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This supplementary material contains technical details and proofs, and a table summarizing

simulation results.

S1 Proofs of Theorem 1 and Lemma 2

For reference, we restate the theorems and formulas in the main article that

are used in the proof.

Theorem 1. Assume the m-component model under Conditions (A1)-(A4)
and let n > m = 0 be fired and d — . Then, the first m sample and

prediction scores are systematically biased:

Wy = SR™W, + O, (d~), (S1.1)
W, = STIR"W, + 0,(d"/?), (S1.2)

where R = [vy(W), ..., vm(W)], S = diag(ps, ..., pm), and pr = /1 + 72/ X (WV).
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Moreover, for k > m,

Wy = Op(d'?), j=1,....n, (S1.3)
Wex = Op(1). (S1.4)

Lemma 1. [Theorem S2.1, |Jung et al| (2018)] Assume the conditions of
Theorem . (1) the sample principal component variances converge in prob-
ability as d — o;
. AMOW) + 724+ 0,(d7?), i=1,...,m;
diln)\l- =
72 + O, (d=?), i=m+1,...,n.

(i1) The inner product between sample and population PC directions con-

verges in probability as d — oo;

pi W) + Op(d™?), 4,5 =1,...,m;
U uj =
O,(d%?), otherwise.
Lemma 2. Assume the m-component model with (A1)-(A4) and let n >

m =0 be fivzed. Fork=1,... ,n, E(ep|W1) =0, and

lim Var(eg | W1) = v3/(M(W) +7%),  for k <m; (S1.5)

d—0
: .22
dh_)ngo p—— kz%]ﬂ Var(egs | W1) = 05 /77, (51.6)

where v} = limg o, d ! Z?:m—i—l AN Asd — o0, exe = 0,(1).
Proof of Lemma[g Fix k=1,...,n. Let ¥; = VNiZixDri, Where pp; = Up ;.

d . . .
Then €, = Zi:m-‘,—l Y;. Since z;, and py; are independent, for each ¢ > m,
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E(Y; | W;) =0 and

d d d
Var( > Y| Wh) =E( Do N2k [ Wh) = > NE(pR | Wh),
1=m+1 i=m+1 i=m+1

where we use the fact that E(z) = 0, E(22) = 1.

(&S

For k < m, if the following claim,

Ai

Blos | W) =d"

+0(d™3?), (S1.7)

is true for any i > m, then it is easy to check (S1.5)).

To show (S1.7)), we first post-multiply v; to

x =y S Al (S1.8)
=1

to obtain @; = (nA\;)"Y2X0;. By writing 2 = )\i_l/zwiT = (Zi1y -+, Zin), We

have

T
Pki = U; Ug

Thus,

= d ' (2 0) + O,(d 7). (S1.9)
T
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In (S1.9), we used Lemma[1](i) and that (1 +2)~ = 1+ O(x), and the fact
. 2~ 12 2
that |27 0x]* < [[2il3 [0kl = [l2ill; = Op(1).
Write (2] 05)% = [2F v, (WTW1) + 27 (0 — v (W W1))]?. Note that Wi,
is an n x n matrix, and is different from the m x m matrix W = W, W7, It

can be shown that the right singular vector 05 converges in probability to

vp(WIW7) (see, e.g., Lemma S1.1 of Jung et al., 2018): For k =1,...,m,
O = v (WIWY) + O,(d7V?). (S1.10)

Thus we get |27 (5, — v (WIWD))| < 11, [ — on(WFW))], = Op(d2)
Therefore,
E((z70x)” | W1) = E((z] oe(WIWA))? | Wh) + O(d ™)

E (=) vie (Wi W1) + O(d™7?)

I
M=

~
Il

1

14+ 0(d"?). (S1.11)

Combing (S1.9) and (S1.11f), we get (S1.7) for k < m as desired.
To show (S1.6]), note that W = W, W/ is of rank m. For k > m, with

Ae(W) =0, (S1.9) holds. Thus,

1 n 1 n d )
— > Var (e | Wh) = —— > '2 NE(@R | W) (S1.12)
k=m+1 k=m+1i=m+1

1 SENTEEE T2
:m 2 T Z E((z; 0x)" | Wh).

1=m+1 k=m+1
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To simplify the expression E((z70))? | Wi), one should not naively try
(S1.11). This is because that (S1.11) does not apply for k& > m due to
the non-unique kth eigenvector v (W{W7) of the rank-m matrix WJWj.

Instead, from

n m

Z(ZUk =27z — Y (2]0)%

k=m+1 k=1

and (S1.11)) for £ < m, we get

zn] E((z5605)% | W) = n—m + O(d""2). (S1.13)

k=m+1

Taking the limit d — o0 to (S1.12]), combined with (S1.13]), leads to (S1.6]).

The last statement, e, = O,(1), easily follows from the fact limy_,o, Var(eg,) <

v3/7%(n —m) < oo, which is obtained by (S1.5) and (S1.6)). O

We are now ready to show Theorem Note that the results on the

sample scores, (S1.1)) and (S1.3]), can be easily shown, using the decompo-
sition d~V2iy, = v/d~'n\y0s, together with Lemma (1) and (S1.10). We
show (S1.2)) and -

Proof of Theorem[1. Proof of (S1.2)). Recall the decomposition

m
Wi = ’(AL};X* = Z wz*ﬁzuz + €y, (8114)

i=1

d A~ . . ~ . A~
where €, = Zi:mﬂ Wi Uy w;. Using the notation py; = Uy w;, we write Wy, =
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(Pk1s -« s Phom) (Wiky -« o, Wins )" + €xs. Putting all parts together, we have

P11 - Pim

W* = d_1/2(w1*7--'awm*)T = W* +ék*>
Pm1 - Pmm
where €, = dV?(ey, ..., €mx)". By Lemma , as d — o0, &g = O,(d"1/2).

Since pr; = py. ‘v (W) + O,(d~1/?), by Lemma (ii), we have
WT = ST'R'WY + 0,(d?).

Proof of (S1.4). Using the decomposition (S1.14)), and by the fact e, =
Op(1), from Lemma[2] it is enough to show >} | wi.pr; = O,(1). But, since
Lemmaimplies d2pri = O,(1) for any pair of (k, ) such that k > m,i < m,

we have Y7 wispri = 04(dZ D1, -+, A2 D) (Z1ns - -+ s Zms) = Op(1), O

S2 Proof of Theorem 2

Theorem 2. Let Gi; = A\o(W)/ (XL, vi;(W)AW)) and Gy = o/ (X2, vi;(W)a?).

Under the assumptions of Theorem|l, as d — oo, fork,j =1...,m,
(i) r(Wg, wj) — vkj(W)C;J/.Z in probability ;
(ZZ) hmdﬁoo COTT(Zf)k*,wj* | Wl) = Ukj(W)C_kjl/Q.

Proof of Theorem[2. Proof of (i). Write the singular value decomposition
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of the m x n matrix of scaled scores W, as

W1 = Rdiag(\/ )\1(W),...,x/)\1(W))GT, <821>

where G = [g1,...,9m] is the n x m matrix consisting of right singular
vectors of Wy. The left singular vector matrix R = [v;(W), ..., v, (W)] is

exactly the matrix R appearing in Theorem [I} Since

W= 3 VAWV (W),

the jth row of W is, for 7 < m,

d™3wf = 3 N/ A W)u (W)

l=1

For the scaled sample score d~'/?y,, k < m, we obtain from Theorem

and (52.1) that W, = Sdiag(x/A V), .. .,A/AM(WV))G™ +0,(d""/*) and its

kth row d=21dy, = A/ Ae(W) + T2, + O, (d~1/4). Since g,’s are orthonormal,
ld 2]y = A/ AOV) + 72 + O, (d™Y),
and

A~ ifw; = (d=Yay) " (d ;)

= VAWV N W) + T2015(W) + O, (d~V4).

Since d " wiw; = YL, v7(W)A(W), we have

B dilwgw]‘
|d=1 2|2 - [ d=2w;

— Ukj (W)C/i]ﬂ

(W, W)
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in probability, as d — 0.

Proof of (ii). From Theorem (1} write
A= = ppt i VeV d ™ + O, (d?), (S2.2)
=1
and note that E(wg,) = E(ys) = 0. Then for k =1,...,m, we have
Var(d "V wpy) = d ' E(wgs)? = 02E(2k4)? = 072,
and, by ,
Var(d =i | Wh) = pi? i (keOW))? 02 + O(d1?).
=1
The independence of wy, and wyg, for k # ¢ and give

Cov(d i, d™wjs | W1) = E(d™ Mpstwys | W1)

= p,;lvkj(W)U? + O(d’m),

which in turn leads to

Cov(d™ g, d™ V2w, | W1)
(Var(d—12w;, ) Var(d="2ty, | W1))1/2
0j

[ZZ; ('UM(W))2 03]1/2

COrT (W, Wis | Wh) =

= Ukj(W> + O(dilp).
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S3 Proof of Corollary 1

Corollary 1. Suppose the assumptions of Lemma[l] are satisfied. Let d —
w. Fori=1,...,m, conditional to Wy, 72, Ni(W) and p; are consistent
estimators of 72, \i(W) and p;, respectively.

Proof of Corollary (1] Lemmais used to show that 72 and \;(W) converge
in probability to 72 and \;(W) as d — o0, respectively. By continuous

mapping theorem, p; converges in probability to p;. ]

S4 Complete Table 2
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p1
d n Theory Best Asymp. Jackknife LZW
5000 50  1.41 (0.07) 1.42 1.40 1.43 1.41
Spike model 10000 50 1.42 (0.06) 1.43 1.42 1.44 1.42
B=03 10000 100 1.23 (0.03) 1.23 1.23 1.24 1.23
20000 100  1.23 (0.02) 1.23 1.23 1.24 1.23
5000 50  1.42 (0.08) 1.45 1.41 1.45 1.40
Spike model 10000 50  1.43 (0.07) 1.45 1.43 1.46 1.42
B=0.5 10000 100 1.22 (0.02) 1.23 1.22 1.23 1.21
20000 100 1.23 (0.02) 1.23 1.23 1.24 1.22
5000 50  2.06 (0.06) 2.22 1.92 2.14 2.00
Mixture model 10000 50  2.09 (0.06) 2.17 1.98 2.14 2.02
a=0.15 10000 100 1.63 (0.02) 1.67 1.61 1.65 1.63
20000 100 1.64 (0.02) 1.66 1.62 1.66 1.63
P2
d n Theory Best Asymp. Jackknife LZW
5000 50 1.79 (0.11) 1.86 1.75 1.78 1.79
Spike model 10000 50  1.79 (0.11) 1.82 1.77 1.77 1.79
B8 =03 10000 100 1.43 (0.06) 1.44 1.43 1.42 1.43
20000 100  1.43 (0.05) 1.44 1.43 1.42 1.43
5000 50 1.79 (0.11) 1.99 1.72 1.81 1.71
Spike model 10000 50  1.80 (0.11) 1.88 1.76 1.79 1.74
B =05 10000 100 1.44 (0.05) 1.47 1.43 1.44 1.41
20000 100  1.42 (0.05) 1.44 1.42 1.41 1.40
5000 50 2.62(0.21) 5.44 2.20 2.68 2.46
Mixture model 10000 50 2.68 (0.19)  3.20 2.35 2.68 2.50
a =0.15 10000 100 2.00 (0.09) 2.13 1.90 2.00 1.99
20000 100 1.99 (0.10) 2.05 1.93 1.97 1.97

Table 1: Simulation results from 100 repetitions. “Theory” is mean (standard deviation)
of p;; “Best” is p; ; “Asymp.” is p; ; “Jackknife” is ﬁgl) ; “LZW?” is from |Lee et al.| (2010)).

Averages are shown for the latter four columns. The standard errors of the quantities in

estimation of p; are at most 0.04.
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