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Abstract: Under the assumption of missing at random, doubly robust (DR) esti-

mators are consistent when either the propensity score or the outcome model is

correctly specified. However, despite its appealing theoretic properties, it has been

show that the usual augmented inverse probability weighted (IPW) DR estima-

tor may exhibit unsatisfying behavior. We propose an alternative DR method for

mean estimation. In this method, we do not directly weight outcomes by the in-

verse of the estimated propensity scores. Instead we use a nonparametric kernel

regression to model the residuals from an outcome regression model as a function of

propensity scores. The proposed method does not suffer from the instability of the

usual IPW estimator in the event of small estimated propensities. We show that,

asymptotically, the new estimator has the double robustness property. Moreover,

we show that it is guaranteed to be more efficient than the usual augmented IPW

DR estimator when the propensity score model is correct, but the outcome model is

incorrect. Our simulation studies show that its finite-sample performance improves

upon that of existing DR estimators.

Key words and phrases: Causal inference, comparative effectiveness, inverse proba-

bility weighting, kernel regression, missing data, propensity score.

1. Introduction

Contending with missing data is a common problem in many settings. It

is accepted that not properly accounting for missing data can lead to severely

biased estimations and invalid inferences. Missing data problems have been an

area of active research (Rosenbaum and Rubin (1984); Scharfstein, Rotnitzky

and Robins (1999); Lunceford and Davidian (2004)). Much of the literature has

focused on the situation where the missingness can be assumed to be missing at

random (MAR); that is, conditional on the observed variables, the probability of

missingness does not depend on the variables that are missing (Little and Rubin

(2019)). In general, methods for dealing with missing data when MAR holds fall
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into three categories: one models the outcome as a function of covariates, one

models the probability of missingness, that is, the propensity score, as a func-

tion of covariates (Rosenbaum and Rubin (1984); Rosenbaum (1987)), or both

(Lunceford and Davidian (2004); Bang and Robins (2005)). These approaches

each have their own advantages and disadvantages in terms of bias, efficiency,

robustness, and numerical stability. In general, in methods where only the out-

come or the propensity score is modeled, a valid statistical inference depends

on the correct specification of the corresponding model, and an incorrect model

may lead to inconsistent estimations and invalid inferences. In this sense, these

methods are not robust. The so-called doubly robust (DR) methods, where both

the outcomes and the propensities are modeled, lead to consistent estimations as

long as one of the models, but not necessarily both, is correctly specified (Bang

and Robins (2005)), overcoming the issue of nonrobustness to some degree. In

addition, DR methods usually have good efficiency properties and achieve the

semiparametric efficiency bound if the outcome regression model is correct. DR

methods seem to combine the strengths of methods that model either outcomes

or propensities, at least theoretically based on asymptotic theory, and are very

appealing.

DR estimators have received a lot of attention in the literature, and many

different versions have been proposed. In an attempt to demystify double ro-

bustness, Kang and Schafer (2007) reviewed several versions of DR estimators

and compared them to alternative methods for estimating the population mean

when the outcomes are subject to missingness. They found that, although the-

oretically appealing, DR estimators may have “disastrous” performance when

some estimated propensities are small. Kang and Schafer (2007) was followed by

several discussion papers, including Robins et al. (2007). Following the work of

Kang and Schafer (2007), there has been considerable interest in improving the

usual DR estimators (Tan (2006, 2007); Cao, Tsiatis and Davidian (2009); Imai

and Ratkovic (2014); Zubizarreta (2015)), particularly, for the setting originally

designed by Kang and Schafer (2007). Most of these efforts have focused on the

problem of estimating the population mean when some responses are missing.

The methods of Tan (2006, 2007) and Cao, Tsiatis and Davidian (2009) focus on

modifying the estimation of the outcome regression model used in the augmenta-

tion term. In contrast, the methods of Imai and Ratkovic (2014) and Zubizarreta

(2015) attempt to improve performance by seeking a better and more stable way

of estimating the weight used in the augmented inverse probability (or propen-

sity) weighted (IPW) DR estimator. These methods can be viewed as modified

versions of augmented IPW methods along the line of the original DR estimator.
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Approaching the problem from a different perspective, we propose an alter-

native DR method for mean estimation, where the estimated propensity scores

are not used directly for weighting. In contrast to previous methods, we do not

change how the outcome regression model or the propensity score model/weights

are estimated. We show that, asymptotically, the new estimator has the double

robustness property, and it exhibits better efficiency and finite-sample perfor-

mance than that of existing DR estimators. Interestingly, although the proposed

method is not motivated from the perspective of an augmented IPW estimator,

we show that the estimator has a close connection with the usual augmented

IPW estimator. It has long been noted in the literature that an IPW estimator,

including the usual DR estimators, may perform unsatisfactorily in the event of

small estimated propensity scores and huge weights (Kang and Schafer (2007)).

Efforts have been made to improve the stability of IPW estimators by trimming

or smoothing using Bayesian methods (Elliott and Little (2000); Elliott (2008);

Austin and Stuart (2015)), although not in the context of DR estimators. We

show that the proposed estimator can also be viewed as a principled way to

smooth over the inverse of the estimated propensities, therefore reducing the

impact of huge weights.

In addition to the references discussed earlier, there have been numerous

studies on DR estimators and IPW methods in general. For example, Gruber and

van der Laan (2010) studied DR estimators using a targeted maximum likelihood

estimation and, Zhou, Elliott and Little (2019) used a penalized spline method to

achieve double robustness. For censored data, Chen, Lu and Zhao (2018) used a

kernel-based weighting approach to estimate the survival function of medical cost

data subject to censoring. Moreover, efforts have been made to improve IPW-

based methods by better estimating the propensity scores using machine learning

methods. For example, Pirracchio, Petersen and Van Der Laan (2015) used super

learner and other machine learning methods to estimate the propensity scores,

improving the robustness to a model misspecification of the propensity score.

2. Method

2.1. Notation and Background

Consider a study with a random sample of n units from an intended popula-

tion. Ideally, the full data are (Yi, Xi), i = 1, . . . , n, independent and identically

distributed (i.i.d.) across i, where Yi and Xi are the response and a vector of

auxiliary covariates, respectively, for subject i. Suppose the outcome is subject to

missingness. Let Ri be an indicator for observing Yi, with Ri = 1 if Yi is observed,
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and Ri = 0 if missing. Then, the actually observed data are (RiYi, Ri, Xi), i.i.d.

across i. Interest focuses on estimating the population mean, E(Y ) ≡ µ. We

assume the missingness is MAR, denoted by Y⊥⊥R|X; that is, the missingness

is independent of the outcomes given the observed covariates. When we need

to make a causal inference on the treatment effect from the observational data,

then even if the outcome variable Y is observed for all subjects, it can still be

cast as a missing data problem using the framework of counterfactual outcomes.

Hereafter, we only discuss estimating µ, recognizing that the proposed method

can be applied directly to compare the treatment effects for observational data.

Various methods are available to adjust for missingness, as reviewed by Kang

and Schafer (2007). In general, these methods involve modeling the outcome or

the missingness given covariates, or both. Specifically, the outcome regression-

based method builds a model for the outcome Y using the covariates X from the

observed data, then estimates µ using the average of the predicted values across all

subjects from the fitted model. The consistency of the outcome regression estima-

tor relies on the correct specification of the model for E(Y |X) = m(X;β). In con-

trast, another broad class of methodologies models the probability of the nonmiss-

ingness given the covariates, that is, P (R = 1|X), referred to as propensity scores.

Propensity scores can be estimated by positing, for example, a logistic regression

model that specifies P (R = 1|X) = exp(XT θ)/{1 + exp(XT θ)} ≡ π(X; θ). After

obtaining the estimated propensity scores, one can weight the contribution of

each observed outcome by the inverse of the estimated propensity score, referred

to as the IPW estimator. In propensity-score based methods, the consistency

of the estimation requires that the model for the propensity score be correctly

specified.

In a DR estimator, both the outcome and the propensity scores are modeled,

and it remains consistent if either one of the models is correctly specified Bang

and Robins (2005). Hence, the DR estimator affords protection against a mis-

specification of one of the models, a property referred to as double robustness.

The usual augmented IPW DR estimator is given by

n−1
n∑
i=1

{
RiYi
π̂i
− Ri − π̂i

π̂i
m(Xi; β̂)

}
, (2.1)

where π̂i = π(Xi; θ̂), and π(Xi; θ) and m(Xi;β) are the specified models for the

propensity and the outcome, respectively. Hereafter, we use π̂i for brevity, or

π(Xi; θ̂) if we would like to emphasize dependence on Xi and θ̂. The unknown

parameters β and θ are usually estimated using the maximum likelihood (ML)
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method. The first term in (2.1) is an IPW estimator, with the inverse of the

propensity serving as the weight, and the second part is an augmentation term.

The DR estimator also enjoys good efficiency properties. It is usually more

efficient than IPW estimators (Lunceford and Davidian (2004)). Moreover, if

m(Xi;β) is correctly specified, it has the smallest asymptotic variance among all

estimators that are consistent and asymptotically normal when the propensity

model is correct; that is, it is semiparametric efficient.

Despite the appealing theoretical properties based on asymptotics, empirical

studies show that the usual DR estimator may exhibit poor performance under

some situations in practice (Kang and Schafer (2007)). They note that the usual

DR estimator may be severely biased when both specified models are close to the

truth but are not completely correct, and may have “disastrous” performance

when some of the estimated propensities are small, even if the propensity score

model is correctly specified. Alternative DR estimators have been developed,

and some are directly targeted at improving the performance of the usual DR

estimator. For example, Kang and Schafer (2007) identified some alternative DR

estimators, and Tan (2006) studied a likelihood estimator that possesses the DR

property and may alleviate some of the problems associated with the usual DR

estimator.

As a follow-up work to Kang and Schafer (2007) and Tan (2007), Cao, Tsiatis

and Davidian (2009), abbreviated as CTD below, studied alternative DR estima-

tors that aim to improve the efficiency and robustness of existing DR estimators.

The main idea of the CTD projection method is based on the novel observation

that when the propensity score model is correct, but the outcome model is in-

correct, then the usual DR estimator coupled with the ML estimate of β does

not achieve the minimal asymptotic variance among all estimators in (2.1) with

an augmentation term m(Xi;β
∗) for any β∗. They then sought to identify an

estimator of β that would lead to an estimator of µ that is both doubly robust

and achieves the minimal asymptotic variance when the propensity score model

is correct, but the outcome model is incorrect. As a result, the corresponding

estimator would be more efficient than the usual DR estimator when propen-

sity score model is correct but outcome model is misspecified. They proposed

estimating β by solving

n∑
i=1

[
Ri
π̂i

1− π̂i
π̂i

{
mβ(Xi;β)
πθ(Xi;θ̂)
1−π̂i

}{
Yi −m(Xi;β)− cT πθ(Xi; θ̂)

1− π̂i

}]
= 0, (2.2)

where c is a vector that needs to be solved jointly with β , mβ = ∂/∂β{m(X;β)},
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and πθ(X; θ) = ∂/∂θ{π(X; θ)}. Suppose the dimensions of β and θ are p and

q, respectively. Then mβ and πθ(X; θ) are column vectors with dimensions p

and q, respectively, and both sides of (2.2) are of dimension (p+ q). Simulation

studies using the scenarios designed by Kang and Schafer (2007) and Tan (2007)

demonstrated that this method does not suffer the difficulties of the usual DR

estimators, as observed by Kang and Schafer (2007). Furthermore, it achieves

comparable or improved performance relative to that of existing methods, in-

cluding the method of Tan (2006), which is actually closely related to the CTD

method, as discussed by Cao, Tsiatis and Davidian (2009). Nevertheless, these

nice properties are again based on large sample theory, which may not necessarily

translate into good performance in practice. Taking a closer look at (2.2), the es-

timation of β in the CTD method is intertwined with the estimated propensities

π(Xi; θ̂), and huge weights are given to subjects with small π(Xi; θ̂) (propensi-

ties). Therefore, we conjecture that the good properties of the CTD estimator

when the propensity model is correct or close to correct, but the outcome model is

wrong, might be achieved at the expense of worse performance when the outcome

model is correct in finite samples.

Other efforts have been made to improve DR estimators by improving the

estimation of the weights. Imai and Ratkovic (2014) exploited the dual char-

acteristics of the propensity score as a conditional probability and a covariate

balancing score, and proposed estimating the propensity scores using the gen-

eralized method-of-moments or the empirical likelihood, which they referred to

as the covariate balancing propensity score (CBPS) method. Zubizarreta (2015)

proposed a method of directly estimating weights by finding the weights of the

minimum variance that balance the empirical distribution of the observed co-

variates, up to prespecified levels, referring to it as the stable balancing weights

(SBW) method. Both methods were applied to the augmented DR estimator

and evaluated using the Kang and Schafer (2007) scenarios by their respective

authors.

2.2. Proposed method

In contrast to previous methods, based on the usual augmented IPW frame-

work, we propose an alternative and improved DR estimator from a different

perspective. In our method, we directly address the issue of sensitivity to small

estimated propensity scores that result from the inverse propensity score weight-

ing, and our strategy is to not directly inverse weight by the propensity scores,

at least not explicitly. The proposed estimator for µ is given by
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µ̂ = n−1
n∑
i=1

[∑n
j=1Rj{Yj −m(Xj ; β̂)}K

(
(π̂j − π̂i)/hn

)∑n
j=1RjK

(
(π̂j − π̂i)/hn

) +m(Xi; β̂)

]
, (2.3)

where K(·) is a symmetric kernel function in R, hn is a bandwidth, and β̂ is the

usual estimator of β in the outcome regression method, which differs from that

used in CTD.

To offer some intuition and motivation for this estimator, we provide a heuris-

tic argument as to why the proposed estimator is expected to possess the double-

robustness property. The proposed estimator is motivated from estimating the

following quantity:

E
[
E
{
Y −m(X;β)|R = 1, π(X; θ)

}
+m(X;β)

]
. (2.4)

If π(X; θ) is the true model for the propensity score, Rosenbaum and Rubin (1984)

showed that, conditional on the propensity score, missingness is independent of

the confounders and outcomes; that is, R⊥⊥X|π(X; θ0) and Y⊥⊥R|π(X; θ0), where

θ0 is the truth such that P (R = 1|X) = π(X; θ0). It then follows that

(2.4) = E
[
E
{
Y −m(X;β)|π(X; θ0)

}
+m(X;β)

]
= E(Y )− E{m(X;β)}+ E{m(X;β)}
= E(Y ) ≡ µ,

where the first equality follows from R⊥⊥X|π(X; θ0) and Y⊥⊥R|π(X; θ0). The

above result holds regardless of whether m(X;β) is the correct model for Y . This

suggests that if the propensity score can be correctly estimated, then estimating

the quantity (2.4) may lead to a valid estimator for µ, even if the model for the

outcome is wrong.

It is also easy to see that

E
{
Y −m(X;β)|R = 1, π(X; θ)

}
= E

[
E
{
Y −m(X;β)|R = 1, X, π(X; θ)

}
|R = 1, π(X; θ)

]
. (2.5)

If m(X;β) is the correct specification of E(Y |X) = E(Y |R = 1, X), then we have

(2.5) = E
{
m(X;β)−m(X;β)|R = 1, π(X; θ)} = 0,

and as a result, the targeting quantity satisfies

(2.4) = E
{

0 +m(X;β)
}

= E(Y ) ≡ µ.
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Therefore, (2.4) is equal to the target µ if either one of the models is correct

and, if we can estimate (2.4), then this estimator is expected to be doubly ro-

bust. The proposed estimator (2.3) substitutes unknown parameters β and θ

by their estimates, and replaces the outer expectation in (2.4) by the sample

average, and E
{
Y −m(X;β)|R = 1, π(X; θ)

}
by the nonparametric Nadaraya–

Watson kernel estimator (Fan and Gijbels (1996)). Specifically, the Nadaraya–

Watson kernel estimator for E
{
Y − m(X;β)|R = 1, π(X; θ)

}
is
∑n

j=1Rj{Yj −
m(Xj ;β)}K

(
(π(Xj ; θ)− π(Xi; θ))/hn

)
/
∑n

j=1RjK
(
(π(Xj ; θ)− π(Xi; θ))/hn

)
if

β and θ are known. Under standard conditions usually assumed for K(u), includ-

ing
∫
K(u)du = 1,

∫
uK(u)du = 0, hn → 0, and nhn →∞, it can be shown that

n−1
∑n

i=1(1/hn)K((x−Xi)/hn)
p−→ fX(x) and n−1

∑n
i=1{Yi(1/hn)K((x−Xi)

/hn)} p−→ E(Y |x)fX(x), where fX(x) is the density of X. Therefore, the Nadar-

aya-Watson kernel estimator (
∑n

i=1{YiK((x−Xi)/hn)})
∑n

i=1K((x−Xi)/hn) es-

timates E(Y |x) and, similarly, one can obtain the Nadaraya–Watson kernel esti-

mator for E
{
Y −m(X;β)|R = 1, π(X; θ)

}
detailed above.

In contrast, the usual augmented IPW DR estimator, as well as the estima-

tors of CTD and some other alternatives, is based on or equivalent to directly

estimating the following quantity instead:

E

[
R{Y −m(X;β)}

π(X; θ)
+m(X;β)

]
, (2.6)

because the usual IPW DR estimator in (2.1) can be written equivalently as

n−1
n∑
i=1

[
Ri{Yi −m(Xi; β̂)}

π(Xi; θ̂)
+m(Xi; β̂)

]
. (2.7)

Comparing the quantity in (2.6) with that in (2.4), the two quantities differ in

their first terms inside the expectation. The first term inside the expectation of

(2.6) weights the residual for subjects with observed outcomes by the inverse of

his/her propensity π(X; θ). In an estimation, even though π(Xi; θ) is bounded

away from zero, the estimated π(Xi; θ) can be close to zero, putting huge weights

on those individuals. This leads to numeric instability of the estimators based on

this quantity. The proposed estimator may alleviate this issue, because propen-

sities are not used directly as weights. Finally, unlike the CTD method, the esti-

mator does not change the way β is estimated in the outcome regression model

and, therefore, we anticipate that it will not suffer from degraded performance in

finite samples when the outcome model is correctly specified.

Our discussion above focuses on explaining the difference between the pro-
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posed estimator and the various versions of augmented IPW DR estimators; that

is, they are motivated from directly estimating (2.4) or (2.7). However, taking

a closer look at the proposed estimator, we also see a connection with the aug-

mented IPW DR estimators. By interchanging the order of the summation over

i and j, the proposed estimator can be written equivalently as

µ̂ = n−1
n∑
j=1

[
Rj{Yj −m(Xj ; β̂)}

{
n∑
i=1

K
(
(π̂j − π̂i)/hn

)∑n
j=1RjK

(
(π̂j − π̂i)/hn

)}+m(Xj ; β̂)

]
.

Comparing this with the usual augmented IPW DR estimator in (2.7), we see

that the only difference between the two estimators is in the weight for Rj{Yj −
m(Xj ; β̂)}. Specifically, in the usual IPW DR estimator, the weight is directly

the inverse of the estimated propensity score 1/π(Xj ; θ̂). In contrast, the weight

in the proposed estimator is
∑n

i=1 (K
(
(π̂j − π̂i)/hn

)
/
∑n

j=1RjK
(
(π̂j − π̂i)/hn

)
),

which can be shown to converge in probability to 1/E{R|π(X; θ∗)}, where θ∗

is the limit of θ̂. When π(X; θ) is the correct model for R|X, then θ∗ is equal

to the truth, θ0, and E{R|π(X; θ∗)} is equal to π(X; θ0). In this sense, the

proposed estimator resembles an IPW DR estimator, although the motivation

for this estimator is quite different. It can be viewed as an IPW estimator in

which the propensity is being smoothed to achieve more stability, because the

weight for a particular subject now depends on all estimated propensities and

their absolute difference (or distance) with the propensity score of the subject,

instead of depending only on the propensity for a single subject. It is easier

to intuitively see how the stability is achieved by comparing (2.3) with (2.7).

For the usual DR estimator in (2.7), each Ri{Yi − m(Xi; β̂)} is weighted by

1/π(Xi; θ̂), and if the estimated propensity is close to zero, then the huge weight

on Ri{Yi −m(Xi; β̂)} leads to unstable estimate of µ. Ignoring the second term

on m(Xi; β̂), we can view this estimator as a summation of many spikes around

each observed Yi −m(Xi; β̂). For the proposed estimator in (2.3), however, for

each i, the first term is a mountain (all observed Yj −m(Xj ; β̂), for j = 1, . . . , n,

receive a positive weight) concentrated around the observed Yi −m(Xi; β̂), and

the closer π(Xj ; θ̂) becomes to π(Xi; θ̂), the larger the weight on Yj −m(Xj ; β̂)

becomes. Visually, ignoring the second term on m(Xi; β̂), the proposed estimator

is a summation of many mountains and, as a result, is less sensitive to small

estimated propensity scores.

As discussed above, one way to intuitively understand the proposed esti-

mator is that it estimates E
{
Y − m(X;β)|R = 1, π(X; θ)

}
in (2.4) using the

nonparametric Nadaraya–Watson kernel estimator. The Nadraya–Watson ker-
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nel estimator is a special case of a local polynomial estimator, with the order of

the polynomial being zero; that is, the local average kernel estimator. It is well

known in the kernel regression literature that a local linear kernel estimator (or

high-order local polynomial regression) can reduce the asymptotic bias, especially

at the boundary, relative to that of the local average estimator. Then, naturally,

one may expect that if we instead estimate E
{
Y −m(X;β)|R = 1, π(X; θ)

}
us-

ing more refined estimators, say, the local linear kernel estimator, it may lead

to better performance. However, this conjecture is not true. We implemented a

similar estimator to the proposed estimator, but replaced the Nadaraya–Watson

kernel estimator with a local linear estimator. Our simulations (not shown) show

that the performance of the version with the local linear estimator is considerably

worse across all scenarios, and the performance is very sensitive to the choice of

the bandwidth, in contrast to the proposed estimator. Therefore, we did not

pursue this estimator further.

2.3. Asymptotic results

We show in the Supplementary Material that under some mild regularity con-

ditions, if the working model for either the outcome or the propensity score is cor-

rectly specified, but not necessarily both, then µ̂ is consistent for µ, and
√
n(µ̂−µ)

converges in distribution to a normal distribution. We assume the standard regu-

larity conditions required for convergence of β̂ and θ̂ under possibly misspecified

models (Tsiatis (2007)) and for consistency and asymptotic normality of the non-

parametric kernel estimator (Fan and Gijbels (1996)). We show that µ̂ is asymp-

totically linear, and derive its influence function. Define P and Pn as a probability

measure and an empirical measure, respectively, that is, Pf(X) =
∫
f(x)P (dx)

and Pnf(X) = n−1
∑n

i=1 f(Xi), and we denote Gn = n1/2(Pn − P ). When at

least one of the working models is correctly specified, we have

n1/2(µ̂− µ) = Gn

{
E[R{Y −m(X;β∗)}|π(X; θ∗)]

E{R|π(X; θ∗)}
+
R{Y −m(X;β∗)}
E{R|π(X; θ∗)}

−RE[R{Y −m(X;β∗)}|π(X; θ∗)]

E2{R|π(X; θ∗)}
+m(X;β∗)− µ

}
+
d

dθ
|θ=θ∗E

[
R{Y −m(X;β∗)}
E{R|π(X; θ)}

]
n1/2(θ̂ − θ∗)

+
d

dβ
|β=β∗E

[
R{Y −m(X;β)}
E{R|π(X; θ∗)}

+m(X;β)

]
n1/2(β̂ − β∗) + op(1),
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where β∗ and θ∗ are the limiting values of β̂ and θ̂ respectively. Under suit-

able regularity conditions and by standard M-estimation theory, θ̂ and β̂ are

asymptotic normal. Therefore, µ̂ is asymptotically normal with mean zero.

Suppose a working logistic regression model and a linear model are specified

for the outcome and the propensity score, respectively. Then, n1/2(β̂ − β∗) =

(1/(
√
nE(XiX

T
i )))

∑n
i=1Xi(Yi−XT

i β
∗)+op(1), and n1/2(θ̂−θ∗) = (1/(

√
nE[XiX

T
i

π(Xi, θ
∗){1−π(Xi, θ

∗)}]))
∑n

i=1Xi{Ri−expit(XT
i θ

∗)}+op(1). We obtain the in-

fluence function of µ̂ and have
√
n(µ̂− µ) = Gnh(R,X, Y ;β∗, θ∗) + op(1), where

the influence function

h(R,X, Y ;β∗, θ∗)

=
E[R{Y −m(X;β∗)}|π(X; θ∗)]

E{R|π(X; θ∗)}
+
R{Y −m(X;β∗)}
E{R|π(X; θ∗)}

− RE[R{Y −m(X;β∗)}|π(X; θ∗)]

E2{R|π(X; θ∗)}
+m(X;β∗)− µ

+
d

dθ
|θ=θ∗E

[
R{Y −m(X;β∗)}
E{R|π(X; θ)}

]
X{R− π(X, θ∗)}

E[XXTπ(X, θ∗){1− π(X, θ∗)}]

+
d

dβ
|β=β∗E

[
R{Y −m(X;β)}
E{R|π(X; θ∗)}

+m(X;β)

]
X(Y −XTβ∗)

E(XXT )
.

If one or both working models are correctly specified, the influence function

can be further simplified. Specifically, if the working model for E(Y |R = 1, X) =

m(X;β) is correctly specified, the influence function h(R,X, Y ;β∗, θ∗) =

RY

E{R|π(X; θ∗)}
− R− E{R|π(X; θ∗)}

E{R|π(X; θ∗)}
m(X;β0)− µ

+
d

dβ
|β=β0

E

[
R{Y −m(X;β)}
E{R|π(X; θ∗)}

+m(X;β)

]
X(Y −XTβ0)

{E(XXT )}
.

If the model for P (R = 1|X) = π(X; θ) is correctly specified, the influence

function h(R,X, Y ;β∗, θ∗) ={
RY

π(X; θ0)
− R− π(X; θ0)

π(X; θ0)

[
E{Y −m(X;β∗)|π(X; θ0)}+m(X;β∗)

]
− µ

}
+
d

dθ
|θ=θ0E

[
R{Y −m(X;β∗)}
E{R|π(X; θ)}

]
X{R− π(X, θ0)}

E[XXTπ(X, θ0){1− π(X, θ0)}]
.

When both working models are correct, the influence function is{
RY

π(X; θ0)
− R− π(X; θ0)

π(X; θ0)
m(X;β0)− µ

}
,
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where π(X; θ0) = P (R = 1|X), and it is the semiparametric efficient influence

function. Theorems 1 and 2 summarize the results described above.

The variance of µ̂ can be estimated by n−1 times the sample variance of

ĥ(Ri, Xi, Yi; β̂, θ̂), i = 1, . . . , n, where ĥ(Ri, Xi, Yi; β̂, θ̂) is defined as above, ex-

cept that we replace all marginal expectations by the sample averages, and

all conditional expectations by the corresponding Nadaraya–Watson kernel es-

timator. For example, we replace E(XXT ), E{Ri|π(Xi; θ
∗)}, and E[Ri{Yi −

m(Xi;β
∗)}|π(Xi; θ

∗)] by n−1
∑n

j=1XjX
T
j ,
∑n

j=1RjK
(
(π̂j − π̂i)/hn

)
/
∑n

j=1K
(
(

π̂j − π̂i)/hn
)
, and

∑n
j=1Rj{Yj −m(Xj ; β̂)}K

(
(π̂j − π̂i)/hn

)
/
∑n

j=1K
(
(π̂j − π̂i)/

hn
)
, respectively.

Theorem 1. When at least one of the working models for the propensity score or

the outcome is correctly specified, then µ̂ is consistent for µ and is asymptotically

normal with an influence function defined above.

Theorem 2. When both working models for the propensity score and the outcome

are correctly specified, then µ̂ attains the semiparametric efficiency bound.

Asymptotically, the proposed estimator is equivalent to the usual DR estima-

tor when the outcome regression is correct, regardless of whether the propensity

score model is correct. As Cao, Tsiatis and Davidian (2009) commented, when

the outcome regression model is correct, it will be fruitless to attempt to further

improve efficiency; see Tsiatis and Davidian (2007) for a detailed explanation.

Therefore, we focus on the case when the propensity score model is correct, but

the outcome regression model is incorrect when discussing efficiency. For simplic-

ity, we first assume the propensity score is known and is not estimated, denoted

by π0(X). The asymptotical variance of an estimator is proportional to the vari-

ance of its influence function. Following the same argument as in Cao, Tsiatis

and Davidian (2009, p. 726), the asymptotical variance of the usual DR estima-

tor is proportional to var{RY /π0(X) − (R− π0(X))/π0(X)m(X;β∗)}, which is

equal to E{((1− π0(X))/π0(X)){Y −m(X;β∗)}2}+var(Y ), and the asymptotical

variance of the proposed estimator is proportional to

var

{
RY

π0(X)
− R− π0(X)

π0(X)

[
m(X;β∗) + E{Y −m(X;β∗)|π0(X)}

]}
= E

{
1− π0(X)

π0(X)

[
Y −m(X;β∗)− E{Y −m(X;β∗)|π0(X)}

]2}
+ var(Y ).
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The first term of the above expression is equal to

E

{
1− π0(X)

π0(X)
{Y −m(X;β∗)}2

}
+ E

{
1− π0(X)

π0(X)
E2{Y −m(X;β∗)|π0(X)}

}
−2E

{
1− π0(X)

π0(X)
{Y −m(X;β∗)}E{Y −m(X;β∗)|π0(X)}

}
.

Using E(·) = E[E{·|π0(X)}], the last term is equal to −2E{((1− π0(X))/π0(X))

E2{Y −m(X;β∗)|π0(X)}}. Therefore, the asymptotic variance of the proposed

estimator is proportional to E{((1− π0(X))/π0(X)){Y −m(X;β∗)}2}+var(Y )−
E{((1− π0(X))/π0(X))E2{Y −m(X;β∗)|π0(X)}}, which is always less than the

variance of the usual DR estimator when the outcome regression model is in-

correct. When the propensity scores are not known, but the model is correctly

specified, then the influence functions of both the original DR estimator and the

proposed one have an additional term representing the effect of estimating θ. It

is straightforward to check that these two additional terms are equal. Then, by

the same argument as above, we can show that the asymptotic variance of the

proposed estimator is that of the original DR estimator, minus a nonnegative

term. We summarize the result below.

Theorem 3. When the model for the propensity score is correct, but the model

for the outcome is misspecified, the asymptotic variance of µ̂ is no greater than

the asymptotic variance of the usual augmented IPW-based DR estimator.

4. Simulation Studies

We conducted simulation studies to evaluate the performance of the proposed

method and compare it with that of the usual augmented IPW DR estimator,

the modified DR method (referred to as the CTD method) proposed by Cao,

Tsiatis and Davidian (2009), the CBPS method (Imai and Ratkovic (2014)), and

the SBW method (Zubizarreta (2015)). For comparison, we also included the

usual outcome regression method, that is, the average of the predictions from

the outcome regression model, fitted using the observed data. For the proposed

method, the bandwidth needs to satisfy hn → 0 and nhn → ∞. To assess

how sensitive the method is to different choices of bandwidth, we implemented

it with bandwidth hn = n−1/3, n−1/4, and n−1/5, where n is the sample size.

Bootstraping with 100 bootstrap samples was used to obtain the standard errors.

We chose to use bootstrapping to obtain the standard errors for several reasons.

For example, some of the comparison methods (CBPS and SBW) do not provide

standard error estimates in the original works. Furthermore, bootstrapping allows
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one to easily account for variability in estimating propensity scores and fitting

outcome regression models, regardless of the methods used to fit the models. The

latter point is especially important, because flexible nonparametric and machine

learning methods are becoming popular in practice for modeling propensity scores

and outcomes; in this case implementing the usual standard error estimates by

directly estimating the asymptotic variance becomes rather complicated.

In the first set of simulations, we duplicated the scenario originally designed

by Kang and Schafer (2007), which has become a standard scenario under which

to compare DR estimators (Cao, Tsiatis and Davidian (2009); Zubizarreta (2015);

Imai and Ratkovic (2014)). Under this scenario, Kang and Schafer (2007) demon-

strated that when both the outcome regression model and the propensity score

model are incorrect, but nearly perfect in the sense that they look trustwor-

thy based on model diagnostics, the usual DR estimator may be severely biased

and unstable. In this scenario, Z = (Z1, . . . , Z4)
T are generated from inde-

pendent standard normal distributions, and X = (X1, . . . , X4)
T are defined as

X1 = exp(Z1/2), X2 = Z2/{1 + exp(Z1)} + 10, X3 = (Z1Z3/25 + 0.6)3, X4 =

(Z2 +Z4 + 20)2. That is, Z and X can be expressed in terms of each other. Out-

comes are generated as Y = 210 + 27.4Z1 + 13.7Z2 + 13.7Z3 + 13.7Z4 + ε, where ε

is standard normal, and the nonmissingness indicator R is generated according to

the true propensity score P (R = 1|Z) = expit(−Z1 + 0.5Z2− 0.25Z3− 0.1Z4). In

real data, the covariates seen by data analysts are X. Naturally, a data analyst

that only sees X would fit a linear regression model for Y given X, and a logis-

tic regression model for R given X. As illustrated by Kang and Schafer (2007),

although misspecified, these models would appear trustworthy and are nearly as

correct. Specifically, the misspecified outcome model is m(X;β) = βT (1, X), and

the misspecified propensity score model is π(X; θ) = expit{θT (1, X)}. As in the

previous work, we considered sample sizes n = 200 and n = 1,000.

The results for the first set of simulations are shown in Tables 1 and 2.

Under this scenario, when both working models are strictly speaking incorrect,

but are nearly perfect, the usual DR estimator is extremely unstable and has

huge variability, as demonstrated by the Monte Carlo standard deviation and the

root mean squared error. None of the other DR estimators exhibit this type of

“disastrous” behavior, with the CTD estimator performing best. The proposed

estimators perform comparably with other improved DR estimators, and the

performance is not sensitive to different choices of bandwidth. Note that when the

propensity score model is correct, but the outcome model is incorrect, the SBW

method has relatively larger bias than that of other methods and lower coverage

probability. This is not surprising, because this method controls for bias under the
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condition that the covariates are related to the outcome through a generalized

additive form, and this condition is not satisfied under this scenario. For the

CTD projection method, when n = 200 and when both the outcome regression

model and the propensity score model are misspecified, the bootstrap method

cannot reliably estimate the uncertainty, and the average standard error is much

larger than the Monte Carlo standard deviation. This appears to be a finite-

sample problem, and when n = 1,000, the bootstrap standard error performs as

expected. This phenomenon was also observed for the second set of simulations

discussed below.

The Kang and Schafer scenario was specifically constructed such that the

usual DR estimator may have “disastrous” performance. Thus, the results on

this scenario may not generalize to other scenarios. For example, the outcome

regression model, when incorrect, is only mildly misspecified and, as a result, the

outcome regression method only results in slight bias. To supplement the above

simulation study, we compared various methods under a second set of simula-

tions, in which the model misspecifications are due to ignoring some important

variables. Four covariates were generated, where X1 was generated as uniform

(0, 1), X2 as standard normal, X3 as Bernoulli (0.3), and X4 as lognormal (0,1).

Outcomes were generated according to Y = 2.5+X1/2+X2 +X3 +X4 +ε, where

ε follows a standard normal distribution, and R was generated with propensity

score expit(−1−X1/2 +X2−X3 +X4). The proportion of missingness is about

60%. In the methods considered, the misspecified outcome regression and the

propensity score models are fitted ignoring X4.

The results for the second scenario are shown in Tables 3 and 4. Both the

usual DR estimator and the proposed estimator are consistent when at least one

working model is correctly specified, offering more protection against model mis-

spefication than the outcome regression method. When both working models are

incorrect, the usual and proposed DR estimators are all biased, but do not show

extreme variability, as observed in the first scenario. Except for the situation in

which the propensity score model is correct, but the outcome regression model is

incorrect, the proposed method performs very similarly to the usual DR method.

Consistent with the results summarized in Theorem 3, when the propensity score

model is correct, but the outcome regression model is incorrect, the proposed

method is more efficient than the usual DR estimator. The relative efficiency

(the ratio of the mean squared error) of the proposed method relative to that of

the usual DR estimator is 1.50 and 1.79 for n = 200 and n = 1,000, respectively.

Again, the performance is not sensitive to different choices of bandwidth.

The CTD method exhibits unexpected results. When the sample size is
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Table 1. Simulation setting 1 (n=200). BIAS: average Monte Carlo bias; MCSD: Monte
Carlo standard deviation; RMSE: Root mean squared error; SE: average of standard
error; CP: coverage probability of 95% confidence interval. Correct or incorrect refer to
corresponding specified model (OR: outcome regression; PS: propensity score). Proposed
a, b, and c correspond to bandwidths of n−1/3, n−1/4, and n−1/5, respectively.

METHODS BIAS MCSD RMSE SE CP BIAS MCSD RMSE SE CP

OR correct, PS correct OR correct, PS incorrect

OR -0.054 2.59 2.59 2.55 0.95 -0.054 2.59 2.59 2.55 0.95

Usual DR -0.055 2.59 2.59 2.55 0.95 -0.067 2.58 2.58 2.62 0.95

CTD pj -0.049 2.60 2.60 2.64 0.95 -0.053 2.59 2.58 2.57 0.95

CBPS -0.055 2.59 2.59 2.54 0.94 -0.056 2.59 2.59 2.55 0.94

SBW -0.054 2.59 2.59 2.54 0.95 -0.055 2.59 2.59 2.55 0.95

Proposed a -0.055 2.59 2.59 2.56 0.95 -0.055 2.59 2.59 2.56 0.95

Proposed b -0.055 2.59 2.59 2.56 0.95 -0.056 2.59 2.59 2.56 0.95

Proposed c -0.055 2.59 2.59 2.56 0.95 -0.056 2.59 2.59 2.56 0.95

OR incorrect, PS correct OR incorrect, PS incorrect

OR -0.65 3.42 3.48 3.28 0.92 -0.65 3.42 3.48 3.28 0.92

Usual DR 0.27 3.53 3.54 3.48 0.95 -5.69 19.78 20.57 14.92 0.94

CTD pj -0.028 2.66 2.65 2.78 0.95 -0.85 5.01 5.09 10.71 0.996

CBPS -0.26 3.29 3.30 3.18 0.94 -2.19 3.58 4.20 3.39 0.88

SBW 1.58 3.10 3.48 3.01 0.91 -0.74 3.39 3.47 3.23 0.92

Proposed a 0.49 3.38 3.41 3.32 0.95 -1.79 3.33 3.78 3.26 0.90

Proposed b 0.56 3.29 3.33 3.23 0.94 -1.68 3.30 3.70 3.22 0.90

Proposed c 0.63 3.23 3.28 3.18 0.95 -1.56 3.28 3.63 3.20 0.90

small (n=200), compared with other methods, it has considerably larger variabil-

ity, especially when the model for the outcome regression is correct, regardless of

whether the propensity score model is correct or not. Moreover, the bootstrap

method cannot estimate the standard error well for the CTD method, and the

average of the standard error estimates is significantly greater than the corre-

sponding Monte Carlo standard deviation. Some of the surprising results are due

to the finite-sample performance. When the sample size is 1,000, we see that

the bootstrap standard error estimates for the projection method work well, and

when the outcome regression model is correct, the loss of efficiency of the CTD

method relative to that of the usual DR estimator is less. In addition, consistent

with the asymptotic results, when n=1,000, if the propensity score is correct, but

the outcome model is incorrect, the projection estimator is more efficient than

the usual estimator, but is still slightly less efficient than the proposed method.

Note that weighting the estimating equation for the outcome regression model

using the inverse of the square of the propensity score, as shown in (2.2), may
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Table 2. Simulation setting 1 (n=1,000). Entries are as in Table 1.

METHODS BIAS MCSD RMSE SE CP BIAS MCSD RMSE SE CP

OR correct, PS correct OR correct, PS incorrect

OR 0.04 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

Usual DR 0.04 1.15 1.15 1.14 0.95 0.056 1.41 1.41 1.29 0.95

CTD pj 0.04 1.15 1.15 1.15 0.95 0.041 1.15 1.15 1.15 0.95

CBPS 0.04 1.15 1.15 1.14 0.95 0.04 1.15 1.15 0.14 0.95

SBW 0.04 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

Proposed a 0.042 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

Proposed b 0.042 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

Proposed c 0.04 1.15 1.15 1.14 0.95 0.04 1.15 1.15 1.14 0.95

OR incorrect, PS correct OR incorrect, PS incorrect

OR -0.77 1.50 1.68 1.48 0.91 -0.77 1.50 1.68 1.48 0.91

Usual DR 0.11 1.65 1.65 1.55 0.95 -17.92 166.73 167.6 27.04 0.69

CTD pj 0.08 1.15 1.15 1.16 0.95 -1.36 1.28 1.87 1.35 0.83

CBPS 0.14 1.53 1.54 1.46 0.94 -3.61 2.26 4.25 1.74 0.45

SBW 1.58 1.36 2.09 1.34 0.78 -0.80 1.48 1.69 1.47 0.91

Proposed a 0.27 1.50 1.53 1.49 0.94 -2.13 1.42 2.57 1.39 0.66

Proposed b 0.35 1.44 1.48 1.44 0.94 -2.03 1.41 2.47 1.38 0.68

Proposed c 0.45 1.40 1.47 1.41 0.94 -1.89 1.40 2.35 1.38 0.71

lead to quite unstable estimates of the parameters in the outcome regression

model, which may explain the unsatisfactory finite-sample performance of the

CTD method. Unlike scenario 1, where the SBW method shows relatively larger

bias, the SBW method seems to have the best performance under scenario 2.

This is expected from proposition 4.1 in (Zubizarreta (2015)), because in sce-

nario 2, the covariates have an additive effect on the outcomes. Compared with

other methods, CBPS exhibits relatively larger bias and a lower coverage prob-

ability when the propensity score model is correct, but the outcome regression

model is incorrect. Overall, the proposed methods have comparable or superior

performance in all cases.

Finally, we also implemented the usual augmented IPW DR estimator after

trimming the estimated propensity score at and smaller than 0.1. The results

and a discussion are given in the Supplementary Material.

5. Discussion

Our work follows those of Tan (2006, 2007); Robins et al. (2007); Cao, Tsiatis

and Davidian (2009); Imai and Ratkovic (2014); Zubizarreta (2015), and others,

in an effort to improve the original DR estimators so that they do not exhibit the
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Table 3. Simulation setting 2 (n=200). Entries are as in Table 1.

METHODS BIAS MCSD RMSE SE CP BIAS MCSD RMSE SE CP

OR correct, PS correct OR correct, PS incorrect

OR 0.003 0.18 0.18 0.18 0.94 0.003 0.18 0.18 0.18 0.94

Usual DR 0.003 0.20 0.20 0.20 0.94 0.003 0.19 0.19 0.18 0.94

CTD pj 0.011 0.50 0.50 1.3 0.997 0.006 0.28 0.28 0.45 0.99

CBPS 0.003 0.19 0.19 0.19 0.94 0.003 0.18 0.18 0.18 0.94

SBW 0.003 0.18 0.18 0.18 0.93 0.003 0.18 0.18 0.18 0.94

Proposed a 0.002 0.20 0.20 0.19 0.93 0.003 0.19 0.18 0.18 0.95

Proposed b 0.002 0.19 0.19 0.19 0.93 0.003 0.18 0.18 0.18 0.94

Proposed c 0.002 0.19 0.19 0.18 0.93 0.002 0.18 0.18 0.18 0.94

OR incorrect, PS correct OR incorrect, PS incorrect

OR 0.54 0.23 0.58 0.22 0.33 0.54 0.23 0.58 0.22 0.33

Usual DR 0.023 0.24 0.24 0.27 0.94 0.56 0.25 0.61 0.24 0.36

CTD pj 0.032 0.27 0.27 0.63 0.98 0.56 0.40 0.69 0.69 0.89

CBPS 0.10 0.21 0.23 0.22 0.92 0.55 0.24 0.60 0.24 0.36

SBW 0.004 0.18 0.18 0.18 0.94 0.54 0.23 0.59 0.22 0.35

Proposed a 0.029 0.20 0.20 0.20 0.94 0.55 0.25 0.60 0.24 0.36

Proposed b 0.038 0.20 0.20 0.19 0.94 0.55 0.24 0.60 0.23 0.35

Proposed c 0.048 0.19 0.20 0.19 0.94 0.55 0.24 0.60 0.23 0.33

“disastrous” behaviors observed by Kang and Schafer (2007), but do enjoy the

appealing double-robustness property.

As is clear from (4), the proposed estimator is motivated from the usual out-

come regression approach. However, instead of averaging the predictors from the

fitted outcome regression model alone, we further model the expectation of the

residuals from the outcome regression model, conditional on the propensity scores,

and take an average of the predictions from the residual model. In contrast to the

usual augmented IPW DR estimator, where the inverses of the propensity scores

are used as weights, in the proposed approach, the propensity score is viewed as

a predictor and is conditioned on. Because of this, the proposed method does not

suffer from the instability problem in the presence of some very small estimated

propensity scores. In terms of stability and bias, our simulation studies show

that the proposed estimator behaves similarly to the outcome regression method,

an estimator that is typically thought to be stable. In the Kang and Schafer

(2007) setting, the usual DR estimator exhibits extreme variability when both

working models are only mildly misspecified. However, unlike the outcome re-

gression method, the proposed estimator enjoys the double-robustness property,

as shown by asymptotic theory and simulation studies. Interestingly, although
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Table 4. Simulation setting 2 (n=1,000). Entries are as in Table 1.

METHODS BIAS MCSD RMSE SE CP BIAS MCSD RMSE SE CP

OR correct, PS correct OR correct, PS incorrect

OR -0.002 0.080 0.080 0.078 0.95 -0.002 0.080 0.080 0.078 0.95

Usual DR -0.001 0.09 0.09 0.086 0.93 -0.001 0.083 0.082 0.080 0.94

CTD pj 0.0002 0.10 0.10 0.11 0.96 -0.001 0.10 0.10 0.097 0.93

CBPS -0.001 0.087 0.087 0.083 0.94 -0.001 0.082 0.082 0.079 0.95

SBW -0.002 0.080 0.080 0.078 0.94 -0.002 0.080 0.080 0.078 0.95

Proposed a -0.002 0.087 0.087 0.082 0.94 -0.001 0.083 0.083 0.080 0.94

Proposed b -0.002 0.085 0.085 0.081 0.94 -0.001 0.082 0.081 0.079 0.94

Proposed c -0.002 0.084 0.084 0.081 0.94 -0.001 0.081 0.081 0.079 0.94

OR incorrect, PS correct OR incorrect, PS incorrect

OR 0.54 0.10 0.55 0.10 0 0.54 0.10 0.55 0.10 0

Usual DR -0.0004 0.12 0.12 0.11 0.93 0.56 0.11 0.75 0.11 0.00

CTD pj 0.009 0.096 0.096 0.095 0.94 0.56 0.12 0.57 0.12 0.002

CBPS 0.036 0.103 0.109 0.095 0.91 0.56 0.11 0.57 0.10 0.001

SBW -0.0003 0.080 0.080 0.078 0.95 0.55 0.10 0.55 0.10 0.001

Proposed a 0.006 0.088 0.089 0.086 0.94 0.56 0.11 0.57 0.11 0

Proposed b 0.013 0.086 0.087 0.084 0.94 0.56 0.11 0.57 0.10 0

Proposed c 0.021 0.085 0.088 0.083 0.93 0.56 0.11 0.57 0.10 0

the proposed estimator is not developed within the framework of augmented

inverse propensity weighted estimators, asymptotically, it has an influence func-

tion that belongs to the class of augmented IPW estimators. To the best of our

knowledge, this is the first time such a connection has been established explic-

itly. Because of the connection with augmented IPW estimators, an alternative

way to understand the proposed method is to view it as an augmented IPW

estimator with smoothed weights. Although this perspective offers an intuitive

way to understand the proposed estimator, such a connection is not obvious,

and it would be difficult to directly come up with ways to smooth over weights.

Quite interestingly, although the proposed estimator is not developed from the

the perspective of improving efficiency, it enjoys a nice property similar to that

of Cao, Tsiatis and Davidian (2009). Specifically, we show by asymptotic theory

and simulations that the proposed estimator is more efficient than the usual DR

estimator when the outcome regression model is incorrect, but the propensity

score model is correct, and the improvement in efficiency can be considerable,

as demonstrated by our simulations. In terms of performance in finite samples,

our simulation studies show that, overall, it has quite nice and stable perfor-

mance under different sample sizes and across scenarios, whereas other existing
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modified DR estimators may exhibit relatively large bias and/or less satisfactory

finite-sample performance. Finally, we comment that the proposed method is

very easy to implement; example code for implementing the method is available

at https://github.com/MinZhangUMBiostat/DoubleRobust.

Supplementary Material

In the online Supplementary Material, we provide proofs for the asymptotic

results described in Section 2.3, and briefly summarize the simulation results

using the trimming method.
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