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ADJUSTING SYSTEMATIC BIAS IN HIGH

DIMENSIONAL PRINCIPAL COMPONENT SCORES

Sungkyu Jung

Seoul National University

Abstract: Principal component analysis continues to be a powerful tool for the di-

mension reduction of high-dimensional data. We assume a variance-diverging model

and use the high-dimension low-sample-size asymptotics to show that even though

the principal component directions are not consistent, the sample and prediction

principal component scores can be useful in revealing the population structure. We

further show that these scores are biased, and that the bias is asymptotically de-

composed into rotation and scaling parts. We propose bias-adjustment methods

that are shown to be consistent and work well in high-dimensional situations with

small sample sizes. The potential advantage of the bias adjustment is demonstrated

in a classification setting.
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1. Introduction

Principal component analysis (PCA) is a workhorse method of multivariate

analysis, and has been used in a variety of fields for dimension reduction, visu-

alization, and exploratory analysis. The standard estimates of principal compo-

nents (PCs) obtained using either the eigendecomposition of the sample covari-

ance matrix or the singular value decomposition of the data matrix. However,

these have been shown to be inconsistent when the number of variables, or the di-

mension d, is much larger than the sample size n (Paul (2007); Johnstone and Lu

(2009); Jung and Marron (2009)). As a result, numerous methods have been pro-

posed on, for example, sparse PC estimations (cf., most notably, Zou, Hastie and

Tibshirani (2006)), which perform better in some models with high dimensions.

However, the standard estimates of PCs continue to be useful, partly be-

cause of the fast computations available (see, e.g., Abraham and Inouye (2014)).

Many of the sparse estimation methods, unfortunately, do not scale well compu-

tationally for large data with hundreds of thousands of variables. Moreover, the

standard estimation has been shown to be useful in applications such as imaging,
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genomics, and big-data analysis (Fan, Han and Liu (2014)). In these areas, the

sample and prediction PC scores (the projection scores of the data points onto

the PC directions) are often used in the next stage of the analysis.

The prediction of PC scores has considerable practical utility in modern data

analysis. A prominent example where the “sample” and “prediction” PC scores

are used is in a PC regression. In particular, for prediction and cross-validation

in a PC regression, the PC scores are used as explanatory variables. For pre-

diction of the response from a new set of observations, the predicted PC scores

are needed (Jackson (2005)). For example, Li et al. (2014) used a PC regression

to predict a phytoplankton abundance index. Similarly, classification rules are

often estimated for dimension-reduced data sets. For instance, in forensic sci-

ence, residue features from black ballpoint inks are dimension-reduced (using a

PCA) and then classified, based on a lab data set. New features from the field

are classified using their prediction scores as an input for the classification rule

(Adam, Sherratt and Zholobenko (2008)). As a more involved example, ancestry

estimation in genetic association studies uses the sample PC scores obtained from

a reference genotyped sample, often from large-scale public sequencing data sets

(Zhan et al. (2013); Marcus et al. (2020); Wang et al. (2015)). The prediction

PC scores of a new sample are then matched to the sample PC scores in order to

infer the new samples’s ancestry membership (Zhang, Dey and Lee (2020)).

In this study, we revisit the standard estimates of PCs in ultrahigh dimen-

sions, and reveal that while the component directions and variances are incon-

sistent, the sample and prediction scores are useful for moderately large sample

sizes. For low sample sizes, the scores are biased. We quantify the bias, de-

compose it into two systematic parts, and propose a method for estimating the

bias-adjustment factors.

As a visual example of the systematic bias, a toy data set with two dis-

tinguishable PCs is simulated and plotted in Fig. 1. Each observation in the

data set consists of d “ 10,000 variables. The first two sample PC directions

are estimated from n “ 50 observations, and are used to obtain the sample and

prediction scores (the latter are computed from 20 new observations). The true

principal scores are also plotted and connected to their empirical counterparts.

This example visually reveals that the sample scores are systematically biased,

that is, uniformly rotated and stretched. What is more surprising is that the pre-

diction scores are also uniformly rotated, by the same angle as the sample scores,

and uniformly shrunk.

On the other hand, the third component scores from this example appear to

be quite arbitrary; see Fig. 2. (The estimate for component 3 in this example
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Figure 1. Sample and prediction PC scores connected to their true values. This toy data
set of size pd, nq “ p10,000, 50q is generated from a spike model with m “ 2 spikes, with
polynomially decreasing eigenvalues with β “ 0.3; see Section 4.2 for details.

is only as good as random guess.) Moreover, unlike the first two components

plotted in Fig. 1, the sample scores of the third component are grossly inflated,

while the prediction scores are much smaller than the sample scores.

In Section 2, we provide a theoretical justification for the phenomenon ob-

served in Figs. 1 and 2, and asymptotically quantify the two parts of the sys-

tematic bias. We assume m-component models with diverging variances, and use

the high-dimension low-sample-size asymptotic scenario (i.e., d Ñ 8, while n

is fixed). These models and asymptotics provide the contrasting results of the

sample and prediction scores. The correlation coefficients between the sample (or

prediction) and the true scores turn out to be close to one, for large signals and

large sample sizes, indicating the situations where the PC scores are most useful.

Because the bias is asymptotically quantified, the natural next step is to

adjust the bias by estimating the bias-adjustment factor. In Section 3, we propose

a simple, yet consistent estimator and several variants of estimators based on

the Jackknife concept. Adjusting these biases improves the performance of the

prediction modeling, and we demonstrate its potential in an example involving
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Figure 2. Sample and prediction PC scores connected to their true values. Models and
data are the same as in Fig. 1.

classification. The results from our numerical studies are summarized in Section 4.

There are several related works on PC scores in high dimensions (Lee, Zou

and Wright (2010); Fan, Liao and Mincheva (2013); Lee, Zou and Wright (2014);

Sundberg and Feldmann (2016); Shen et al. (2016); Hellton and Thoresen (2017);

Wang and Fan (2017); Jung, Ahn and Lee (2018)). This study is built upon

these previous findings. In particular, this is a continuation of the author’s pre-

vious work (Jung, Ahn and Lee (2018)), and intermediate results are borrowed

from there. While the scaling and rotation of the sample scores were previously

identified in Jung, Ahn and Lee (2018) and in Hellton and Thoresen (2017), the

main contributions of this study are i) a quantification of the asymptotic bias

for the prediction scores, which has not been addressed, and ii) a consistent es-

timation of the bias-adjustment factor. Under the “random-matrix” asymptotic

scenario, that is, d{nÑ c P p0,8q, Lee, Zou and Wright (2010) discussed a bias

adjustment for PC scores. Our work extends Lee, Zou and Wright (2010) to

the high-dimension low-sample-size asymptotic scenario. Note that the asymp-

totic rotational bias was not identified in Lee, Zou and Wright (2010), owing

to the larger sample size n — d considered there. A survey of high-dimension
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low-sample-size asymptotics can be found in Aoshima et al. (2018).

2. Asymptotic Behavior of PC Scores

2.1. Model and assumptions

Let X “ rX1, . . . , Xns be a dˆ n data matrix, where each Xi is mutually in-

dependent and has mean zero and covariance matrix Σd. Population PCs are ob-

tained using the eigendecomposition of Σd “ UΛUT, where Λ “ diagpλ1, . . . , λdq

is the diagonal matrix of PC variances and U “ ru1, . . . , uds consists of the PC

directions. For a fixed m, we assume an m-component model, where the first m

component variances are distinguishably larger than the rest. Specifically, the

larger variances increase at the same rate as the dimension d, that is. λi — d,

which was previously noted as the “boundary situation” (Jung, Sen and Marron

(2012)). This diverging-variance condition seems to be more realistic than the

simpler cases λi " d (i.e., λi{d Ñ 8) and λi ! d (Hellton and Thoresen (2017);

Shen et al. (2016)), and is satisfied for high-dimensional models used in factor

analysis (Fan, Liao and Mincheva (2013); Li et al. (2017); Sundberg and Feld-

mann (2016)). In a more general asymptotic scenario of d{nÑ8, our condition,

λi — d, is akin to the condition limnÑ8 d{pnλiq “ ci P p0,8q, assumed in Shen

et al. (2016) and Wang and Fan (2017). In particular, in the ultrahigh-dimensional

case of n — logpdq, as defined in Fan and Lv (2008), we have d1´ε ! d{n ! d1`ε,

for any ε ą 0. Thus, although not identical, the assumption λi — d{n of Shen

et al. (2016) and Wang and Fan (2017) is similar to (A1) below, λi — d, in the

ultrahigh-dimensional case.

We assume that the population PC variances satisfy the following:

(A1) λi “ σ2i d, i “ 1, . . . ,m, σ21 ě ¨ ¨ ¨ ě σ2m.

(A2) limdÑ8
řd
i“m`1 λi{d :“ τ2 P p0,8q.

(A3) There exists B ă 8 such that, for all i ą m, lim supdÑ8 λi ă B.

Conditions (A2) and (A3) allow λi, for i ą m, to increase as d increases.

All of our results hold when Condition (A3) is relaxed to, for example, allow

the situation that λi — dα, α ă 1{2. This generalization is straightforward, but

invites a nonintuitive technicality (see, e.g., Jung, Sen and Marron (2012); Jung,

Ahn and Lee (2018)). By decomposing each independent observation into the

first m components and the remaining term, we write

Xj “

m
ÿ

i“1

λ
1{2
i uizij `

d
ÿ

i“m`1

λ
1{2
i uizij , pj “ 1, . . . , nq, (2.1)
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where zij is the normalized PC score.

(A4) For each j “ 1, 2, . . ., pz1j , z2j , . . .q is a sequence of independent random

variables such that, for any i, Epzijq “ 0, Varpzijq “ 1, and the fourth

moment of zij is uniformly bounded.

2.2. Sample and prediction PC scores

Suppose we have a data matrix X “ rX1, . . . , Xns and a vector X˚, inde-

pendently drawn from the same population with PC directions ui. The PCA is

performed for data X and is used to predict the PC scores of X˚.

We define the ith true PC scores of X as the vector of n projection scores:

wT

i “ uT

i X “ pwi1, . . . , winq, pi “ 1, . . . , dq, (2.2)

where wij “ uT

iXj “
?
λizij . The last equality is given by the decomposition of

Xj in (2.1). Likewise, the true ith PC score of X˚ is wi˚ “ uT

iX˚ “
?
λizi˚.

The classical estimators of the ith PC direction and variance are pûi, λ̂iq,

obtained using either the eigendecomposition of the sample covariance matrix

Sd “ n´1XX T ,

Sd “
n
ÿ

i“1

λ̂iûiû
T

i ,

or the singular value decomposition of the data matrix,

X “
?
n

n
ÿ

i“1

b

λ̂iûiv̂
T

i , (2.3)

where v̂i is the right singular vector of X . By replacing ui in (2.2) with its

estimator ûi, we define the ith sample PC scores of X as

ŵT

i “ ûT

i X “ pŵi1, . . . , ŵinq, pi “ 1, . . . , nq. (2.4)

The sample PC scores are, in fact, weighted right-singular vectors of X ; compared

with (2.3), ŵi “
a

nλ̂iv̂i.

For an independent observation X˚, definition (2.4) gives

ŵi˚ “ ûT

iX˚,

which is called the ith prediction PC score for X˚.
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2.3. Main results

Denote W1 “ pσizijqi,j “ pd
´1{2wijqi,j “ d´1{2ru1, . . . , ums

TX for the m ˆ n

matrix of scaled true scores for the first m PCs. The ith row of W1 is d´1{2wT

i .

Similarly, the scaled sample scores for the first m PCs are denoted by xW1 “

d´1{2rû1, . . . , ûms
TX .

For a new observation X˚, write W˚ “ d´1{2pw1˚, . . . , wm˚q
T and xW˚ “

d´1{2pŵ1˚, . . . , ŵm˚q
T for the scaled true scores and prediction scores, respectively,

of the first m PCs.

WriteW “W1W
T

1 for the scaled mˆm sample covariance matrix of the first

m scores. Let tλipSq, vipSqu denote the ith-largest eigenvalue-eigenvector pair

of a nonnegative definite matrix S, and let vijpSq denote the jth loading of the

vector vipSq. For a sequence Ad of random matrices, we say Ad “ Oppbdq if all

elements of Ad{bd are uniformly stochastically bounded. Note that Ad “ Opp1q

implies }Ad}F “ Opp1q.

Theorem 1. Assume the m-component model under Conditions (A1)–(A4), and

let n ą m ě 0 be fixed and d Ñ 8. Then, the first m sample and prediction

scores are systematically biased:

xW1 “ SRTW1 `Oppd
´1{4q, (2.5)

xW˚ “ S´1RTW˚ `Oppd
´1{2q, (2.6)

where R “ rv1pWq, . . . , vmpWqs, S “ diagpρ1, . . . , ρmq, and ρk “
a

1` τ2{λkpWq.
Moreover, for k ą m,

ŵkj “ Oppd
1{2q, j “ 1, . . . , n, (2.7)

ŵk˚ “ Opp1q. (2.8)

Our main results show that the first m sample and prediction scores are

comparable to the true scores. The asymptotic relation tells that for large d, the

first m sample scores in xW1 converge to the true scores in W1, uniformly rotated

and scaled for all data points. It is thus valid to use the first m sample PC scores

to explore important data structures, and to reduce the dimension of the data

space from d to m in the high-dimension low-sample-size context.

Theorem 1 explains and quantifies the two parts of the bias, exemplified in

Fig. 1. In particular, the same rotational bias applies to both the sample and the

prediction scores. The scaling bias factors ρk in the matrix S are all greater than

one. Thus, while the sample scores are all stretched, the prediction scores have

all shrunken. The second part of the theorem shows that the magnitude of the
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inflation for the sample scores of the “noise” component (see, e.g., component 3

scores in Fig. 2) is of order d1{2. On the other hand, the prediction scores of the

noise component do not diverge.

Remark 1. Suppose m “ 1 in Theorem 1. Then, the sample and predic-

tion scores are simply proportionally biased in the limit: ŵ1j{w1j Ñ ρ1 and

ŵ1˚{w1˚ Ñ ρ´11 in probability as dÑ8.

Remark 2. Suppose that the limit nÑ8 is taken for expressions (2.5) and (2.6).

Then, from the classical asymptotic results on the m ˆm covariance matrix W
(cf., Anderson (1963)), S “ Im`Opp1{nq and R “ Im`Opp1{nq. That is, in the

limit dÑ8, the limiting bias is of order n´1.

The proof of Theorem 1 relies on the asymptotic behavior of the PC direction

and variance, which is now well understood; see Jung, Ahn and Lee (2018) for

the asymptotic regime of dÑ 8, n fixed; Shen et al. (2016) and Wang and Fan

(2017) for the asymptotic regime of dÑ8, nÑ8, and d{nÑ8. For reference,

we restate it here.

Lemma 1. (Theorem S2.1, Jung, Ahn and Lee ( 2018)) Assume the conditions

of Theorem 1. (i) The sample PC variances converge in probability as dÑ8;

d´1nλ̂i “

#

λipWq ` τ2 `Oppd´1{2q, i “ 1, . . . ,m;

τ2 `Oppd
´1{2q, i “ m` 1, . . . , n.

(ii) The inner product between the sample and population PC directions converges

in probability as dÑ8;

ûT

i uj “

#

ρ´1i vijpWq `Oppd´1{2q, i, j “ 1, . . . ,m;

Oppd
´1{2q, otherwise.

This result is abridged later in Section 2.4 for discussion. To handle pre-

diction scores, we need in addition the following observation, summarized in

Lemma 2. For each k “ 1, . . . ,m, the kth projection score ŵk˚ is decomposed

into

ŵk˚ “ ûT

kX˚ “
m
ÿ

i“1

wi˚û
T

kui ` εk˚, (2.9)

where εk˚ “
řd
i“m`1wi˚û

T

kui. In the next lemma, we show that the “error term,”

εk˚, is stochastically bounded.

Lemma 2. Assume the m-component model with (A1)–(A4), and let n ą m ě 0
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be fixed. For k “ 1, . . . , n, Epεk˚|W1q “ 0 and

lim
dÑ8

Varpεk˚ |W1q “
υ2O

λkpWq ` τ2
, for k ď m; (2.10)

lim
dÑ8

1

n´m

n
ÿ

k“m`1

Varpεk˚ |W1q “
υ2O
τ2
, (2.11)

where υ2O “ limdÑ8 d
´1

řd
i“m`1 λ

2
i . As dÑ8, εk˚ “ Opp1q.

Lemmas 1 and 2 facilitate an interpretation of the results in Theorem 1.

Intuitively, the overestimation of the sample principal variances, in Lemma 1(i),

causes the sample scores to be stretched. Furthermore, the inconsistency of ûi
leads to smaller ûT

i ui in Lemma 1(ii), which then results in the deflation of the

projection scores (2.9). The proofs of Theorem 1 and all other results can be

found in the Supplementary Material.

The next result shows that the sample and true scores (or prediction and

true scores) are highly correlated with each other. For this, we compute the

inner product between the standardized sample scores ŵk{
a

ŵT

kŵk and the true

scores wk{
a

wT

kwk. For a pair px, yq of n-vectors, define rpx, yq “ xTy{
?
xTx ¨ yTy,

which is the empirical correlation coefficient between x and y when the mean is

assumed to be zero.

Theorem 2. Let ζkj “ λkpWq{p
řm
`“1 v

2
`jpWqλ`pWqq and ζ̄kj “ σ2k{p

řm
`“1 v

2
`jp

Wqσ2` q. Under the assumptions of Theorem 1, as dÑ8, for k, j “ 1 . . . ,m,

(i) rpŵk, wjq Ñ vkjpWqζ
1{2
kj in probability;

(ii) limdÑ8Corrpŵk˚, wj˚ |W1q “ vkjpWqζ̄kj1{2.

Remark 3. In the special case m “ 1, the sample and prediction scores of the

first PC are both perfectly correlated with the true scores, in the limit. Specifi-

cally, Theorem 2 implies that |rpŵ1, w1q| Ñ 1 in probability and |Corrpŵk˚, wj˚q|

Ñ 1 as dÑ8.

Remark 4. The somewhat complex limiting quantity vkjpWqζ
1{2
kj is an artifact

of the fixed sample size. To simplify the expression for the case k “ j, write

´

vkkpWqζ
1{2
kk

¯2
“

1

1` ξkpWq
, ξkpWq “

ÿ

`‰k

v2`kpWq
λ`pWq
λkpWq

.

Note thatW “W1W
T

1 is proportional to the sample covariance matrix of the first

m true scores, and that vkkpWq is the inner product between the kth sample and
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the theoretical PC directions of the data set W1, where the number of variables,

m, is smaller than the sample size n. Therefore, we expect that |vkkpWq| « 1

and ξkpWq « 0 for large sample sizes. Taking the additional limit n Ñ 8, the

results in Theorem 2 become more interpretable:

|rpŵk, wjq| Ñ 1pk“jq in probability, and |Corrpŵk˚, wj˚q| Ñ 1pk“jq,

as dÑ8, nÑ8 (limits are taken progressively).

Remark 5. What is the correlation coefficient rpŵk, wkq for k ą m in the limit

d Ñ 8? In an attempt to answer this question, we note ŵk “ pnλ̂kq
1{2v̂k,

v̂k “ vkpX TX q and X TX “
řd
i“1wiw

T

i . Thus,

rpŵk, wkq “
wT

kvk

´

řd
i“1wiw

T

i

¯

?
λk

,

and it is natural to guess that the dependence of v̂k on any wi, including the case

i “ k, would diminish as d tends to infinity. In fact, d´1X TX converges to the

rank-mmatrix S0 :“W T

1W1`τ
2In (Jung, Sen and Marron (2012)), and wk and S0

are independent. Thus, it is reasonable to conjecture that limdÑ8 Errpŵk, wkqs “

0, for k ą m. Unfortunately, in the limit dÑ8, the kth, for k ą m, eigenvector

of d´1X TX becomes an arbitrary choice in the left null space of W1. Owing

to this non-unique eigenvector, the inner product wT

kvkpS0q is not defined; thus,

discussing the convergence of rpŵk, wkq is somewhat demanding. We numerically

confirm the conjecture in Section 4.1.

2.4. Inconsistency of the direction and variance estimators

The findings in the previous subsection may be summarized by saying that

the first m PC scores convey about the same visual information as the true

values when displayed. (The information is further honed by the bias adjustment

in Section 3.) From a practical point of view, the scores and their graph matter

the most.

On the other hand, a quite different conclusion about the standard PCA is

made when the estimator ûi is of interest. The asymptotic behavior of the direc-

tion ûi and the variance estimator λ̂i are obtained as a special case of Lemma 1.

Under our model,

pûT

i ui, d
´1nλ̂iq Ñ

#

pρ´1i viipWq, λipWq ` τ2q, i “ 1, . . . ,m;

p0, τ2q, i “ m` 1, . . . , n,
(2.12)
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in probability as dÑ8 (n is fixed).

The variance estimator λ̂i, for i ď m, is asymptotically proportionally biased.

Specifically, λ̂i{λi Ñ pλipWq ` τ2q{pnσ2i q in probability as dÑ8. Thus, by using

a classical result on the expansion of the eigenvalues of W for large n,

Epλ̂i{λiq Ñ 1`
1

n

«

m
ÿ

j‰i

σ2j
σ2i ´ σ

2
j

`
τ2

σ2i

ff

`Opn´2q,

as d Ñ 8. Note that even when m “ 1, the bias is still of order n´1. This

proportional bias may be adjusted empirically, using good estimates of σ2i and

τ2. We do not pursue this here. Note that all empirical PC variances, for i ą m,

converge to τ2{n when scaled by d, and thus do not reflect any information of

the population.

The result (2.12) also shows that the direction estimator ûi is inconsistent

and asymptotically biased compared to ui. The estimator ûi is closer to ui when

ρ´1i |viipWq| is closer to one. It is impossible to achieve ρ´1i |viipWq| Ñ 1 because

for finite n, both |viipWq| and ρ´1i are strictly less than one. Although the

“angle” between ûi and ui is quantified in (2.12), the theorem itself is useless

in adjusting the bias. This is because the direction along which ûi moves away

from ui is random, that is, uniformly distributed; see Wang and Fan (2017) for

the limiting distribution of ûi under a general asymptotic scenario of d{n Ñ 8,

while d{pnλiq
´1 is bounded.

In short, while the bias in the PC direction is challenging to remove, the bias

in the sample and prediction scores can be quantified and removed.

3. Bias-Adjusted Scores

In this section, we describe and compare several choices for the estimation

of the bias-adjustment factor ρi. Note that the sample and prediction scores are

both rotated by the same direction and amount, specified in the matrix R. For ap-

plications requiring score matching (e.g., classification rules trained on the sample

scores or the ancestry estimation discussed in the introduction), coordinate-free

methods are often used, and there is less practical advantage in estimating R.

We focus on adjusting the scores by estimating ρi.

Suppose that the number of effective PCS, m, is prespecified or estimated

in advance. Our first estimator is obtained by replacing τ2 and λipWq in ρi “
a

1` τ2{λipWq with reasonable estimators. In particular, we set
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τ̃2 “

řn
i“m`1 λ̂i

n´m

n

d
, λ̃ipWq “ d´1nλ̂i ´ τ

2 (3.1)

and

ρ̃i “

d

1`
τ̃2

λ̃ipWq
, pi “ 1, . . . ,mq. (3.2)

This simple estimator ρ̃i is, in fact, consistent.

Corollary 1. Suppose the assumptions of Lemma 1 are satisfied. Let d Ñ 8.

For i “ 1, . . . ,m, conditional on W1, τ̃2, λ̃ipWq, and ρ̃i are consistent estimators

of τ2, λipWq, and ρi, respectively.

Using (3.2), the bias-adjusted sample and prediction scores are ŵ
padjq
i “

ρ̃´1i ŵi and ŵ
padjq
i˚ “ ρ̃iŵi˚, respectively, for i “ 1, . . . ,m. The sample and predic-

tion score matrices in (2.5) and (2.6) are then adjusted to the following, using

S̃ “ diagpρ̃‘, . . . , ρ̃mq:

xW
padjq
1 “ S̃´1xW1, xW

padjq
˚ “ S̃xW˚. (3.3)

An application of the above bias-adjustment procedure is exemplified in

Fig. 3. There, the magnitudes of the sample and prediction scores are well-

adjusted.

Our next proposed estimators are motivated by the well-known jackknife

bias adjustment procedures and also by the leave-one-out cross-validation. For

simplicity, assume m “ 1. The bias-adjustment factor we aim to estimate is

ρ1 “ p1` τ
2{}ξ1}

2
2q

1{2, where ξ1 “ d´1{2w1 “ σ1pz11, . . . , z1nq
T denote the scaled

true scores for the first PC.

For each j “ 1, . . . , n, write the jth scaled sample score as $̂1j “ d´1{2ûT

1Xj ,

and the jth scaled prediction score as

$̂1pjq “ d´1{2ûT

1p´jqXj ,

where û1p´jq is the first PC direction, computed from Xp´jq, that is, the data

except the jth observation.

From Theorem 1, ρ1 is the asymptotic bias-adjustment factor for $̂1; $̂1j “

ρ1$1j`Oppd
´1{4q. For $̂1pjq, again applying Theorem 1, we get $̂1pjq “ ρ´11p´jq$1j

` Oppd
´1{2q, where ρ1p´jq “ p1` τ

2{}$1p´jq}
2
2q

1{2 is the bias-adjustment factor

computed from Xp´jq, using $1p´jq “ σ1pz11, . . . , z1,j´1, z1,j`1, . . . z1nq
T. To sim-

plify the terms, a Taylor expansion is used to expand ρ1p´jq as a function of

$2
1j{n, resulting in
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Figure 3. Bias-adjusted sample and prediction scores using (3.3) for the toy data in-
troduced in Fig. 1. The estimates (3.2) are pρ̃1, ρ̃2q “ p1.385, 1.546q, and are very close
to the theoretical values pρ1, ρ2q “ p1.385, 1.557q. The sample and prediction scores are
simultaneously rotated about 16 degrees clockwise.

ρ1p´jq “

˜

1`
τ2{n

}$1}
2
2{n´$

2
1j{n

¸1{2

“ ρ1 `
1

2ρ1

}$1}
2
2{n

τ2
$2

1j

n
`Op

ˆ

1

n2

˙

. (3.4)

Using the approximation

ρ1ρ1p´jq « ρ21 `
}$1}

2
2

2τ2
$2

1j

n2
,

given by (3.4), we write the ratio of the sample and prediction scores to cancel

out the unknown true score $1j , as follows:

ˆ

ŵ1j

ŵ1pjq

˙1{2

“

ˆ

$̂1j

$̂1pjq

˙1{2

« ρ1.

Based on the above heuristic, we define the following estimators of the bias-

adjustment factors:

ρ̂
p1q
i “

1

n

n
ÿ

j“1

ˆ

ŵij
ŵipjq

˙1{2

, (3.5)
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ρ̂
p2q
i “

˜

řn
j“1 ŵij

řn
j“1 ŵipjq

¸1{2

, (3.6)

ρ̂
p3q
i “

˜

řn
j“1 ŵ

2
ij

řn
j“1 ŵ

2
ipjq

¸1{4

. (3.7)

In implementing the above estimators, we used absolute values of the sample and

predicted scores. The estimator (3.7) is a ratio of the sample and prediction score

variances, obtained using a leave-one-out estimation of the prediction scores.

The estimators ρ̂
p1q
i , ρ̂

p2q
i , and ρ̂

p3q
i tend to overestimate ρ for small sample

sizes, as expected from (3.4). In our numerical experiments, these three estima-

tors perform similarly.

4. Numerical Studies

4.1. Simulations to confirm the asymptotic bias and near-perfect cor-

relations

In this section, we compare the theoretical asymptotic quantities derived in

Section 2.3 with their finite-dimensional empirical counterparts.

First, the theoretical values of the scaling bias ρi and the rotation matrix

R in Theorem 1 are compared with their empirical counterparts. The empirical

counterparts of the two matrices R and S are defined as the minimizer of the

Procrustes problem

min
›

›

›
W1 ´xW T

1 S
´1
0 R0

›

›

›

2

F
, (4.1)

with the constraint that S0 is a diagonal matrix with positive entries, and R0 is an

orthogonal matrix. The solutions are denoted by qS “ diagpρ̌1pW1q, . . . , ρ̌mpW1qq

and qR, respectively. For simplicity, we consider the m “ 2 case, and parameterize

R by the rotation angle, θR “ cos´1pR1,1q, and qR by θ̌R “ cos´1p qR1,1q. We

compare θR with θ̌R and ρipW1q with ρ̌ipW1q from a two-component model with

pn, dq “ p50, 5,000q (specifically, the spike model with m “ 2 and β “ 0.3 in

Section 4.2). Note that the theoretical values and the best-fitted values both

depend on the true scores W1. To capture the natural variation given by W1,

the experiment is repeated 100 times. The results, summarized in the top row of

Fig. 4, confirm that the asymptotic statements in Theorem 1 approximately hold

for finite dimensions. In particular, the rotation matrices R and qR are very close

to each other. The Procrustes-fitted, or “best”, ρ̌i tends to be larger than the

asymptotic, or theoretical, ρi, especially for i “ 2 (shown as © in Fig. 4) and for

larger values of ρ2. This is not unexpected. Larger values of ρ2 are from smaller



BIAS IN PRINCIPAL COMPONENT SCORES 953

0 5 10 15 20 25 30
Theory

0

5

10

15

20

25

30
B
es
t

Angles (in degree) in R

1.5 2 2.5
Theory

1.5

2

2.5

B
es
t

Bias-adjustment factors in S

0.8 0.85 0.9 0.95 1
Theory

0.8

0.85

0.9

0.95

1

Em
pi
ric
al

Correlation coefficient (sample)

0.8 0.85 0.9 0.95 1
Theory

0.8

0.85

0.9

0.95

1

Em
pi
ric
al

Correlation coefficient (prediction)

Figure 4. (Top row) Theoretical rotation angles θR and bias-adjustment factors ρ1 (ˆ),
ρ2 (©), compared with the best-fitting Procrustes counterparts (θ̌R, ρ̌ipW1q). (Bottom
row) Empirical correlations compared with their limits in Theorem 2.

λ2pWq. Consider an extreme case where λ2pWq “ 0. Then by (2.7) in Theorem 1,

the sample scores are of magnitude d1{2 compared to the true scores. Thus, as

λ2pWq decreases to zero, the Procrustes scaler ρ̌2 empirically interpolates the

finite-scaling case (2.5) to the diverging case (2.7) of Theorem 1.

Second, we compare the limit of the correlation coefficients in Theorem 2

with the finite-dimensional empirical correlations, rpŵk, wkq, for k “ 1, 2. For

the correlation coefficient of the prediction scores, we use the sample correlation

coefficient between pŵk˚, wk˚q, as an estimate of Corrpŵk˚, wk˚ | W1q. The sim-

ulated results are shown in the bottom row of Fig. 4. The empirical correlation

coefficients tend to be smaller than their theoretical counterparts, but both are

higher for a stronger “signal strength” nσ2k “ EpλkpWqq.
Third, from the same simulations, it can be checked that the kth, where

k ą m, sample scores are diverging, while the prediction scores are stable, as

indicated in (2.7) and (2.8). To confirm this, we choose k “ 3, and for each

experiment, compute yVarpŵ3q, the sample variance of the sample scores, and an

approximation of Varpŵ3˚q. The results are shown in Table 1. As expected, the
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Table 1. The kth sample and prediction scores (unadjusted) for the case k ą m. Shown
are the mean (standard deviation) of the variances and correlation coefficients to true
scores from 100 repetitions. The true variance is λ3 “ Varpw3˚q « 6.5.

Sample scores Prediction scores

Variance 120.7 (4.4) 1.38 (0.2)

Corr. Coef. -0.0024(0.2) -0.004(0.15)

sample scores are grossly inflated, while the prediction scores are stable. Finally,

the conjecture in Remark 5 is checked empirically; Table 1 also shows that for

large d, the sample (or prediction) and true scores for the kth component, for

k ą m, are nearly uncorrelated.

4.2. Numerical performance of the bias-adjustment factor estimation

We now test our estimators of the bias-adjustment factor ρi using the follow-

ing data-generating models with m “ 2.

The first model is called a spike model. We sample from the d-dimensional

zero-mean normal distribution where the first two largest eigenvalues of the

covariance matrix are λi “ σ2i d, for i “ 1, 2, where pσ21, σ
2
2q “ p0.02, 0.01q.

The rest of eigenvalues are slowly decreasing. In particular, λi “ τi´β, where

τ “ r
řd
i“3 i

´β{pd´2qs´1. We set β “ 0.3 or 0.5. This spike model has more than

two unique PCs for each fixed dimension, but in the limit d Ñ 8, only the first

two PCs are useful.

The second model is a mixture model. Let µg (g “ 1, 2, 3) be d-dimensional

vectors, the elements of which are randomly drawn from t´a, 0, au with replace-

ment for a given a ą 0, then assumed as fixed quantities. Given µg, we sample

from the mixture model X | G “ g „ Npµg, Idq, P pG “ gq “ pg ą 0,
ř3
g“1 pg “ 1.

We set pp1, p2, p3q “ p0.5, 0.3, 0.2q. It can be checked that CovpXq satisfies the

assumption of the two-component model in (A1)–(A4).

For various high-dimension low-sample-size situations, ranging d “ 5,000

to 20,000 and n “ 50 to 100, random samples from each of these models are

generated. For each case, the theoretical quantity ρi “ ρipW1q and the best-

fitted Procrustes scaler ρ̌i “ ρ̌ipW1q are computed. These quantities depend

on the m ˆ n random matrix W1. The mean and the standard deviation of ρi
(from 100 repetitions) are shown in the first column of Table 2. As expected,

the theoretical value ρi depends on the sample size n; here, a large sample size

decreases the bias, Epρiq, and also decreases the variance Varpρiq.

The mean of the best-fitted scaler ρ̌i (i “ 1) is displayed in the second column

of the table. While they are quite close to their theoretical counterpart, the ρ̌is
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Table 2. Simulation results from 100 repetitions. “Theory” is the mean (standard devi-

ation) of ρi; “Best” is ρ̌i (4.1); “Asymp.” is ρ̃i (3.2); “Jackknife” is ρ̂
p1q
i (3.5); “LZW” is

from Lee, Zou and Wright (2010). Averages are shown for the latter four columns. The
standard errors of the quantities in the estimations of ρi are at most 0.04.

ρ1
d n Theory Best Asymp. Jackknife LZW

5,000 50 1.41 (0.07) 1.42 1.40 1.43 1.41

Spike model 10,000 50 1.42 (0.06) 1.43 1.42 1.44 1.42

β “ 0.3 10,000 100 1.23 (0.03) 1.23 1.23 1.24 1.23

20,000 100 1.23 (0.02) 1.23 1.23 1.24 1.23

5,000 50 1.42 (0.08) 1.45 1.41 1.45 1.40

Spike model 10,000 50 1.43 (0.07) 1.45 1.43 1.46 1.42

β “ 0.5 10,000 100 1.22 (0.02) 1.23 1.22 1.23 1.21

20,000 100 1.23 (0.02) 1.23 1.23 1.24 1.22

5,000 50 2.06 (0.06) 2.22 1.92 2.14 2.00

Mixture model 10,000 50 2.09 (0.06) 2.17 1.98 2.14 2.02

a “ 0.15 10,000 100 1.63 (0.02) 1.67 1.61 1.65 1.63

20,000 100 1.64 (0.02) 1.66 1.62 1.66 1.63

are significantly larger for the mixture model, the signal-to-noise ratio of which

is smaller than the spike model, and for the not-so-large dimension d “ 5,000.

This is not unexpected, because the theoretical values are also based on the

dimension-increasing asymptotic arguments.

We further compute the proposed estimators of ρi, given in (3.2) and (3.5)–

(3.7). We also compute the estimator derived from Lee, Zou and Wright (2010),

which is the square-root of the reciprocal of the shrinkage factor, obtained by

numerical iterations, and denoted by d̂ν in Lee, Zou and Wright (2010). (The

relation of Lee, Zou and Wright (2010) to our work is discussed further in Sec-

tion 5.) All of the methods considered provide accurate estimates of the the-

oretical quantity ρi. We omit the numerical results from the estimators (3.6)

and (3.7), because they perform similarly to (3.5). The Supplementary Material

contains an extended table of Table 2, including the case for ρ2.

4.3. Bias-adjustment improves classification

Our last simulation study is an application of the bias-adjustment procedure

to classification. Our training and testing data, each with sample size 100, are

sampled from the mixture model with three groups, as described in Section 4.2.

As is common in practice (Adam, Sherratt and Zholobenko (2008)), we first per-

form a dimension reduction by the standard PCA. Then, we train a classification
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Table 3. Means (standard errors) of misclassification error rates (in percent).

Unadjusted scores Bias-adjusted scores
Training Error 0.04(0.02) 0.07(0.03)
Testing Error 21.4(1.33) 1.98(0.23)
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Figure 5. Bias-adjusted scores from the mixture models greatly improve the classification
performance. Different colors correspond to different groups. The symbol © represents
the sample scores (unadjusted in the left, adjusted in the right); the symbol ˆ represents
the prediction scores.

rule using a support vector machine (SVM, Cristianini and Shawe-Taylor (2000))

on the sample PC scores. In this simulation, we fix m “ 2 and d “ 5,000. We

compare the training and testing misclassification error rates (estimated by 100

repetitions) of the SVMs trained (and tested) either on the unadjusted sample

and prediction scores, xW1 and xW‹, or on the bias-adjusted sample and prediction

scores, xW
padjq
1 and xW

padjq
‹ in (3.3). The estimated error rates are shown in Table 3.

It is clear that the use of bias-adjusted scores greatly improves the performance

of the classification.

To better understand the improvement of the classification performance, we

plot the sample and prediction scores that are inputs of the classifier. In Fig. 5,

the classifier is estimated from the the sample scores (symbol ©) and is used

to classify future observations, that is, the prediction scores (symbol ˆ). Owing

to the scaling bias, the unadjusted sample and prediction scores are of different

scales (shown in the left panel), and classification is bound to fail. On the other

hand, the proposed bias-adjustment, shown in the right panel, works well for this

data set, leading to better classification performance.
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5. Discussion

The standard PCA is useful in the dimension reduction of data from the m-

component models with diverging variances. In particular, in the high-dimension

low-sample-size asymptotic scenario, we reveal that the sample and prediction

scores have systematic biases that can be consistently adjusted. We propose

several estimators of the scaling bias, while there is no compelling reason to

adjust the rotational bias. The amount of bias is large when the sample size

is small and when the variance of the accumulated noise is large relative to the

variances of the first m components.

Lee, Zou and Wright (2010) discuss adjusting the bias in the prediction

of PCs, based on the random matrix theory and the asymptotic scenario of

d{n Ñ γ P p0,8q, n Ñ 8. They show that the prediction scores tend to be

smaller than the sample scores, and the ratio of the shrinkage is asymptotically

sdpŵi1q{sdpŵi˚q « ρ
pLZWq
i “ pλi´ 1q{pλi`γ´ 1q. This “shrinkage factor” ρ

pLZWq
i

corresponds to the squared reciprocal of our scaling bias, ρ´2i . Our work can

be viewed as an extension of Lee, Zou and Wright (2010) from the asymptotic

regime d — n to the high-dimension low-sample-size situations (see also Lee, Zou

and Wright (2014); Dey and Lee (2019)). Finally, note that in the asymptotic

scenario of Lee, Zou and Wright (2010, 2014) and Dey and Lee (2019) there is

no rotational bias. This is because in their limit, the sample size is infinite. We

show that the rotational bias is universal to both the sample and the prediction

scores, and is of order n´1{2.

Supplementary Material

The online Supplementary Material contains proofs of all results and a table

summarizing the simulation results.
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