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Abstract: Integrating the summary statistics from a genome-wide association study

and expression quantitative trait loci data provides a powerful way of identifying

genes with expression levels that are potentially associated with complex diseases.

We introduce a parameter called T -score that quantifies the genetic overlap be-

tween a gene and the disease phenotype based on the summary statistics, based

on the mean values of two Gaussian sequences. Specifically, given two independent

samples xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2), the T -score is defined as
∑n

i=1 |θiµi|,
a nonsmooth functional, that characterizes the number of shared signals between

two absolute normal mean vectors |θ| and |µ|. Using approximation theory, esti-

mators are constructed and shown to be minimax rate-optimal and adaptive over

various parameter spaces. Simulation studies demonstrate the superiority of the

proposed estimators over existing methods. Lastly, the method is applied to an

integrative analysis of heart failure genomics data sets and we identify several genes

and biological pathways that are potentially causal to human heart failure.

Key words and phrases: Approximation theory, eqtl, gwas, minimax lower bound,

non-smooth functional.

1. Introduction

1.1. Integrating summary data from genome-wide association studies

and expression quantitative trait loci studies

Integrative genomics aims to integrate various biological data sets for the

systematic discovery of a genetic basis that underlies and modifies a human dis-

ease (Giallourakis et al. (2005). To realize its full potential in genomic research,

methods are needed that exhibit both computational efficiency and a theoretical

guarantee for such integrative analyses. This study proposes a method that com-

bines data sets from genome-wide association studies (gwass) and expression

quantitative trait loci (eqtl) studies in order to identify genetically regulated

disease genes. Furthermore, we provide an integrative view of the underlying bi-
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ological mechanism of complex diseases, such as heart failure. gwas results have

revealed that the majority of single nucleotide polymorphisms (snps) associated

with a disease lie in noncoding regions of the genome (Hindorff et al. (2009)).

These snps likely regulate the expression of a set of downstream genes that may

have effects on diseases (Nicolae et al. (2010)). On the other hand, eqtl studies

measure the association between both cis- and trans- snps and the expression

levels of genes, which characterizes how genetic variants regulate transcriptions.

A key next step in human genetic research is to explore whether these intermedi-

ate cellular level eqtl signals are located in the same loci (“colocalize”) as gwas

signals and potentially mediate the genetic effects on disease, as well as finding

disease genes with eqtl that overlap significantly with the set of loci associated

with the disease (He et al. (2013)).

This study focuses on an integrative analysis of the summary statistics of

gwas and eqtl studies performed on possibly different sets of subjects. Ow-

ing to the privacy and confidentiality concerns of gwas/eqtl participants, raw

genotype data are often not available. Instead, most published papers provide

summary statistics that include single snp analysis results, such as the estimated

effect size, its p-value, and the minor allele frequency. Based on these summary

statistics, we propose a method that identifies potential disease genes by mea-

suring their genetic overlaps with the disease. In particular, we propose a gene-

specific measure, the T -score, that characterizes the total number of simultaneous

snp signals that share the same loci in both gwas and eqtl studies of relevant

normal tissues. Such a measure enables us to prioritize genes with expression

levels that may underlie and modify human disease (Zhao et al. (2017)).

Treating snp-specific gwas and eqtl summary z-score statistics (as obtained

for linear or logistic regression coefficients) as two independent sequences of Gaus-

sian random variables, we define the T -score as the sum of the product of the

absolute values of two normal means over a given set of n snps. Specifically, for

any individual gene g, we denote xgn as the vector of z-scores from an eqtl study,

and yn as the vector of z-scores from a gwas. We assume xgn ∼ N(θg,Σ1) and

yn ∼ N(µ,Σ2), for some θg, µ ∈ Rn, and covariance matrices Σ1,Σ2 ∈ Rn×n

with unit diagonals. The T -score for gene g is then defined as

T -score(g) =

n∑
i=1

|θgi µi|, (1.1)

where the summation is over a given set of n snps. The T -score quantifies the

number of simultaneous signals contained in two Gaussian mean vectors, regard-
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less of the directions of the signals. Intuitively, a large T -score would possibly re-

sult from a large number of contributing components i with means θgi and µi that

are simultaneously large in absolute values. The supports (nonzero coordinates)

of the mean vectors θ (hereafter, we omit its dependence on g for simplicity) and

µ are assumed to have sparse overlaps, because it has been observed that, for a

relatively large set of snps, only a small subset are associated with both a disease

and gene expression (He et al. (2013)). After proper normalizations that account

for study sample sizes, the number of snps, and effect sizes (see Section 2.5), we

estimate the T -scores for all of the genes using summary statistsics. This enables

us to identify and prioritize genetically regulated candidate disease genes. Fur-

thermore, the T -scores can be used in a gene set enrichment analysis to identify

disease-associated gene sets and pathways, or to quantify the genetic sharing be-

tween different complex traits using the gwas summary statistics (Bulik-Sullivan

et al. (2015)).

1.2. Justification of the absolute inner product

The T -score
∑n

i=1 |θiµi| measures the overall signal overlap, regardless of

the directions of the individual signal components. Although there are other

quantities, such as
∑n

i=1 θ
2
i µ

2
i , that achieve a similar purpose, the T -score is

closely related to the genetic correlation or genetic relatedness widely used in the

genetic literature (Bulik-Sullivan et al. (2015)).

Suppose y and w are two traits, and for a given snp with genotype score x, the

marginal regression functions yi = αx+xiβx+ εi and wi = ηx+xiγx+ δi hold for

some coefficients (αx, βx) and (ηx, γx), respectively, where εi
i.i.d.∼ N(0, σ2

x1) and

δi
i.i.d.∼ N(0, σ2

x2), for i = 1, 2, . . . , N observations. For gwas and eqtl data, one

can treat y as a phenotype of interest and w as the expression level of a gene. In

the above models, xiβx and xiγx are the sample-specific marginal genetic effects

due to the snp x, and one can calculate their sample covariance as

Covx =
1

N

N∑
i=1

(xiβx − x̄βx)(xiγx − x̄γx) = βxγx ·
1

N

N∑
i=1

(xi − x̄)2, (1.2)

where x̄ = N−1
∑N

i=1 xi. On the other hand, suppose for simplicity that the noise

variances σ2
x1 and σ2

x2 are known. Then the z-scores based on the least square

estimators β̂x and γ̂x satisfy

Zx1 =
β̂x

σx1/
√∑N

i=1(xi − x̄)2

∼ N

 βx

σx1/
√∑N

i=1(xi − x̄)2

, 1


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and

Zx2 =
γ̂x

σx2/
√∑N

i=1(xi − x̄)2

∼ N

 γx

σx2/
√∑N

i=1(xi − x̄)2

, 1

 .

The product of the mean values of the above z-scores satisfies

EZx1EZx2 =
βxγx

σx1σx2/
∑N

i=1(xi − x̄)2
=

Covx
σx1σx2

. (1.3)

Therefore, in terms of the Gausssian sequence model considered in this paper,

the T -score is a parameter measuring the sum of absolute normalized sample

covariances between the marginal genetic effects across a set of n snps; that is,

for a set S of snps, the corresponding T -score satisfies

T -score =
∑
x∈S
|EZx1EZx2| =

∑
x∈S

|Covx|
σx1σx2

, (1.4)

which measures the overall simultaneous genetic effect of the snps in S.

1.3. Related works

Statistically, an estimation of the T -score involves estimating a nonsmooth

functional, the absolute value function, of Gaussian random variables. Unlike

estimating smooth functionals such as linear or quadratic functionals (Ibragimov

and Khas’minskii (1985); Donoho and Nussbaum (1990); Fan (1991); Efromovich

and Low (1994); Cai and Low (2005, 2006)), where some natural unbiased estima-

tors are available, much less is known about estimating nonsmooth functionals.

Using approximation theory, Cai and Low (2011) established the minimax risk

and constructed a minimax optimal procedure for estimating a nonsmooth func-

tional. More recently, this idea has been adapted to statistical information theory

to estimate nonsmooth functionals, such as the Rényi entropy, support size, and

L1-norm (Jiao et al. (2015); Jiao, Han and Weissman (2016); Wu and Yang (2016,

2019); Acharya et al. (2016)). In particular, Collier, Comminges and Tsybakov

(2020) obtained sharp minimax rates for estimating the Lγ-norm for γ ≤ 1 under

a single sparse Gaussian sequence model, where the optimal rates are achieved

by estimators that depend on knowledge of the underlying sparsity. Nonethe-

less, how to estimate the absolute inner product of two Gaussian mean vectors

(T -score) with a sparse overlap as adaptively as possible remains unknown.

In the statistical genetics and genomics literature, several approaches have

been proposed for integrating gwas and eqtl data sets. Under the colocalization

framework, methods such as those of Nica et al. (2010) and Giambartolomei et al.
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(2014) were developed to detect colocalized snps. However, these methods do

not directly identify the potential causal genes. Under the transcriptome-wide

association study (TWAS) framework, Zhu et al. (2016) proposed a summary

data-based Mendelian randomization method for causal gene identification, by

posing several structural causality assumptions. Gamazon et al. (2015) devel-

oped a gene-based association method called PrediXcan that directly tests the

molecular mechanisms through which a genetic variation affects a phenotype.

Nevertheless, there is still a need for a quantitative measure of the genetic shar-

ing between the genes and the disease that can be estimated from gwas/eqtl

summary statistics.

As a related, but different quantity, the genetic covariance ρ, proposed by

Bulik-Sullivan et al. (2015), as a measure of the genetic sharing between two

traits, can be expressed using our notation as ρ =
∑n

i=1 θiµi. In addition to the

difference due to the absolute value function, in the original definition of genetic

covariance ρ, the mean vectors θ and µ represent the conditional effect sizes (i.e.,

conditional on all other snps in the genome). In contrast, the mean vectors in our

T -score correspond to the marginal effect sizes, making them directly applicable

to the standard gwas/eqtl summary statistics. In addition, unlike the linkage

disequilibrium (LD) score regression approach considered in Bulik-Sullivan et al.

(2015), our proposed method takes advantage of the fact that the support overlap

between θ and µ is expected to be very sparse.

1.4. Main contributions

We propose an estimator of the T -score, based on the idea of thresholding

and truncating the best polynomial approximation estimator. To the best of

our knowledge, this is the first result related to the estimation of the absolute

inner product of two Gaussian mean vectors. Under the framework of statistical

decision theory, the minimax lower bounds are obtained, and we show that our

proposed estimators are minimax rate-optimal over various parameter spaces. In

addition, our results indicate that the proposed estimators are locally adaptive to

the unknown sparsity level and the signal strength (Section 2). Our simulation

study shows the strong empirical performance and robustness of the proposed

estimators in various settings, and provides guidelines for using our proposed

estimators in practice (Section 3). An analysis of gwas and eqtl data sets of

heart failure using the proposed method identifies several important genes that

are functionally relevant to the etiology of human heart failure (Section 4).
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2. Minimax Optimal Estimation of T -score

2.1. Minimax lower bounds

We start by establishing the minimax lower bounds for estimating the T -score

over various parameter spaces. Throughout, we denote T (θ, µ) =
∑n

i=1 |θiµi|. For

a vector a = (a1, . . . , an)> ∈ Rn, we define ‖a‖∞ = max1≤j≤n |ai|. For sequences

{an} and {bn}, we write an . bn or bn & an if there exists an absolute constant

C such that an ≤ Cbn, for all n, and write an � bn if an . bn and an & bn.

For both practical and theoretical interest, we focus on the class of mean

vector pairs (θ, µ) with only a small fraction of support overlaps. Specifically,

for any s < n, we define the parameter space for (θ, µ) as D(s) = {(θ, µ) ∈
Rn × Rn : |supp(θ) ∩ supp(µ)| ≤ s}. Intuitively, in addition to the sparsity s,

the difficulty of estimating T (θ, µ) should also rely on the magnitudes of the

mean vectors θ and µ and the covariance matrices Σ1 and Σ2. To this end, we

define the parameter space for (θ, µ,Σ1,Σ2) as D∞(s, Ln) =
{

(θ, µ,Σ1,Σ2) :

(θ, µ) ∈ D(s),max(‖θ‖∞, ‖µ‖∞) ≤ Ln,Σ1 = Σ2 = In
}

, where both s and Ln
can growth with n. In particular, to construct estimators that are as adaptive

as possible, and to avoid unnecessary complexities of extra logarithmic terms,

we calibrate the sparsity s � nβ, for some 0 < β < 1. Throughout, we

consider the normalized loss function as the squared distance scaled by n−2,

and define the estimation risk for some estimator T̂ as R(T̂ ) = (1/n2)E(T̂ −
T (θ, µ))2. To simplify our statement, we define the rate function ψ(s, n) =

min
{

log
(
1 + (n/s2)

)
, L2

n

}
+ min{log s, L2

n}/log2 s. The following theorem estab-

lishes the minimax lower bound over D∞(s, Ln).

Theorem 1. Let xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2) be multivariate Gaussian

random vectors, where (θ, µ,Σ1,Σ2) ∈ D∞(s, Ln). Then,

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) &
L2
ns

2ψ(s, n)

n2
, (2.1)

where T̂ is any estimator based on (xn,yn).

From the above theorem and the definition of the rate function ψ(s, n), when

β ∈ (0, 1/2), (2.1) becomes

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) &
L2
ns

2

n2
min{log n,L2

n}, (2.2)

when β ∈ (1/2, 1), we have
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inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) &
L2
ns

2

n2 log2 n
min{log n,L2

n}, (2.3)

and when β = 1/2, we have inf T̂ sup(θ,µ,Σ1,Σ2)∈D∞(s,Ln)R(T̂ ) & L2
ns

2/n2.

2.2. Optimal estimators of the T -score using a polynomial approxima-

tion

In general, the proposed estimators are based on the idea of an optimal esti-

mation of the absolute value of normal means, as studied by Cai and Low (2011).

They applied the best polynomial approximation of the absolute value function

to obtain the optimal estimator and the minimax lower bound. Specifically, they

defined the 2K-degree polynomial GK(x) = (2/π)T0(x) + (4/π)
∑K

k=1(−1)k+1(

T2k(x)/(4k2 − 1)) ≡
∑K

k=0 g2kx
2k, where Tk(x) =

∑[k/2]
j=0 (−1)j(k/(k − j))

(
k−j
j

)
2k−2j−1xk−2j are Chebyshev polynomials. Then, for any X ∼ N(θ, 1), if Hk

are Hermite polynomials with respect to the standard normal density φ such

that dkφ(y)/dyk = (−1)kHk(y)φ(y), the estimator based on S̃K(X) ≡
∑K

k=0

g2kM
−2k+1
n H2k(X) for some properly chosen K and Mn has some optimality

properties for estimating |θ|. This important result motivates our construction

of the optimal estimators of the T -score.

We begin by considering the setting where xn = (x1, . . . , xn)> ∼ N(θ, In) and

yn = (y1, . . . , yn)> ∼ N(µ, In). To estimate T (θ, µ), we first split each sample

into two copies, one for testing, and the other for the estimation. Specifically,

for xi ∼ N(θi, 1), we generate xi1 and xi2 from xi by letting zi ∼ N(0, 1) and

setting x′i1 = xi + zi and x′i2 = xi− zi. Let xil = x′il/
√

2, for l = 1, 2. Then, xil ∼
N(θ′i, 1), for l = 1, 2 and i = 1, . . . , n, with θ′i = θi/

√
2. Similarly, we construct

yil ∼ N(µ′i, 1), for l = 1, 2 and i = 1, . . . , n, with µ′i = µi/
√

2. Because T (θ, µ) =

2T (θ′, µ′), estimating T (θ, µ) using {xi, yi}ni=1 is equivalent to estimating T (θ′, µ′)

using {xil, yil}ni=1, l = 1, 2.

In light of the estimator S̃K(X), we consider a slightly adjusted statistic

SK(X) =
∑K

k=1 g2kM
−2k+1
n H2k(X), and define its truncated version δK(X) =

min{SK(X), n2}, with Mn = 8
√

log n and K ≥ 1 to be specified later. The

above truncation is important in reducing the variance of δK(X). By the sample

splitting procedure, we construct an estimator of |θ′i| as

V̂i,K(xi) = δK(xi1)I(|xi2| ≤ 2
√

2 log n) + |xi1|I(|xi2| > 2
√

2 log n),

and a similar estimator of |µ′i| as V̂i,K(yi). To further exploit the sparse structure,
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we also consider their thresholded version,

V̂ S
i,K(xi) = δK(xi1)I(

√
2 log n < |xi2| ≤ 2

√
2 log n) + |xi1|I(|xi2| > 2

√
2 log n),

as an estimator of |θ′i| and, similarly, V̂ S
i,K(yi) for |µ′|. Intuitively, both V̂i,K(xi)

and V̂ S
i,K(xi) are hybrid estimators: V̂i,K(xi) is a composition of an estimator

based on a polynomial approximation designed for small to moderate observa-

tions (less than 2
√

2 log n in absolute value) and the simple absolute value esti-

mator applied to large observations (larger than 2
√

2 log n in absolute value). In

contrast, V̂ S
i,K(xi) has an additional thresholding procedure for small observations

(less than
√

2 log n in absolute value). Consequently, we propose two estimators

of T (θ, µ), namely,

T̂K = 2

n∑
i=1

V̂i,K(xi)V̂i,K(yi), (2.4)

as the hybrid nonthresholding estimator, and

T̂SK = 2

n∑
i=1

V̂ S
i,K(xi)V̂

S
i,K(yi) (2.5)

as the hybrid thresholding estimator. Both estimators rely on K, a tuning pa-

rameter to be specified later.

2.3. Theoretical properties and minimax optimality

The following theorem provides the risk upper bounds of T̂K and T̂SK over

D∞(s, Ln).

Theorem 2. Let xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2) be multivariate Gaussian

random vectors with (θ, µ,Σ1,Σ2) ∈ D∞(s, Ln) and s � nβ. Then,

1. for any β ∈ (0, 1) and K being any finite positive integer, we have

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂SK) .
(L2

n + log n)s2 log n

n2
; (2.6)

if, in addition, Ln ≤ (
√

2− 1)
√

log n, then

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂SK) .
s2L4

n

n2
+

log2 n

n5/2
+
L2
n log n

n2
; (2.7)

2. for any β ∈ (1/2, 1) and K = r log n, for some 0 < r < (2β − 1)/12, we
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1

0 1/2 1

Figure 1. A graphical illustration of the regions where the proposed estimators are minimax optimal

and adaptive. Here, T̂S
K has K being any finite positive integer, and T̂K has K = r logn, for some

0 < r < δ/6.

have

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂K) .
(L2

n + 1/ log n)s2

n2 log n
. (2.8)

Over the sparse region β ∈ (0, 1/2), the risk upper bounds (2.6) and (2.7)

along with the minimax lower bound (2.2) implies that T̂SK , with K being any

finite positive integer, is minimax rate-optimal over D∞(s, Ln) when Ln & 1,

where the minimax rate is

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) � L2
ns

2

n2
min{log n,L2

n}. (2.9)

When Ln . 1, the problem is less interesting, because in this case, the trivial

estimator zero attains the minimax rate L4
ns

2/n2. Over the dense region β ∈
(1/2, 1), the nonthresholding estimator T̂K , with K = r log n for some small r, is

minimax rate-optimal over D∞(s, Ln), for Ln &
√

log n, where the minimax rate

is

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̂ ) � L2
ns

2

n2 log n
. (2.10)

In both cases, the tuning parameter K plays an important role in controlling

the bias–variance trade-off. An important consequence of our results concerns

the local adaptivity of T̂K and T̂SK with respect to s and Ln. Specifically, for any

δ > 0, the estimator T̂K with K = r log n, for some 0 < r < δ/6, is simultaneously

rate-optimal for any Ln &
√

log n and any β ∈ (1/2+δ, 1), whereas the estimator

T̂K , with K being any finite positive integer, is simultaneously rate-optimal for

any Ln & 1 and β ∈ (0, 1/2); see Figure 1.
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Unfortunately, even with appropriate choices of K, neither T̂SK nor T̂K is

simultaneously optimal across all β ∈ (0, 1). However, because the difference

between the optimal rates of convergence between (2.9) and (2.10) is only a

factor of log n, in practice, even when β ∈ (1/2, 1), the thresholding estimator

T̂SK performs just as well as the nonthresholding estimator T̂K . See Section 3 for

detailed numerical studies.

2.4. Sparse estimation using simple thresholding

According to our previous analysis, if the parameter space is very sparse,

that is, β ∈ (0, 1/2), the proposed estimator T̂SK is minimax optimal if we choose

K as any constant positive integer. In other words, any constant degree polyno-

mial approximation suffices for the optimal estimation of T (θ, µ), including the

constant function. Thus in this case, the polynomial approximation is essentially

redundant for our purpose.

In light of the above observation, we consider the simple thresholding esti-

mator T̃ = 2
∑n

i=1 Ûi(xi)Ûi(yi), where Ûi(xi) = |xi1|I(|xi2| > 2
√

2 log n). Our

next theorem obtains the risk upper bound of T̃ over D∞(s, Ln), which along

with (2.2) from Theorem 1, shows that T̃ is also minimax optimal and adaptive

over any sparsity level β ∈ (0, 1/2) and Ln & 1.

Theorem 3. Let xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2) be multivariate Gaussian

random vectors with (θ, µ,Σ1,Σ2) ∈ D∞(s, Ln). Then,

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̃ ) .
(L2

n + log n)s2 log n

n2
. (2.11)

If, in addition, Ln ≤
√

2 log n, then

sup
(θ,µ,Σ1,Σ2)∈D∞(s,Ln)

R(T̃ ) .
s2L4

n

n2
+

log2 n

n3
+
L2
n log n

n2
. (2.12)

Because our simple thresholding estimator T̃ completely drops the polyno-

mial components in T̂SK , its variance is significantly reduced. As a result, we find

that as long as max(‖θ‖∞, ‖µ‖∞) ≤
√
n, the condition Σ1 = Σ2 = In can be

removed without changing the rate of convergence. To this end, we define the

enlarged parameter space

D∞0 (s, Ln) =

{
(θ, µ,Σ1,Σ2) :

(θ, µ) ∈ D(s),max(‖θ‖∞, ‖µ‖∞) ≤ Ln,
Σ1,Σ2 � 0,Σ1 and Σ2 have unit diagonals.

}
.
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In particular, because Σ1 and Σ2 have unit diagonals, the sample splitting proce-

dure (Section 2.1) still applies, which leads only to a 1/2-scaling of the off-diagonal

entries of the covariance matrices.

Theorem 4. Let xn ∼ N(θ,Σ1) and yn ∼ N(µ,Σ2), where (θ, µ,Σ1,Σ2) ∈
D∞0 (s, Ln) and Ln .

√
n. Then, we have

sup
(θ,µ,Σ1,Σ2)∈D∞

0 (s,Ln)
R(T̃ ) .

(L2
n + log n)s2 log n

n2
. (2.13)

By definition, we have D∞(s, Ln) ⊂ D∞0 (s, Ln). It then follows from Theo-

rems 1 and 4 that for any β ∈ (0, 1/2) and Ln .
√
n,

inf
T̂

sup
(θ,µ,Σ1,Σ2)∈D∞

0 (s,Ln)
R(T̂ ) � s2L2

n

n2
·min{log n,L2

n}, (2.14)

where the minimax optimal rate can be attained by T̃ when Ln ≥
√

log n, and

by the trivial estimator zero when Ln <
√

log n. This establishes the mini-

max optimality and adaptivity of T̃ over D∞0 (nβ, Ln), for any β ∈ (0, 1/2)

and Ln &
√

log n. This result confirms an important advantage of T̃ over T̂SK ,

namely, its guaranteed theoretical performance over arbitrary correlation struc-

tures, which complies with the fact that in many applications the observations are

not necessarily independent. For further discussions on estimations with noniden-

tity covariances or unknown covariances, see Section S5.2 of the Supplementary

Material.

2.5. Normalization, LD and the use of the T -score

Dealing with ld among the snps (Reich et al. (2001); Daly et al. (2001);

Pritchard and Przeworski (2001)) is essential in any genetic studies. In this

study, we follow Bulik-Sullivan et al. (2015) and propose using the normalized

T -score

Normalized T -score(g) =

∑n
i=1 |θ

g
i µi|

‖θg‖2‖µ‖2
as a measure of the genetic overlap between gene g and the outcome disease.

In particular, the estimation of the `2 norms ‖θg‖2 and ‖µ‖2, or in our context,

the snp-heritability of the traits (Yang et al. (2010)), can be easily accomplished

using summary statistics. As a result, every normalized T -score lies between zero

and one, which is scale invariant (e.g., invariance to sample sizes and snp effect

sizes) and comparable across many different genes or studies. In addition, as

argued by Bulik-Sullivan et al. (2015), the normalized T -score is less sensitive to



1038 MA, CAI AND LI

the choice of the n-snp sets.

Moreover, in Theorem 4, we show that the simple thresholding estimator

T̃ does not require the independence of the z-scores, which theoretically guar-

antees its applicability in the presence of an arbitrary ld structure among the

snps. However, our theoretical results concerning T̂K and T̂SK rely on such an

independence assumption. In our simulation studies, we found that the empir-

ical performance (including optimality) of T̂K and T̂SK is not likely affected by

the dependence due to the ld structure. As a result, our proposed estimation

method, although partially analyzed under the independence assumption, can be

directly applied to the summary statistics, without specifying the underlying ld

or covariance structure.

The T -score can be used to identify disease genes and pathways using gwas

and eqtl data. For each gene, we estimate the T -score using our proposed

estimators and the vectors of z-scores from the gwas and eqtl studies. Af-

ter obtaining the estimated T -scores for all genes and the corresponding snp-

heritability, we rank the genes by the order of their normalized T -scores. As a

result, genes with the highest ranks are considered important in providing in-

sights into the biological mechanisms of a disease. For a gene set or pathway

analysis, we obtain the normalized T -scores Tj , for 1 ≤ j ≤ J , for a given

gene set S, and then calculate the Kolmogorov–Smirnov test statistic, defined

as supt |(1/k)
∑

j∈S I(Tj ≤ t) − (1/k′)
∑

j∈Sc I(Tj ≤ t)|, where k and k′ are the

numbers of genes in S and Sc, respectively. For a given gene set, the significance

of this test implies that the gene set S is enriched by genes that share similar

genetic variants to those for the disease of interest, suggesting their relevance to

the etiology of the disease. See Section 4 for detailed applications.

3. Simulation Studies

This section demonstrates and compares the empirical performance of our

proposed estimators and some alternative estimators under various settings.

Simulation under multivariate Gaussian models. We generate a pair of

n-dimensional vectors, denoted as xn and yn, with n = 1.5 × 105, 3 × 105 and

5×105, from the multivariate normal distributions N(θ,Σ) and N(µ,Σ), respec-

tively. We choose s ∈ {50, 100, 200, 400, 800}, which cover the regions s ≤
√
n

and s >
√
n, and generate (θ, µ) as follows: 1) the supports of θ and µ are ran-

domly sampled from the coordinates, with the nonzero components generated

from Unif(1,10); and 2) we partition the coordinates of θ and µ into blocks of size

10 and randomly pick s/10 blocks as the support, to which we assign symmetric
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triangle-shaped values, the maximal value of which is generated from Unif(5,10).

The above signal structures are referred to as Sparse Pattern I and II, respec-

tively. For the covariance matrix Σ, we consider a global covariance Σ = I and

two block-wise covariances Σ1 and Σ2 (see Section S6 of the Supplementary Ma-

terial for their explicit forms). We evaluate our proposed estimators T̂SK , T̂K , and

T̃ , as well as (1) the hybrid thresholding estimator without sample splitting, de-

noted as T̂S∗K , and (2) the naive estimator T , which simply calculates the absolute

inner product of the observed vectors. For T̂SK and T̂S∗K , we fix K = 8, whereas for

T̂K , we set K = b(1/12) log nc. Each setting was repeated 100 times, and the per-

formance was evaluated using the empirical version of the rescaled mean square

error rmse(T̂ ) = (1/s)

√
E(T̂ − T )2. Table 1 reports the empirical rmse of the

five estimators under the settings with independent observations. For brevity,

the results under correlated observations are given in Tables S6.1 and S6.2 of the

Supplementary Material. In general, T̂SK , T̃ , and T̂SK perform similarly, with T̂SK
performing slightly better, although all are superior to the naive estimator T .

Here, T̂S∗K outperforms the other estimators in all settings, possibly because of

the reduced variability as a result of not using sample splitting. Because the sam-

ple splitting is needed only to facilitate our theoretical analysis, in applications,

we suggest using T̂S∗K for better performance. Moreover, Tables S6.1 and S6.2 in

the Supplementary Material show that the proposed estimators are robust to the

underlying sparsity patterns and the covariance structures.

Simulation under model-generated GWAS and eQTL data allowing

for population stratification. In order to justify our proposed methods for

an integrative analysis of gwas and eqtl data, we carried out additional nu-

merical experiments under more realistic settings. Here, the gwas-based geno-

types are simulated allowing for population stratification, and the correspond-

ing z-scores are calculated from a case-control study that adjusts for popula-

tion structure using principal component (PC) scores. Specifically, for the gwas

data, we adopted the simulation settings from Astle and Balding (2009), where

1,000 cases and 1,000 controls are drawn from a population of 6,000 individuals,

partitioned into three equal-sized subpopulations. Ancestral minor allele frac-

tions are generated from Unif(0.05,0.5) for all 10,000 unlinked snps. For each

snp, subpopulation allele fractions are generated from the beta-binomial model

Beta
(
((1− F )/F )p, ((1− F )/F )(1−p)

)
with a population divergence parameter

F = 0.1. We simulate the disease phenotype under a logistic regression model

with 20 snp markers, each with effect size 0.4. The population disease preva-

lence is 0.05. To obtain z-scores, we fit a marginal logistic regression for each
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Table 1. Empirical rmse under the covariance Σ = In. T̂S∗
K : the hybrid threshold-

ing estimator without sample splitting; T̂S
K : the hybrid thresholding estimator; T̃ : the

simple thresholding estimator; T̂K : the hybrid nonthresholding estimator; T : the naive
estimator that calculates the absolute inner product of observed vectors.

n/104 s T̂S∗
K T̂S

K T̃ T̂K T T̂S∗
K T̂S

K T̃ T̂K T

Sparse Pattern I Sparse Pattern II

50 10.54 20.85 27.47 25.14 1,910.3 8.69 26.79 32.9 28.84 1,909.2

100 11.41 21.00 27.92 25.63 954.3 8.08 26.33 32.64 28.75 954.3

15 200 10.30 21.19 30.83 28.01 476.9 8.42 25.83 32.33 28.54 476.9

400 10.01 20.57 29.24 26.78 238.0 8.64 25.88 31.67 27.84 238.0

800 10.58 22.36 29.99 27.05 118.8 9.20 25.48 31.16 27.61 118.7

50 9.50 20.51 30.13 27.7 3,819.4 10.72 28.11 33.67 29.73 3,819.8

100 11.07 25.85 33.66 29.98 1,909.3 9.20 27.90 34.36 30.04 1,908.6

30 200 10.60 22.19 30.3 27.09 954.4 9.71 25.89 31.88 28.27 954.1

400 10.54 22.22 30.08 26.85 476.9 10.73 27.79 32.3 28.61 476.7

800 10.86 23.52 30.62 27.24 238.2 8.62 26.67 34.2 30.11 238.0

50 12.27 27.30 32.18 28.67 6,363.4 12.02 25.78 27.07 24.37 6,365.3

100 11.25 24.86 30.69 27.29 3,182.4 8.54 29.67 35.99 31.4 3,182.5

50 200 11.02 22.48 29.39 25.88 1,591.3 9.98 29.13 34.21 29.94 1,591.3

400 11.40 23.42 29.86 26.45 795.4 12.51 25.28 28.06 25.09 795.2

800 10.85 22.85 29.40 26.11 397.2 10.23 27.05 32.69 28.84 397.2

Table 2. Empirical rmse for simulated GWAS and eQTL data. T̂S∗
K : the hybrid thresh-

olding estimator without sample splitting; T̂S
K : the hybrid thresholding estimator; T̃ : the

simple thresholding estimator; T̂K : the hybrid nonthresholding estimator; T : the naive
estimator that calculates the absolute inner product of observed vectors.

s T̂S∗
K T̂S

K T̃ T̂K T

5 19.61 32.26 40.45 34.25 1,318.1

10 17.42 35.27 39.87 36.80 638.9

15 13.92 31.78 36.50 34.50 425.6

20 12.77 29.18 32.72 30.52 317.7

snp, accounting for the first two PCs of the genotypes. For the eqtl data,

10,000 unlinked snps are generated independently with minor allele fractions

from Unif(0.05,0.5). The gene expression levels of 2,000 samples are simulated

under a linear regression model with covariates being s snp markers that overlap

with the gwas snps. Each has an effect size of 0.5, and the errors are drawn

independently from the standard normal distribution. The eqtl z-scores are ob-

tained from a marginal linear regression. The above simulations were repeated
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500 times. The population mean of the z-scores corresponding to the truly as-

sociated snp markers are approximated using the sample mean of the z-scores.

Table 2 shows the empirical rmses for the five estimators with s ∈ {5, 10, 15, 20}.
Again, our proposed estimators T̂K , T̂SK , and T̃ outperform the naive estimator

T across all settings, and T̂S∗K performs even better. The numerical results agree

with our simulations under the multivariate Gaussian settings, suggesting the

applicability of our proposed methods for integrating gwas and eqtl data.

4. Integrative Data Analysis of Human Heart Failure

Finally, we apply our proposed estimation procedure to identify genes with

expressions that are possibly causally linked to heart failure by integrating gwas

and eqtl data. The gwas results were obtained from a heart failure genetic as-

sociation study at the University of Pennsylvania, a prospective study of patients

recruited from the University of Pennsylvania, Case Western Reserve University,

and the University of Wisconsin, where genotype data were collected from 4,523

controls and 2,206 cases using the Illumina OmniExpress Plus array. The gwas

summary statistics were calculated controlling for age, gender, and the first two

principal components of the genotypes.

The heart failure eqtl data were obtained from the MAGNet eqtl study

(https://www.med.upenn.edu/magnet/index.shtml), where left ventricular free-

wall tissue were collected from 136 donor hearts without heart failure. Genotype

data were collected using Affymetrix genome-wide snp array 6.0, and only mark-

ers in a Hardy–Weinberg equilibrium with minor allele frequencies above 5%

were considered. Gene expression data were collected using Affymetrix GeneChip

ST1.1 arrays, normalized using RMA (Irizarry et al. (2003)), and batch-corrected

using ComBat (Johnson, Li and Rabinovic (2007)). To obtain a common set of

snps, the snps were imputed using 1,000 Genomes Project data. Summary statis-

tics for the MAGNet eqtl data were obtained using the fast marginal regression

algorithm of Sikorska et al. (2013), controlling for age and gender.

4.1. Ranking of potential heart failure causal genes

After matching the snps of the eqtl and gwas data, we had a total of

347,019 snps and 19,081 genes with expression data available. Given the results

of the simulation studies, throughout, we use T̂S∗K with K = 8 to estimate the

T-scores. The analysis then follows from Section 2.5 so that the genes are or-

dered by their normalized T-scores. To assess that the top scored genes indeed

represent true biological signals, we calculated the T -scores for two “null data

https://www.med.upenn.edu/magnet/index.shtml
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sets” created using permutations. For the first data set, we randomly permuted

the labels of the snps of the gwas z-scores by sampling without replacement, be-

fore estimating the normalized T -scores using the eqtl z-scores. For the second

data set, we permuted the labels of the snps of the gwas z-scores in a circular

manner, similarly to Cabrera et al. (2012). Specifically, for each chromosome, we

randomly chose one snp as the start of the chromosome, and moved the snps on

the fragment before this snp to the end. Such a cyclic permutation preserves the

local dependence of the z-scores. By permuting the data from one phenotype,

we break the original matching of the z-scores between the two phenotypes. The

permutation was performed 50 times, and we obtained the null distribution of

T -scores based on the permuted data. Figure 2 shows the ranked normalized

T -scores based on the original data and box plots of the ranked z-scores based

on 50 permutations of the z-scores. We find that all of the top-ranked genes have

larger T -scores than those based on permutations. In addition, about 30 top-

ranked genes in the top plot and about 10 top-ranked genes in the bottom plot

have true T -scores larger than all T -scores from the permuted data sets. This

confirms that the top-ranked genes based on their estimated normalized T -scores

are not due to random noise, and indeed represent a sharing of genetic variants

between heart failure and gene expression levels.

4.2. Gene set enrichment analysis

To complete our analysis, we finish this section with a gene set enrichment

analysis (gsea) (Subramanian et al. (2005)), using the normalized T -scores to

identify the biological processes associated with heart failure. In the following

analysis, we removed genes with low expression and small variability across the

samples, which resulted in a total of 6,355 genes. The method described in Sec-

tion 2.5 was applied to the gene sets from Gene Ontology (go) (Botstein et al.

2000), which contain at least 10 genes, and 5,023 biological processes were tested.

Figure S6.1 in the Supplementary Material presents directed acyclic graphs of the

go biological processes linked to the most significant go terms from the simul-

taneous signal gsea analysis. Table 4 shows the top six go biological processes

identified from the gsea analysis. Among them, regulation of skeletal muscle

contraction, the linoleic acid metabolic process, and calcium ion regulation are

strongly implicated in human heart failure. Murphy et al. (2011) showed that

skeletal muscle reflexes are essential to the initiation and regulation of the car-

diovascular response to exercise, and an alteration of this reflex mechanism can

happen in disease states such as hypertension and heart failure. In Farvid et al.

(2014), a thorough meta-analysis supported a significant inverse association be-
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Figure 2. Estimated score (in short bars) for top 50 genes and the boxplots of the top
scores based on 50 permutations. Top: random permutation of the gwas scores; bottom:
cyclic permutations of the gwas scores.

tween dietary linoleic acid intake, when replacing either carbohydrates or satu-

rated fat, and the risk of coronary heart disease. Moreover, the importance of

calcium-dependent signaling in heart failure was reported in Marks (2003), who

suggested that impaired calcium release causes decreased muscle contraction (sys-

tolic dysfunction), and defective calcium removal hampers relaxation (diastolic

dysfunction).

Table 3 lists the top eight highest ranked genes, along with their biological

annotations. All of the genes are either directly or indirectly associated with

human heart failure, including those related to fibrotic myocardial degeneration,

Wnt signalling activity, and heart-valve development. It is interesting that our

proposed methods can identify these relevant genes using only the gene expression

data measured on normal heart tissue.
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Table 3. Top eight genes associated with heart failure based on the estimated normalized
T -scores and their functional annotations.

Gene Name Annotations

TMEM37 voltage-gated ion channel activity (Chen et al. (2007))

ADCY7 adenylate cyclase activity; fibrotic myocardial

degeneration (Nojiri et al. (2006))

C1QC Wnt signaling activity; associated with heart

failure (Naito et al. (2012))

FAM98A associated with ventricular septal defect (Liu et al. (2018)

BMP2 associated with heart-valve development

(Rivera-Feliciano and Tabin (2006))

SLCO2B1 organic anion transporter; associated with cardiac glycoside

(Mikkaichi et al. (2004))

C1QA Wnt signaling activity; associated with heart

failure (Naito et al. (2012))

FCGR2B intracellular signaling activity; associated with vascular

disease pathogenesis (Tanigaki et al. (2015))

Table 4. Top six go biological processes associated with heart failure based on the gene
set enrichment analysis.

go term p-value

Biological Process

regulation of skeletal muscle contraction by regulation of release

of sequestered calcium ion 7.9× 10−7

linoleic acid metabolic process 1.0× 10−6

regulation of skeletal muscle contraction by calcium ion signaling 3.4× 10−6

positive regulation of sequestering of calcium ion 3.4× 10−6

cellular response to caffeine 1.0× 10−5

cellular response to purine-containing compound 1.0× 10−5

5. Discussion

This study considers the optimal estimation over sparse parameter spaces. In

Section 2, the minimax rates of convergence were established for the parameter

spaces D∞(nβ, Ln) with β ∈ (0, 1/2) ∪ (1/2, 1), leaving a gap at β = 1/2. Our

theoretical analysis suggests a lower bound (2.1) with the rate function ψ(s, n) �
1, which cannot be attained by any of our proposed estimators. Nevertheless,

in Section S5.1 of the Supplementary Material, we confirm that L2
ns

2/n2 is the

minimax rate of convergence for β = 1/2 by proposing an estimator achieving

such a rate.
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In some applications, we may need to consider nonsparse parameter spaces.

In this case, our theoretical analysis shows that the estimator T̂K with K =

r log n, for some small constant r > 0, can still be applied. Specifically, from our

proof of Theorem 1 and Theorem 2, it follows that if we define the nonsparse pa-

rameter space as D∞U (Ln) =
{

(θ, µ,Σ1,Σ2) : (θ, µ) ∈ Rn×Rn,max(‖θ‖∞, ‖µ‖∞)

≤ Ln,Σ1 = Σ2 = In
}

, with Ln &
√

log n, then for xn ∼ N(θ,Σ1) and yn ∼
N(µ,Σ2), the minimax rate inf T̂ sup(θ,µ,Σ1,Σ2)∈D∞

U (Ln)R(T̂ ) � Ln/log n can be

attained by the above T̂K .

In light of our genetic applications, it is also natural and interesting to con-

sider parameter spaces where θ and µ are both sparse in themselves. Specifically,

assuming the triple sparsity of θ, µ, and {θiµi}ni=1, interesting phase transitions

might exist, where the minimax rates and the optimal estimators could be differ-

ent from those reported here. In addition to the estimation problems, it is also

of interest to conduct hypothesis testing and to construct confidence intervals for

the T -score. These problems are technically challenging owing to the nonsmooth

functional. We leave these important problems for future research.

Supplementary Material

The online Supplementary Material includes the proofs of the main theorems.

Supplementary notes, figures, and tables are also included.
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