(∣(ω, v)∣/2)2) ≍
2ζ

∗
Γ(d+1

2 )
Γ(d+1

2 − ζ∗/2)
∣(ω, v)∣−ζ∗ .

Under the assumption that there exists a positive constant h̵ such that

lim
∣ω∣,∣v∣→∞

∣ω∣

∣v∣ = h̵, in concert with Equation (C.6), we have that ξ0(ω, v) ≍

∣(ω, v)∣−ζ∗ , as ∣ω∣, ∣v∣ → ∞. The proof is completed.
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Let ξ1(ω, v) = ∫Rd+1 e−i(ω
⊺x+vu)c∗1(x, u)dxdu = ξ0(ω, v)2p, for all (ω, v) ∈

Rd+1, where c∗1 = c0∗. . .∗c0 denote the 2p-fold self convolution of the function

c∗0. We define

η∗(ω, v) = fDGW(∣ω∣, ∣v∣;θ) − fDGW(∣ω∣, ∣v∣;θ0)
ξ1(ω, v)

, ∀(ω, v) ∈ Rd+1.

From Theorem 1, Point 3 and Lemma 1, we have

fDGW(∣ω∣, ∣v∣;θ0)
ξ1(ω, v)

≍ 1, as ∣ω∣, ∣v∣ → ∞.

Furthermore, this ratio is well defined and continuous on any arbitrary

compact interval of R+ with ξ1 > 0, so there exist two constants cξ1 and Cξ1

not depending on ∣ω∣, neither on ∣v∣, such that

cξ1 ≤
fDGW(∣ω∣, ∣v∣;θ0)

ξ1(ω, v)
≤ Cξ1 , as ∣ω∣, ∣v∣ → ∞. (C.7)

Thus, for an arbitrary constant Cη > 0, we have

∫
Rd+1

η∗(ω, v)2dωdv = 4πd/2

Γ(d/2)

⎡⎢⎢⎢⎢⎣
∫

Cη

0
∫

Cη

0
(fDGW(r, t;θ) − fDGW(r, t;θ0)

ξ1(r, v)
)

2

drdt

+ ∫
Cη

0
∫

∞

Cη
(fDGW(r, t;θ) − fDGW(r, t;θ0)

ξ1(r, v)
)

2

drdt

+ ∫
∞

Cη
∫

Cη

0
(fDGW(r, t;θ) − fDGW(r, t;θ0)

ξ1(r, v)
)

2

drdt

+ ∫
∞

Cη
∫

∞

Cη
(fDGW(r, t;θ) − fDGW(r, t;θ0)

ξ1(r, v)
)

2

drdt

⎤⎥⎥⎥⎥⎦
.

(C.8)

where (r, v) ∈ Rd ×R, with ∣r∣ = r, t = ∣v∣ and r
t → h̵ when r, t→∞.

Since d = 1,2, µ > η + 1 + α, λ > 2κ + 3, δ > d+1
2 and σ2β−(1+2κ)γ−δ =
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σ2
0β

−(1+2κ)
0 γ−δ0 , all terms of Equation (C.8) are finite. Thus, η∗ is square

integrable. From the theory of Fourier transforms of L2(Rd+1) functions,

there exists a square integrable function g ∶ Rd+1 → R such that

∫
Rd+1

(η∗(ω, v) − ĝk(ω, v))
2
dωdv → 0, as k →∞,

where

ĝk(ω, v) = ∫
Rd

e−i(ω
⊺x+vu)g(x, u)1{∣(x,u)∣max≤k}dxdu, ∀(ω, v) ∈ Rd+1, k > 0.

(C.9)

In order to illustrate the following Lemma, some notation is needed. Ac-

cording to Equation (2.44) of Wang (2010), define

enm(x, u) = 1

Ceεdnmε
⊺
nm

c̃1 (
x

εnm
,
u

εnm
) , ∀(x, u) ∈ Rd ×R, (C.10)

and

ξ̃1(ω, v) = ∫
Rd+1

e−i(ω
⊺x+uv)c̃1(x, v)dxdu,

where Ce = ∫Rd+1 c̃1(x, u)dxdu, c̃1 = c̃0 ∗ . . . ∗ c̃0 with

c̃0(x, u) = ∣(x, u)∣
a+d+1
2pa

−d1{∣(x,u)∣≤1},

with pa = ⌊a + d + 1⌋ + 1. Here a is an arbitrary positive constant. Write

ênm(ω, v) = ∫
Rd+1

e−i(ω
⊺x+uv)enm(x, u)dxdu = ξ̃1(εnmω, εnmu)

Ce
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for the Fourier transform of enm. Note that there exists a constant Cê not

depending on ω, v, n and m such that

∣ênm(ω, v)∣ ≤ Cê
(1 + εn∣(ω, v)∣)a+d+1

, ∀(ω, v) ∈ Rd+1. (C.11)

Lemma 2. Let (εnm)nm ∶ εnm ∈ (0,1], ∀n,m ∈ N, and additionally, εnm → 0,

when n,m → ∞. Let g as in Equation (C.9), enm as in Equation (C.10),

and ι0 a constant satisfying 0 < ι0 < min{2(µ−η−α),2δ−d−1,3−d}. Then,

there exists a constant Cι0 such that

∫
Rd

∣enm ∗ g(x, u) − g(x, u)∣2dx ≤ Cι0ει0nm. (C.12)

Proof. Lemma 2 can be proved by noting that

∫
Rd+1

∣g(x − y, v − u) − g(x, v)∣2dx = 1

(2π)d+1 ∫Rd+1 ∣(e
−i(w⊺y+su) − 1)η∗(w, s)∣2 dwds

≤ 22−ι0 ∣(y, u)∣ι0
(2π)d+1 ∫

Rd+1
∣(w, u)∣ι0 ∣η∗(w, u)∣2dwds

and

⎡⎢⎢⎢⎢⎣
∫
Rd+1

∣en ∗ g(x, v) − g(x, v)∣2dxdv

⎤⎥⎥⎥⎥⎦

1/2

=
⎡⎢⎢⎢⎢⎣
∫
Rd+1

∣∫
∣(y,u)∣≤2maεn

(g(x − y, v − u) − g(x, v))en(y, u)dydu∣
2

dxdv

⎤⎥⎥⎥⎥⎦

1/2

≤ 2(2−ι0)/2(2maεnm)ι0/2
(2π)d+1

⎡⎢⎢⎢⎢⎣
∫
Rd+1

∣(w, v)∣ι0 ∣η∗(w, v)∣2dwdv

⎤⎥⎥⎥⎥⎦

1/2

.

A simple calculus shows that ∫Rd+1 ∣(w, v)∣ι0 ∣η(w, v)∣2dwdv is finite if

max{0,1/λ−d−α} < ι0 < min{2(µ−κ−d/2−5/2),3−d} and the conditions

of Theorem 2 hold. Thus, the proof is completed.
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Let b(x,y) = EfDGW(θ)[Z(x)Z(y)] −EfDGW(θ0)[Z(x)Z(y)], ∀x,y ∈D ×

T = [0, T ]d+1.

From Wang and Loh (2011, (2.24)), and observing that supp(c1) ⊆

[−2p,2p]d+1, we obtain for x, y ∈D,

b(x,y) = (2π)d+1∫
Rd+1
∫
Rd+1

g(s − t)c1(x − s)c1(y − t)dsdt

= (2π)d∫
Rd+1
∫
Rd+1

enm ∗ g(s − t)c1(x − s)c1(y − t)dsdt

+ (2π)d∫
Rd+1
∫
Rd+1

h∗nm(s, t)c1(x − s)c1(y − t)dsdt,

where h∗nm(s, t) = [g(s − t) − en ∗ g(s − t)]1{∣s+t∣max≤4p+2T},∀s, t ∈ Rd+1.

Let η∗∗nm ∶ Rd → C denote the Fourier transform of g − enm ∗ g. This

implies that

∫
Rd+1

∣η∗∗nm(w) − ĝ∗nm,k(w)∣2dw → 0, as k →∞, (C.13)

where ĝ∗nm,k(w) = ∫Rd+1 e−iw
⊺x[g(x) − enm ∗ g(x)]1{∣x∣max≤k}dx.

Thus, as in Wang (2010, (2.27)), we have

(2π)−d∫
Rd+1
∫
Rd+1

h∗nm(s, t)c1(x − s)c1(y − t)dsdt

= (2π)−d∫
R2(d+1)

ei(ω
⊺x−v⊺y)η∗∗nm(ω + v

2
)∆(ω − v

2
)ξ1(ω)ξ1(v)dωdv,

(C.14)

where δ(x) = 2−(d+1) ∫Rd+1 e−it
⊺x1{∣t∣max≤4p+2T}dt, x ∈ Rd+1.

We observe that ∆ is continuous and

∫
Rd+1

∆(ω)2dω < ∞. (C.15)
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Now we define

h∗∗nm(s, t) = ∫
∣u∣max≤2p+2pa+T

enm(s − u)g(u − t)du, ∀s, t ∈ Rd+1,

so that

(2π)−(d+1)∫
Rd+1
∫
Rd+1

enm ∗ g(s − t)c1(x − s)c1(y − t)dsdt

= (2π)−(d+1)∫
R2(d+1)

h∗∗nm(s, t)c1(x − s)c1(y − t)dsdt

= (2π)−(d+1)∫
R2(d+1)

ei(ω
⊺u−v⊺u)ξ1(ω)ξ1(v)

× (∫
∣u∣max≤2p+2pa+T

e−i(ω
⊺u−v⊺u)ênm(ω)η(v)du)dvdω.

(C.16)

It follows, from equations (C.14) and (C.16), that for x,y ∈ D × T =

[0, T ]d+1,

b(x,y) = 1

(2π)d+1 ∫R2(d+1)
ei(ω

⊺x−v⊺y)η∗∗nm(ω + v

2
)θ(ω − v

2
)ξ1(ω)ξ1(v)dωdv

+ 1

(2π)d+1 ∫R2(d+1)
ei(ω

⊺x−v⊺y)ξ1(ω)ξ1(v)

× (∫
∣u∣max≤2p+2pa+T

e−i(ω
⊺u−v⊺u)ênm(ω)η∗(v)du)dvdω.

Let {ψ1, . . . , ψnm} be as in (2.15) of Wang (2010). Then using (2.16)

and (2.60) in Wang (2010), we have

< ψk, ψk >ψ̂χ
− < ψk, ψk >ψ̂χ0

= λk,nm − 1 =$∗
k,nm +$∗∗

k,nm,
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where

$∗
k,nm = 1

(2π)2 ∫R2(d+1)
ψk(ω)ψk(v)η∗∗nm(ω + v

2
)θ(ω − v

2
)ξ1(ω)ξ1(v)dωdv, and

$∗∗
k,nm = 1

(2π)d+1 ∫R2(d+1)
ψk(ω)ψk(v)ξ1(ω)ξ1(v)

× (∫
∣u∣max≤2p+2pa+T

e−i(ω
⊺u−v⊺u)ênm(ω)η∗(v)du)dvdω.

Using Bessel’s inequality, we have

nm

∑
k=1

∣$∗
k,nm∣2 ≤ 2−d−1π−d sup

s∈Rd+1

ξ1(s)2

ψ̂χ0
(s) ∫Rd

∣η∗∗nm(ω)∣2dω∫
Rd

∣θ(v)∣2dv,

and

nm

∑
k=1

∣$∗∗
k,nm∣ ≤ 2−d−2π−(d+1) sup

s∈Rd+1

ξ1(s)2

ψ̂χ0
(s) ∫∣u∣max≤2p+2pa+T

du

× (∫
Rd+1

∣ênm(ω)∣2dω + ∫
Rd+1

η∗(v)2dv).

From Equations (C.7), (C.8), (C.11), (C.12), (C.13), (C.15), there exists

constants C, C1, C2 not depending on n such that

nm

∑
k=1

∣$∗
k,nm∣2 ≤ Cει0nm,

nm

∑
k=1

∣$∗
k,nm∣ ≤

√
Cnmει0nm and

nm

∑
k=1

∣$∗∗
k,nm∣ ≤ (C1/εd+1

nm +C2Υ)

with Υ = ∫Rd+1 η∗(v)2dv being finite.

So we conclude that

nm

∑
k=1

∣λk,nm − 1∣ ≤
√
Cnmει0nm + C1

εdnm
+C2Υ. (C.17)
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We further observe that there exist constants c∗∗ > 0 and C∗∗ such that

c∗∗ ≤ ψ̂χ

ψ̂χ0

≤ C∗∗, ∀ω ∈ Rd+1.

This implies that c∗ ≤ λk,nm ≤ C∗ ∀k ∈ {1,2, . . . , nm}.

Finally for any ϑ > 0, using Markov’s inequality, (C.17), and using (C.5)

we obtain

Pσ2
0 ,β0,γ0

( 1√
nm

∣ 1

σ2
Z⊺
nmR

−1
χ Znm − 1

σ2
0

Z⊺
nmR

−1
χ0
Znm∣ > ϑ) (C.18)

= Pσ2
0 ,β0,γ0

( 1√
nm

∣
nm

∑
k=1

(λ−1
k,nm − 1)Y 2

k ∣ > ϑ)

≤ Pσ2
0 ,β0,γ0

( 1√
nm

nm

∑
k=1

∣λ−1
k,nm − 1∣Y 2

k > ϑ)

≤ 1

ϑ
√
nm

nm

∑
k=1

∣λ−1
k,nm − 1∣

≤ 1

ϑ
√
nm

max
i∈[1,nm]

{λ−1
i,nm}

nm

∑
k=1

∣λk,nm − 1∣

≤ C
1/2ε

ι0/2
nm

c∗ϑ
+ 1

c∗ϑ(nm)1/2
(C1/εd+1

nm +C2Υ) .

Choose εnm such that εnm → 0 and (nm)1/2εd+1
nm →∞ as n,m→∞. It follows

that (C.18) tends to 0 as n,m→∞. ◻

C.5 Proof of Theorem 4

The spectral density fDGW(z, τ ;χ0) is bounded away from zero and infinity.

Also, from Theorem 1, Point 3. and if µ > η + 1+α, then for all ε > 0, there
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exists a constant Cε > 0 such that

sup
∥(z,u)∥>Cε

RRRRRRRRRRR

σ2
1fDGW(z, τ ;χ1)

bσ2
0fDGW(z, τ ;χ0)

− 1
RRRRRRRRRRR
< ε

with b = σ2
1β

−(2κ+1)
1 γ−δ1

σ2
0β

−(2κ+1)
0 γ−δ0

.

Using Theorem 1 of Stein (1993), we obtain (5.4). If σ2
1β

−(2κ+1)
1 γ−δ1 =

σ2
0β

−(2κ+1)
0 γ−δ0 and using Theorem 2 of Stein (1993), we obtain (5.6). Simi-

larly, since fDM(z, τ ;θ0) is bounded away from zero and infinity see Ip and

Li (2017), then for all ε > 0, exists a constant Cε > 0 such that

sup
∥(z,u)∥>Cε

RRRRRRRRRRR

fDGW(z, τ ;χ1)
kfDM(z, τ ;θ0)

− 1
RRRRRRRRRRR
< ε

with k = σ2
2%λ,ηc

ς
3L

ςβ−(1+2κ)

`(θ0)ε−2ν
1{ε∈(0,1]}.

Using Theorem 1 of Stein (1993), we obtain (5.5). If

σ2
1%λ,ηc

ς
3β

−2η(λ + dα − 2(η + 1))
`(θ0)ε−2ν

1{ε∈(0,1]} = 1

and using Theorem 2 of Stein (1993), we obtain (5.7).
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