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Appendix A: Double-robustness and Consistency:
For simplicity, we denote π(Xi; θ̂) by π̂i and K

( π̂j−π̂i

hn

)
≡ K

(π(Xj ;θ̂)−π(Xi;θ̂)

hn

)
by Kij(θ̂). We

assume β̂
p−→ β∗, and θ̂

p−→ θ∗, which is true under some regularity conditions by standard

M-estimation theory (Tsiatis, 2006).

Part 1: Suppose the model for outcome is correct, i.e., E(Y |R = 1, X) = m(X;β). Then

β∗ = β0, where β0 is the truth, and n−1 ∑n
i=1 m(Xi; β̂)

p−→ n−1 ∑n
i=1 E(Yi|Xi, R = 1) =

n−1 ∑n
i=1 E(Yi|Xi) = E(Y ), where the first equality is due to Yi⊥⊥Ri|Xi. The first term of
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(2.3) in the main manuscript can be decomposed as follows

=
1

n

n∑
i=1

[∑n
j=1 Rj{Yj −m(Xj ; β̂)}Kij(θ̂)∑n

j=1 RjKij(θ̂)
−

∑n
j=1 Rj{Yj −m(Xj ;β0)}Kij(θ̂)∑n

j=1 RjKij(θ̂)

]
(A.1)

+
1

n

n∑
i=1

[∑n
j=1 Rj{Yj −m(Xj ;β0)}Kij(θ̂)∑n

j=1 RjKij(θ̂)
−

∑n
j=1 Rj{Yj −m(Xj ;β0)}Kij(θ

∗)∑n
j=1 RjKij(θ∗)

]
(A.2)

+
1

n

n∑
i=1

[∑n
j=1 Rj{Yj −m(Xj ;β0)}Kij(θ

∗)∑n
j=1 RjKij(θ∗)

]
. (A.3)

We repeatedly use two standard results from kernel density and kernel nonparametric re-

gression estimator. That is, under standard conditions usually assumed for K(u), including∫
K(u)du = 1,

∫
uK(u)du = 0, hn → 0, and nhn → ∞, we have n−1 ∑n

i=1
1
hn

K(x−Xi
hn

)
p−→

fX(x) and n−1 ∑n
i=1{Yi

1
hn

K(x−Xi
hn

)} p−→ E(Y |x)fX(x), where fX(x) is the density of X.

As a result,
n−1 ∑n

i=1 YiK(
x−Xi
hn

)

n−1
∑n

i=1 K(
x−Xi
hn

)

p−→ E(Y |x). Applying these results, we have (A.3)
p−→

E[E{Y −m(X;β0)|R = 1, θ∗TX}]. The inner expectation can be written equivalently as

E{Y −m(X;β0)|R = 1, θ∗TX}

= E[E{Y −m(X;β0)|R = 1, θ∗TX,X}|R = 1, θ∗TX]

= E[E{Y −m(X;β0)|R = 1, X}|R = 1, θ∗TX] = 0

due to E(Y |R = 1, X) = m(X;β0). Therefore, (A.3) p−→ 0. It can be shown that (A.1) =

(β0 − β̂)n−1 ∑n
i=1

[∑n
j=1 RjKij(θ̂){ d

dβ
|β=β0

m(Xj ;β)}∑n
j=1 RjKij(θ̂)

]
= op(1). It can also be checked that (A.2)

p−→ 0. Combining results, we obtain that when the model for outcome is correctly specified,

µ
p−→ µ = E(Y ).

Part 2: Suppose the model for the propensity score is correct, i.e., P (R = 1|X) = π(X; θ).

Then θ∗ = θ0, where θ0 is the truth, and Y⊥⊥R|θT0 X or equivalently Y⊥⊥R|π(X; θ0) (Rosenbaum
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and Rubin, 1983). Rearranging terms we can write µ̂ equivalently as

n−1
n∑

i=1

{∑n
j=1 RjYjKij(θ̂)∑n
j=1 RjKij(θ̂)

}
+ n−1

n∑
i=1

{
m(Xi; β̂)−

∑n
j=1 Rjm(Xj ; β̂)Kij(θ̂)∑n

j=1 RjKij(θ̂)

}
.

(A.4)

The first term in (A.4)

= n−1
n∑

i=1

{∑n
j=1 RjYjKij(θ0)∑n
j=1 RjKij(θ0)

}
(A.5)

+ n−1
n∑

i=1

{∑n
j=1 RjYjKij(θ̂)∑n
j=1 RjKij(θ̂)

}
− n−1

n∑
i=1

{∑n
j=1 RjYjKij(θ0)∑n
j=1 RjKij(θ0)

}
. (A.6)

Applying results on kernel estimator and law of large numbers, we have (A.5) p−→ E{E(Y |R =

1, θT0 X)} = E{E(Y |θT0 X)} = E(Y ), because Y⊥⊥R|θT0 X. Because θ̂
p−→ θ0 and π(x; θ̂)

p−→

π(x; θ0), it can be shown that (A.6) p−→ 0. The second term in (A.4)

= n−1
n∑

i=1

{
m(Xi;β

∗)−
∑n

j=1 Rjm(Xj ;β
∗)Kij(θ0)∑n

j=1 RjKij(θ0)

}
+ op(1)

p−→ E{m(X;β∗)} − E
[E{Rm(X;β∗)|θT0 X}

E(R|θT0 X)

]

due to law of large numbers and results on kernel estimators. By Rosenbaum and Rubin (1983),

R⊥⊥X|θ0X, and therefore, E{Rm(X;β∗)|θT0 X} = E(R|θT0 X)E{m(X;β∗)|θT0 X}. Substituting

this result back, the second term in (A.4) p−→ E{m(X;β∗)} − E
[
E{m(X;β∗)|θT0 X}

]
= 0.

Combining results, we obtain that when the model for the propensity score is correctly

specified, regardless of whether the model for outcome is correct or not, µ̂ p−→ µ = E(Y ).

Appendix B: Asymptotic Normality:
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We first define the following quantities:

g1(r, y, x; x̃, β, θ) = r{y −m(x;β)}K(
π(x; θ)− π(x̃; θ)

hn
),

g2(r, x; x̃, θ) = rK(
π(x; θ)− π(x̃; θ)

hn
),

g3(x̃;β, θ) =
Png1(R, Y,X; x̃, θ)

Png2(R,X; x̃, β, θ)
, g4(r, y, x;β, θ) = P{g1(r, y, x; x̃, β, θ)

Png2(R,X; x̃, θ)
|x̃=X}

g5(r, x;β, θ) = P{g2(r, x; x̃, θ)Pg1(R, Y,X; x̃, β, θ)

Png2(R,X; x̃, θ)Pg2(R,X; x̃, θ)
|x̃=X}.

With these notations, we have µ̂ = Png3(X; β̂, θ̂) + Pnm(X; β̂) and can be decomposed as

µ̂ = (Pn − P )g3(X; β̂, θ̂) + (Pn − P )g4(R, Y,X; β̂, θ̂)− (Pn − P )g5(R,X; β̂, θ̂)

+ P
{Pg1(R, Y,X; x̃, β̂, θ̂)

Pg2(R,X; x̃, θ̂)
|x̃=X

}
+ Pnm(X; β̂).

It can be shown that

Gng3(X; β̂, θ̂) = Gn
E[R{Y −m(X;β∗)}|π(X; θ∗)]

E{R|π(X; θ∗)} + op(1),

Gng4(R, Y,X; β̂, θ̂) = Gn
R{Y −m(X;β∗)}
E{R|π(X; θ∗)} + op(1), (B.1)

Gng5(R,X; β̂, θ̂) = Gn
RE[R{Y −m(X;β∗)}|π(X; θ∗)]

E2{R|π(X; θ∗)} + op(1). (B.2)

Specifically, in addition to the two results on kernel density and kernel nonparametric regression

estimator presented before, for proving (B.1) we additionally need the following result:

P
[ K( z−z̃

hn
)

Pn{RK(Z−z̃
hn

)}
|z̃=Z

]
=

∫ 1
hn

K( t−z
hn

)fZ(t)

E(R|Z = t)fZ(t)
dt+ op(1)

=

∫
K(u)

E(R|Z = z + uhn)
du+ op(1)

=

∫ [ K(u)

E(R|Z = z)
+ uhnK(u)

d{ 1
E(R|Z=z)

}
dz

+ o(hn)
]
du+ op(1)

=
1

E(R|Z = z)
+ op(1),

due to Taylor expansion and standard conditions assumed for K(u), including
∫
K(u)du = 1,∫

uK(u)du = 0, hn → 0, and nhn → ∞. Similar techniques are used for proving (B.2).
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Moreover,

n
1
2 (B.1) = n

1
2E

{E[R{Y −m(X;β∗)}|π(X; θ∗)]

E{R|π(X; θ∗)}

}
+ n

1
2 (Pn − P )m(X;β∗)

+
d

dθ
|θ=θ∗E

[R{Y −m(X;β∗)}
E{R|π(X; θ)}

]
n

1
2 (θ̂ − θ∗)

+
d

dβ
|β=β∗E

[R{Y −m(X;β)}
E{R|π(X; θ∗)} +m(X;β)

]
n

1
2 (β̂ − β∗),

where we have used the result that E
{

E[R{Y −m(X;β∗)}|π(X;θ∗)]
E{R|π(X;θ∗)}

}
= E

[
R{Y −m(X;β∗)}
E{R|π(X;θ∗)}

]
.

Combining results, we obtain

n
1
2 (µ̂− µ) = n

1
2 (Pn − P )

{E[R{Y −m(X;β∗)}|π(X; θ∗)]

E{R|π(X; θ∗)}

+
R{Y −m(X;β∗)}
E{R|π(X; θ∗)} − RE[R{Y −m(X;β∗)}|π(X; θ∗)]

E2{R|π(X; θ∗)} +m(X;β∗)− µ
}

+
d

dθ
|θ=θ∗E

[R{Y −m(X;β∗)}
E{R|π(X; θ)}

]
n

1
2 (θ̂ − θ∗)

+
d

dβ
|β=β∗E

[R{Y −m(X;β)}
E{R|π(X; θ∗)} +m(X;β)

]
n

1
2 (β̂ − β∗)

+n
1
2

[
E
{E[R{Y −m(X;β∗)}|π(X; θ∗)]

E{R|π(X; θ∗)} +m(X;β∗)
}
− µ

]
+ op(1).

It was checked previously in Appendix A that, when either working model for Y or R is correctly

specified, then the asymptotic bias E
{

E[R{Y −m(X;β∗)}|π(X;θ∗)]
E{R|π(X;θ∗)} + m(X;β∗)

}
− µ equals zero.

Under suitable regularity conditions, according to M-estimation theory it is standard results that

n
1
2 (β̂ − β∗) and n

1
2 (θ̂ − θ∗) are asymptotic normal with mean zero. Therefore, the consistency

and asymptotic normality of µ̂ hold.

Specifically, when π(X; θ) is the correct model for R|X, then θ̂
p−→ θ∗ = θ0, and we

have E[R{Y − m(X;β∗)}|π(X; θ0)] = E{R|π(X; θ0)}E{Y − m(X;β∗)|π(X; θ0)} due to that
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R⊥⊥Y |π(X; θ0) and R⊥⊥X|π(X; θ0). It can be checked that

d

dβ
|β=β∗E

[R{Y −m(X;β)}
E{R|π(X; θ0)}

+m(X;β)
]

=
d

dβ
|β=β∗

{
E
[
E
{R{Y −m(X;β)}

E{R|π(X; θ0)}
∣∣π(X; θ0)

}]
+ E{m(X;β)}

}

=
d

dβ
|β=β∗

[
E{Y −m(X;β)}+ E{m(X;β)}

]
= 0,

n
1
2 (µ̂− µ) = n

1
2 (Pn − P )

{ RY

π(X; θ0)

−R− π(X; θ0)

π(X; θ0)

[
E{Y −m(X;β∗)|π(X; θ0)}+m(X;β∗)

]
− µ

}
+

d

dθ
|θ=θ0E

[R{Y −m(X;β∗)}
E{R|π(X; θ)}

]
n

1
2 (θ̂ − θ0) + op(1).

We can also check that, if m(X;β) is the correct model for Y |X, then m(X; β̂)
p−→ m(X;β0) =

E(Y |X). Then

d

dθ
|θ=θ∗E

[R{Y −m(X;β∗)}
E{R|π(X; θ)}

]
=

d

dθ
|θ=θ∗E

[R{Y −m(X;β∗)}
E{R|π(X; θ)} |X

]
=

d

dθ
|θ=θ∗E

[E(R|X){E(Y |X)−m(X;β0)}
E{R|π(X; θ)} |X

]
= 0,

and n
1
2 (µ̂− µ) =

n
1
2 (Pn − P )

[ RY

E{R|π(X; θ∗)} − R− E{R|π(X; θ∗)}
E{R|π(X; θ∗} m(X;β0)− µ

]
+

d

dβ
|β=β0E

[R{Y −m(X;β)}
E{R|π(X; θ∗)} +m(X;β)

]
n

1
2 (β̂ − β0) + op(1).

When both working models are correct, then we have

n
1
2 (µ̂− µ) = n

1
2 (Pn − P )

{ RY

π(X; θ0)
− R− π(X; θ0)

π(X; θ0)
m(X;β0)− µ

}
+ op(1),

because E{R|π(X; θ0)} = π(X; θ0).

Appendix C: Weight Trimming:
We implemented the implemented the usual AIPW DR estimator after trimming the estimated
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propensity score at and smaller than 0.1. Our simulation results show that weight trimming

reduces impact of large weight and mitigates the problem of “disastrous” behavior in simulation

scenario 1. However, it may also introduce unignorable bias and lead to lower coverage prob-

ability than the nominal level in some scenarios. For example, in simulation scenario 2, when

the outcome model is incorrect but the propensity score model is correct, the bias and coverage

probability are 0.11 and 0.90 respectively for n = 200 and are 0.077 and 0.85 for n = 1000.

Performance of the trimming method heavily depends on specifics of the scenarios. One possible

reason for the difference in behaviors of the trimming method between settings 1 and 2 is that

in setting 1 the outcome model is only mildly misspecified but in setting 2 the outcome model

is more severely misspecified.
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