
Statistica Sinica 32 (2022), 825-845
doi:https://doi.org/10.5705/ss.202020.0223

A CLASS OF MULTILEVEL NONREGULAR DESIGNS

FOR STUDYING QUANTITATIVE FACTORS
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Abstract: Fractional factorial designs are widely used to design screening exper-

iments. Nonregular fractional factorial designs can have better properties than

regular designs, but their construction is challenging. Current research on the con-

struction of nonregular designs focuses on two-level designs. We provide a novel

class of multilevel nonregular designs by permuting levels of regular designs. We

develop a theory illustrating how levels can be permuted without a computer search

and, accordingly, propose a sequential method for constructing nonregular designs.

Compared with regular designs, these nonregular designs provide more accurate

estimations on factorial effects and more efficient screening for experiments with

quantitative factors. We further explore the space-filling property of the obtained

designs and demonstrate their superiority.

Key words and phrases: Generalized minimum aberration, geometric isomorphism,

level permutation, orthogonal array, regular design, Williams transformation.

1. Introduction

Screening experiments are commonly designed to investigate controlled fac-

tors and identify which of them are important. Fractional factorial designs are

highly suitable for screening experiments because they allow us to investigate

many factors simultaneously using a small number of runs. These designs are

classified into two broad types: regular designs and nonregular designs. Designs

that can be constructed by defining relations between factors are called regu-

lar designs; all other designs are nonregular. There are many more nonregular

designs than there are regular designs. Good nonregular designs can either fill

the gaps between regular designs in terms of various run sizes, or provide better

estimations for factorial effects.

The construction of good nonregular designs is important and challenging.

Constructions for two-level nonregular designs have been presented by Plackett

and Burman (1946), Deng and Tang (2002), Xu and Deng (2005), Fang, Zhang

and Li (2007), and Phoa and Xu (2009), among others. While numerous con-
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structions are available for two-level designs, these designs are not able to provide

information on quadratic or higher order factorial effects. Multilevel designs with

three or more levels are useful in many scientific and engineering fields, such as

drug combination experiments (Ding et al. (2013); Jaynes et al. (2013); Silva

et al. (2016); Clemens et al. (2019)), because these designs enable researchers to

study complex factorial effects and interactions. They are also flexible in terms

of the number of levels for factors, without the strict restriction on Latin hy-

percube designs (LHDs) that the number of levels has to be the same as the

run size. Nevertheless, there are very few constructions for multilevel nonregular

designs (Xu, Phoa and Wong (2009)), because the large number of such designs

makes providing an efficient algorithm for searching the design space extremely

challenging. A systematic construction also seems impossible without a unified

mathematical description.

This study provides a class of multilevel nonregular designs by manipulating

nonlinear-level permutations on regular designs. Although linear-level permuta-

tions have been studied by Cheng and Wu (2001), Xu, Cheng and Wu (2004), and

Ye, Tsai and Li (2007) for three-level designs, and by Tang and Xu (2014) for im-

proving the properties of multilevel regular designs, nonlinear level permutations

have not been studied. Note that linearly permuted regular designs can be still

considered as regular because they are just cosets of regular designs and share

the same defining relationship. We consider a nonlinear-level permutation based

on the Williams transformation, which was first used by Williams (1949) to con-

struct balanced Latin square designs, and then by Butler (2001) and Wang, Xiao

and Xu (2018) to construct orthogonal or maximin LHDs. However, our purpose

differs from theirs. We provide a class of nonregular designs by manipulating

nonlinear-level permutations on regular designs using the Williams transforma-

tion, and develop a general theory on the obtained designs. Using this theory, we

propose a sequential construction method that efficiently constructs good designs

in terms of the minimum β-aberration criterion, which is used to assess multilevel

designs. We further explore the space-filling property of the obtained designs and

demonstrate their superiority.

The remainder of the paper is organized as follows. Section 2 introduces the

minimum β-aberration criterion and generates a class of nonregular designs using

the Williams transformation. Section 3 presents our main theoretical results.

Based on the theory, in Section 4, we propose a sequential construction method

and compare the constructed designs with available designs. In Section 5, we

apply the constructed designs. Section 6 concludes the paper. All proofs are

deferred to the Appendix.
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2. Notation, Background, and Definitions

Let Zq = {0, . . . , q − 1}. A q-level design D = (xij) with N runs and n

factors is an N × n matrix over Zq, where each column corresponds to a factor.

Let p0(x) ≡ 1 and pj(x), for j = 1, . . . , q − 1, be an orthonormal polynomial of

order j defined on Zq, satisfying

q−1∑
x=0

pi(x)pj(x) =

{
0, i 6= j;

q, i = j.

The set {p0(x), p1(x), . . . , pq−1(x)} is called an orthonormal polynomial basis.

Multilevel designs are often used to study quantitative factors by fitting re-

sponse surface models such as polynomial models. A commonly accepted princi-

ple for polynomial models is that the effects of a lower polynomial order are more

important than those of a higher polynomial order, while the effects of the same

polynomial order are regarded as equally important. Based on this principle,

Cheng and Ye (2004) proposed the minimum β-aberration criterion for selecting

multilevel designs. For a q-level design D = (xij) with N runs and n factors,

define

βk(D) = N−2
∑
‖u‖1=k

∣∣∣∣∣∣
N∑
i=1

n∏
j=1

puj
(xij)

∣∣∣∣∣∣
2

for k = 1, . . . ,K, (2.1)

where u = (u1, . . . , un) ∈ Zn
q , ‖u‖1 = u1 + · · · + un, and K = n(q − 1). The

vector (β1(D), . . . , βK(D)) is called the β-wordlength pattern of D, and each βk
measures the overall aliasing between the jth- and the (k−j)th-order polynomial

terms, for all j, with 0 ≤ j ≤ k. The minimum β-aberration criterion sequentially

minimizes βk, for k = 1, 2, . . . ,K. Because linear and second-order terms are more

important than higher-order terms, the sequential minimization of β1, . . . , β4 is

adequate for choosing designs in practice. Tang and Xu (2014) and Lin, Yang

and Cheng (2017) provide statistical justifications and additional insights for

minimum β-aberration designs.

The minimum β-aberration criterion is an extension of the minimum G2-

aberration criterion (Tang and Deng (1999)) for two-level designs, but differs from

the generalized minimum aberration criterion (Xu and Wu (2001)) for multi-level

designs with qualitative factors.

For x ∈ Zq, the Williams transformation is defined by
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Table 1. The β-wordlength pattern of Db and Eb in Example 1.

b β3(Db) β4(Db) β3(Eb) β4(Eb)

0 0.125 0.525 0.442 0.004

1 0.125 0.525 0.168 0.021

2 0.125 0.096 0.168 0.021

3 0.000 0.686 0.442 0.004

4 0.125 0.096 0.000 0.027

W (x) =

2x, for 0 ≤ x < q

2
;

2(q − x)− 1, for
q

2
≤ x < q.

(2.2)

The Williams transformation is a permutation of Zq. For a design D = (xij), let

W (D) = (W (xij)). The following example shows that we can get better designs

from the Williams transformation.

Example 1. Consider a five-level regular design D with three columns, x1, x2,

and x3 = x1 + x2 (mod 5). By (2.1), β1(D) = β2(D) = 0, β3(D) = 0.125,

and β4(D) = 0.525. For each b = 0, . . . , 4, we obtain two designs using linear

permutations and the Williams transformation, namely, Db with columns x1, x2,

and x3 = x1 + x2 + b (mod 5), and Eb = W (Db). It can be verified that all

Db and Eb have β1 = β2 = 0. Table 1 shows their β3 and β4. The best design

from Db is D3 with β3 = 0 and β4 = 0.686, while the best design from Eb is E4

with β3 = 0 and β4 = 0.027. Design E4 performs much better than D3 under

the minimum β-aberration criterion, although both are better than the original

design D.

Remark 1. In the computation of βk defined in (2.1), the orthonormal poly-

nomials for a five-level factor are p0(x) = 1, p1(x) = (x − 2)/
√

2, p2(x) =√
10/7{p1(x)2 − 1}, p3(x) = {10p1(x)3 − 17p1(x)}/6, and p4(x) = {70p1(x)4 −

155p1(x)2 + 36}/
√

14.

Example 1 shows that from a regular design, we can obtain a series of non-

regular designs using linear permutations and the Williams transformation. This

series provides better designs than those of the original regular design and linearly

permuted designs.

In general, for a prime number q, a regular qn−m design D has n−m inde-

pendent columns, denoted as x1, . . . , xn−m, and m dependent columns, denoted

as xn−m+1, . . . , xn, which can be specified by m generators as

xn−m+i = ci1x1 + · · ·+ ci(n−m)xn−m (mod q), for i = 1, . . . ,m, (2.3)
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where each vector (ci1, . . . , ci(n−m)) is a generator with entries that are constants

in Zq. For each regular qn−m design D and b = (b1, . . . , bm) ∈ Zm
q , let

Db = (x1, . . . , xn−m, xn−m+1 + b1, . . . , xn + bm) (mod q), (2.4)

and

Eb = W (Db). (2.5)

Note that we only consider permutations for dependent columns in (2.4) because

linearly permuting one or more independent columns is equivalent to linearly

permuting some dependent columns, which can be seen from (2.3). Throughout

the paper, all additions between columns of a design are subject to the modulus

q, the number of levels of the design, as in (2.3) and (2.4). We omit the notation

(mod q) for such operations when no confusion is introduced. From each regular

qn−m design D, we can derive qm of Db and qm of Eb. To find the best design, one

can search over all possible permutations b ∈ Zm
q . However, this is cumbersome

and even infeasible in many cases. In the next section, we develop a theory to

determine the best Eb without employing a computer search.

For q = 3, the two classes of designs, Db and Eb, always have the same β-

wordlength patterns because they are geometrically isomorphic (Cheng and Ye

(2004)). However, with more than three levels, their performance varies signifi-

cantly under the minimum β-aberration criterion. Tang and Xu (2014) studied

the class of Db. As we have seen in Example 1, the class of Eb provides many

better designs than those of the class of Db.

3. Theoretical Results

We study the properties of Eb in this section. It is well known that a regular

design D is an orthogonal array of strength t ≥ 2. An orthogonal array is a design

in which all qt level combinations appear equally often in every submatrix formed

by t columns. Note that t is often omitted when it is equal to two. Because the

Williams transformation is a permutation of {0, . . . , q − 1}, if D = (xij) is a q-

level orthogonal array, then W (D) = (W (xij)) is still an orthogonal array. The

following result is from Tang and Xu (2014).

Lemma 1. For an orthogonal array of strength t, βk = 0, for k = 1, . . . , t.

From the construction in (2.5), Eb is an orthogonal array of the same strength

as D and Db. While we use designs of strength two in practice, Lemma 1 guar-

antees that β1(Eb) = β2(Eb) = 0; as such, linear terms are not aliased with the

intercept or with each other. Then, we want to minimize β3(Eb) in order to min-
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imize the aliasing between the linear and the second-order terms. The following

theorem gives a permutation b that ensures β3(Eb) = 0 so that no aliasing exists

between any linear terms and second-order terms.

Theorem 1. For an odd prime q, let

γ = W−1(
q − 1

2
) =


q − 1

4
, if q = 1 (mod 4);

3q − 1

4
, if q = 3 (mod 4).

(3.1)

Let D be a regular qn−m design generated by (2.3), and let Eb be defined by (2.5).

Then, β3(Eb∗) = 0, with b∗ = (b∗1, . . . , b
∗
m), where

b∗i =

1−
n−m∑
j=1

cij

 γ (i = 1, . . . ,m). (3.2)

Example 2. Consider a 73−1 design D with x3 = x1 + x2. Then, γ = (3 × 7 −
1)/4 = 5, and equation (3.2) gives b∗1 = 2. It can be verified that β3(E2) = 0 and

β4(E2) = 0.003. Consider another 73−1 design D with x3 = 2x1 + 2x2. Then,

γ = 5, and equation (3.2) gives b∗1 = 6. It can be verified that β3(E6) = 0 and

β4(E6) = 0.0196.

Theorem 1 states that given a regular design D, we can always find an Eb∗

such that β3(Eb∗) = 0. In the following, we give a sufficient condition for the Eb∗

to be the unique design with β3 = 0 among all possible qm Eb.

Definition 1. Let D be a regular qn−m design. If there exist n−m independent

columns of D, z1, . . . , zn−m, and a series of s+ 1 sets of columns, T0 ⊂ · · · ⊂ Ts,
such that T0 = {z1, . . . , zn−m},

Tk+1 = Tk ∪ {w ∈ D : w = c1w1 + c2w2 (mod q), w1, w2 ∈ Tk, c1, c2 ∈ Zq},
(3.3)

for k = 0, . . . , s − 1, and Ts = D, then D is called recursive. Furthermore, if

either c1 or c2 is restricted to 1 or −1 in (3.3) for all k, then D is called ordinary-

recursive; if both c1 and c2 are resticted to 1 or −1 in (3.3) for all k, then D is

called simple-recursive.

Example 3. Consider the 73−1 design D defined by x3 = 2x1 + 2x2 in Example

2. Clearly, D is recursive. Because −1 = 6 (mod 7), we have 2x1+2x2+6x3 = 0,

x1 + x2 + 3x3 = 0, and x2 = −x1 + 4x3. Then, D is also ordinary-recursive if

we take T0 = {x1, x3} and T1 = {x1, x2, x3} = D. However, D is not simple-

recursive.
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Table 2. The numbers of the three types of recursive designs with 25 and 49 runs.

25-run designs 49-run designs
n simple ordinary recursive simple ordinary recursive
3 2 6 8 2 10 18
4 6 22 24 6 99 135
5 20 32 32 20 517 540
6 16 16 16 70 1,214 1,215
7 252 1,458 1,458
8 267 729 729

Example 4. Consider a 55−2 design D with x4 = x1 +x2 and x5 = x1 +x2 +x3.

Take T0 = {x1, x2, x3}, T1 = {x1, x2, x3, x4}, and T2 = {x1, x2, x3, x4, x5} = D.

Then, D is simple-recursive. If x5 = x1 + x2 + 2x3 instead, then D is ordinary-

recursive, but not simple-recursive. Consider another 55−2 design D with x4 =

x1 + x2 and x5 = x1 + 2x2 + 2x3. This design is not recursive because x5 is

not involved in any word of length three. However, when one more column

x6 = x1 + 2x2 is added, it is ordinary-recursive.

Regular designs with q2 runs are popular because they are economical and

they guarantee that linear terms are uncorrelated. These designs accommodate

two independent columns and up to q − 1 dependent columns. By Definition

1, they are all recursive by letting T0 include the two independent columns and

setting T1 = D.

Lemma 2. Let q be an odd prime, and let D be a regular design of q2 runs.

Then, D is recursive.

Clearly, recursive designs include ordinary-recursive designs, which, in turn,

include simple-recursive designs. For three-level designs, the three types of de-

signs are equivalent; however, they differ markedly for designs with more than

three levels. Table 2 compares the numbers of the three types of designs with 25

and 49 runs. There are far fewer simple-recursive designs than there are other

types of designs. Although there is a difference between the numbers of ordinary-

recursive and recursive designs, the difference is small. As the number of columns

increases, all designs tend to be ordinary-recursive.

The next theorem gives a sufficient condition for Eb∗ to be the unique design

with β3 = 0 among all possible qm Eb.

Theorem 2. For an odd prime q, let D be a regular qn−m design defined by

(2.3), and let Eb be defined as in (2.5). If D is ordinary-recursive, then Eb∗ with

b∗ defined in (3.2) is the only design with β3 = 0 among all qm Eb derived from
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D.

In fact, we can show that if D has no more than 13 levels, the result of

Theorem 2 can be extended beyond ordinary-recursive designs. That is, we have

the following more general result for q ≤ 13.

Theorem 3. For a recursive qn−m design D, if q is an odd prime and q ≤ 13,

Eb∗ with b∗ defined in (3.2) is the only design with β3 = 0 among all Eb derived

from D.

Theorem 3 is not true for q ≥ 17. A counterexample for q = 17 is provided

by a 173−1 design with x3 = 2x1 + 4x2. By (3.2), b∗ = 14. Then, E14 has β3 = 0,

while the design E4 with columns x1, x2, and x3 + 4 also has zero β3. That said,

as the number of columns increases, the number of non-ordinary-recursive regular

designs decreases dramatically; thus, Theorem 2 works for most recursive designs

with many columns.

Example 5. Consider a 78−6 design D with x3 = x1 + x2, x4 = x1 + 2x2, x5 =

x1+4x2, x6 = x1+5x2, x7 = 2x1+5x2, and x8 = 2x1+6x2. There are 76 = 117,649

Eb derived from D, which makes it cumbersome, if not impossible, to do an

exhaustive search for the best Eb. Note that x7 = x1 + x6, and x8 = x3 + x6.

Therefore, D is ordinary-recursive by taking T0 = {x1, x2}, T1 = {x1, . . . , x6},
and T2 = {x1, . . . , x8} = D. Equation (3.2) gives b∗1 = 2, b∗2 = 4, b∗3 = 1, b∗4 =

3, b∗5 = 5, and b∗6 = 0. It can be verified that β3(Eb∗) = 0 and β4(Eb∗) = 9.677.

By Theorem 2, Eb∗ is the best design among all Eb derived from D under the

minimum β-aberration criterion.

By Theorems 2 and 3, for an ordinary-recursive design or a recursive design

with no more than 13 levels, Eb∗ is the best design among all Eb, which is obtained

without a computer search. Theorem 2 does not apply to the class of linearly

permuted designs Db. A counterexample follows.

Example 6. Consider the 73−1 design D defined by x3 = 2x1+2x2 in Example 2.

Example 3 shows that it is ordinary-recursive, but there are three Db with zero

β3. Specifically, it is easy to verify that β3(Db) = 0 for b = 0, 3, 5.

In fact, Tang and Xu (2014) showed that if D is simple-recursive, the design

Db̃ given by

b̃i =

1−
n−m∑
j=1

cij

 q − 1

2
(i = 1, . . . ,m) (3.4)

is the unique design with β3 = 0 among all Db. As we have shown above, only

a small number of regular designs are simple-recursive. Therefore, results on
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simple-recursive designs are usually not applicable for designs with more than

three levels. In contrast, Theorem 2 is more general and applies to the broader

classes of ordinary-recursive and recursive designs.

Theorem 3 and Lemma 2 indicate the following result.

Corollary 1. For an odd prime q ≤ 13, let D be a regular design of q2 runs.

Then, Eb∗ with b∗ defined as in (3.2) is the unique design with β3 = 0 among all

Eb derived from D.

Now, we show another useful property of Eb∗ . A design D over Zq is called

mirror-symmetric if (q − 1)J −D is the same design as D, where J is a matrix

of unity. Mirror-symmetric designs include two-level foldover designs as special

cases.

Theorem 4. For an odd prime q, let D be a regular qn−m design defined by

(2.3), and let Eb be defined as in (2.5). Then, Eb∗ with b∗ defined in (3.2) is

mirror-symmetric.

Tang and Xu (2014) showed that a design is mirror-symmetric if and only if

it has βk = 0 for all odd k. By Theorem 4, Eb∗ has βk(Eb∗) = 0 for all odd k.

This guarantees that odd-order terms are not aliased with any even-order term.

Specifically, linear terms are not aliased with any even-order term.

4. Construction Method and Design Comparisons

Based on our theoretical results, we propose a sequential method for con-

structing multilevel nonregular designs. For simplicity, we focus on designs with

q2 runs, although the method and results apply to general qn−m designs. A regu-

lar fractional factorial design with q2 runs has two independent columns, denoted

as x1 and x2, and can accommodate up to (q − 1) dependent columns, each of

which is generated by c1x1 +c2x2, with c1, c2 ∈ {1, . . . , q−1}. Then, the first two

columns of Eb∗ are W (x1) and W (x2), respectively. To obtain n ≥ 3 columns,

we add columns to Eb∗ sequentially by searching over generators (c1, c2). Each

new column is generated by W (c1x1 + c2x2 + b∗), where b∗ = (1− c1− c2)γ, with

γ defined in (3.1) and (c1, c2) minimizing β4(Eb∗); that is,

(c1, c2) = argmin
(c1,c2)

β4(Eb∗).

The last three columns of Tables 3–5 show the generators of the added columns,

as well as the β-wordlength patterns of the obtained Eb∗ .

To see the merit of Eb∗ , we compare it with commonly used regular designs
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Table 3. Comparison of β-wordlength patterns for 25-run designs with five levels.

D Db̃ Eb∗

n β3 β4 Generators β3 β4 Generators β3 β4
3 0.125 0.525 (1,2) 0 0.271 (1,1) 0 0.027

4 0.375 1.361 (2,1) 0 1.336 (1,2) 0 1.037

5 0.750 3.029 (1,4) 0 3.793 (1,3) 0 3.768

6 1.250 6.786 (1,1) 0 8.250 (2,3) 0 8.250

Table 4. Comparison of β-wordlength patterns for 49-run designs with seven levels.

D Db̃ Eb∗

n β3 β4 Generators β3 β4 Generators β3 β4
3 0.063 0.563 (2,3) 0 0.063 (1,1) 0 0.003

4 0.188 1.354 (1,4) 0 0.313 (3,5) 0 0.055

5 0.375 2.440 (2,5) 0 1.135 (3,6) 0 0.836

6 0.625 4.313 (1,2) 0 3.094 (2,5) 0 2.368

7 0.938 7.401 (2,2) 0 6.438 (2,6) 0 4.928

8 1.312 12.78 (2,6) 0 11.23 (2,3) 0 9.677

and the class of Db̃. The regular design of Mukerjee and Wu (2006), denoted by

D, consists of the first n columns of

x1, x2, x1 + x2, x1 + 2x2, x1 + 3x2, . . . , x1 + (q − 1)x2. (4.1)

The design Db̃ is obtained sequentially similarly to the generation of Eb∗ . The

only difference is that the added column of Db̃ is c1x1 + c2x2 + b̃, where b̃ =

(1− c1 − c2)(q − 1)/2. Tables 3–5 compare the obtained designs D, Db̃, and Eb∗

with 25 runs, 49 runs, and 121 runs, respectively. We can see that Eb∗ always

performs best for any design size.

To illustrate the merit of the obtained design Eb∗ , we further examine its

space-filling property. For an N ×n design, we consider the maximin measure in

all projection dimensions, which is given by

Mms = min
r=1,...,(n

s)

 1(
N
2

) N−1∑
i=1

N∑
j=i+1

1

d2sij,sr


−1/(2s)

, for s = 1, . . . , n,

where dij,sr is the Euclidean distance between the ith and jth design points in

the rth projection of dimension s. Design points are scaled to [0, 1]n to apply

this measure; that is, the jth column is obtained using xj/(q− 1). This measure

was proposed in Joseph, Gul and Ba (2015) to assess the “maximin projection
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Table 5. Comparison of β-wordlength patterns for 121-run designs with 11 levels.

D Db̃ Eb∗

n β3 β4 Generators β3 β4 Generators β3 β4
3 0.025 0.585 (2,4) 0 0.010 (1,1) 0 0.0002

4 0.075 1.388 (4,2) 0 0.055 (2,4) 0 0.005

5 0.150 2.350 (5,3) 0 0.281 (4,2) 0 0.015

6 0.250 3.629 (3,5) 0 0.710 (2,9) 0 0.031

7 0.375 5.274 (4,7) 0 1.466 (2,8) 0 0.637

8 0.525 7.682 (1,3) 0 3.152 (5,3) 0 1.308

9 0.700 11.07 (2,8) 0 5.519 (4,10) 0 3.572

10 0.900 15.82 (3,3) 0 8.891 (1,7) 0 5.864

11 1.125 22.26 (1,7) 0 13.49 (5,1) 0 9.896

12 1.375 31.29 (4,10) 0 19.65 (5,4) 0 14.44

designs.” Designs with larger Mms values are more space-filling in s-dimension

projections. Figure 1 plots the Mms values of the 121× 12 designs in Table 5 for

s = 1, . . . , 12. We also generate a 121 × 12 maximum-projection LHD from the

R package MaxPro (Joseph, Gul and Ba (2015)), and include its Mms values in

Figure 1. The design is claimed to be space-filling in all projected dimensions, so

can serve as a benchmark in the comparison. Because this design has 121 levels,

we further collapse it to an 11-level design and include the Mms values of the

collapsed design in Figure 1. To obtain a good maximum-projection design, the

R package MaxPro is run 100 times and the best design is selected. It takes, on

average, seven seconds to get a maximum-projection design. Therefore, to run

the package 100 times takes about 12 minutes, whereas it takes less than a second

to obtain any of the other designs in the plot. Even so, Figure 1 shows that Eb∗

outperforms the selected maximum-projection design and its collapsed design for

all s ≤ 11 projection dimensions, although the collapsed design is marginally

better than Eb∗ for the full dimension s = 12. In addition, Eb∗ outperforms

all other designs in Figure 1 on projection dimension s = 2, . . . , 10, and is only

slightly worse than Db̃ when s = 11. The good performance of Eb∗ comes from

its zero β3 and smaller β4 values.

We also compare designs of other sizes in Table 5, finding similar perfor-

mance. This is because the designs in Table 5 are obtained sequentially, such

that those with fewer than 12 columns are actually projections of the 121 × 12

designs. Therefore, Figure 1 also reflects the projection properties of designs with

fewer columns. Similar results hold for 25-run and 49-run designs.
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Figure 1. Plot of Mms (the larger the better) against s for five designs: D (circle),
Db̃ (cross), Eb∗ (square), the maximum-projection design (triangle), and the collapsed
maximum-projection design (plus).

5. Applications

Consider applying the three 25-run designs with three columns and five levels

in Table 3 to the following normalized second-order polynomial model:

y = α0 +

3∑
j=1

p1(xj)αj +

3∑
j=1

p2(xj)αjj +

2∑
j=1

3∑
k=j+1

p1(xj)p1(xk)αjk + ε, (5.1)

where p1(x) =
√

2(x − 2)/2; p2(x) =
√

5/14{(x − 2)2 − 2}; α0, αj , αjj , and

αjk are the intercept, linear, quadratic, and bilinear terms, respectively; and

ε ∼ N(0, σ2). Using this normalized model instead of a model with natural

terms (i.e., terms xj , x
2
j , and xjxk) produces orthogonality between any two linear

terms and between the linear and quadratic terms of an orthogonal array. For the

regular design D, because β3(D) 6= 0, the linear terms are aliased or correlated

with the bilinear terms, and the model in (5.1) is indeed not estimable. Whereas

both Db̃ and Eb∗ have β1 = β2 = β3 = 0, the intercept and linear terms are not

correlated with the quadratic and bilinear terms, and so they can be estimated

independently. For either design, let M denote the model matrix corresponding

to the three quadratic and three bilinear terms: α11, α22, α33, α12, α13, and α23.

The variance-covariance matrix of the estimates of the parameters for these terms

is σ2(MTM)−1. For Db̃, the variances of the estimates for the quadratic terms,

α11, α22, and α33, are 0.047σ2, 0.041σ2, and 0.047σ2, respectively, and for the

bilinear terms, α12, α13, and α23, are 0.051σ2, 0.050σ2, and 0.051σ2, respectively.
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For Eb∗ , the variance of the estimate for each quadratic term is 0.040σ2, and that

for each bilinear term is 0.041σ2. With Eb∗ , the variance of the quadratic terms

decreases by up to 14.9%, and the variance of the bilinear terms decreases by up

to 19.6%. It can be verified that the correlations between the estimates are also

smaller for Eb∗ than they are for Db̃.

Furthermore, consider the bias brought about by the inadequacy of the poly-

nomial terms in model (5.1). Suppose we have the following nonnegligible third-

order polynomial terms: ∑
i+j+k=3

αijkpi(x1)pj(x2)pk(x3).

Then, the estimates of the linear parameters in model (5.1) are biased by these

third-order terms. Specifically, for the estimators from the design Db̃, we have

E(α̂1) = α1 − 0.12α021 − 0.36α012 + 0.3α111,

E(α̂2) = α2 + 0.36α201 − 0.36α102 − 0.1α111,

E(α̂3) = α3 + 0.36α210 − 0.12α120 − 0.3α111,

and for the estimators from the design Eb∗ , we have

E(α̂1) = α1 + 0.096α021 − 0.096α012 + 0.08α111,

E(α̂2) = α2 + 0.096α201 − 0.096α102 + 0.08α111,

E(α̂3) = α3 + 0.096α210 + 0.096α120 − 0.08α111.

Obviously, the design Eb∗ brings less bias to the estimators of the linear terms

than does Db̃. Because β5 = 0 for both designs, the estimates of the second-order

terms from Db̃ and Eb∗ are not biased by third-order terms. In summary, Eb∗ is

better than Db̃ and Db for screening or studying quantitative factors. The results

are general and apply to other designs in Tables 3–5.

6. Conclusion

We provide a new class of nonregular designs based on the Williams trans-

formation, and develop a theory on the property of the obtained designs. Using

this theory, we further propose a sequential method for constructing nonregular

designs with minimum β-aberration. The sequential method is fast and efficient

in terms of generating multilevel nonregular designs using large numbers of runs

and factors. Although two-level nonregular designs have been catalogued by some

researchers, few works have examined the construction of multilevel nonregular
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designs. The approach presented here is a pioneering work in this field. The

obtained designs provide more accurate estimations on factorial effects and are

more efficient than regular designs for screening quantitative factors.

The obtained designs can be used to generate orthogonal LHDs, which are

common in computer experiments. Orthogonal LHDs have β1 = β2 = 0, thus

guaranteeing the orthogonality between the linear effects. A popular construc-

tion, proposed by Steinberg and Lin (2006) and Pang, Liu and Lin (2009), rotates

a regular design to obtain an LHD that inherits the orthogonality from both the

rotation matrix and the regular design. Wang et al. (2018) improved the method

by rotating a linearly permuted regular design, that is, Db̃, with b̃ defined in (3.4).

The orthogonal LHDs generated in this way have β3 = 0, and thus guarantee that

nonnegligible quadratic and bilinear effects do not contaminate the estimation of

the linear effects. Based on the results presented here, we can rotate the class

of designs Eb∗ to obtain new orthogonal LHDs that have smaller β4 values and

inherit the good space-filling property of Eb∗ . These LHDs may be good options

for designing computer experiments and Gaussian processing modeling.

The Williams transformation is pairwise linear, which is probably the sim-

plest nonlinear transformation. Nevertheless, it leads to some remarkable results,

such as Theorems 2 and 4. It would be of interest to identify and characterize

other nonlinear transformations that have similar properties. In addition, the

proposed method requires that the number of levels of the regular designs are

prime numbers, and does not work for, say, four-level designs. Therefore, it

would also be interesting to extend the method to include nonprime numbers of

levels.
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Appendix

A. Appendix: Proofs of Theorems

We need the following lemmas for the proofs.

Lemma A.1. The Db is the same design as De + γ (mod q), where e = b− b∗,
γ is defined as (3.1), and b∗ is defined as (3.2).

Proof. For Db, permuting all columns xj to xj − γ for j = 1, . . . , n is equivalent

to keeping the independent columns unchanged while permuting the dependent
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columns xn−m+i + bi to xn−m+i + bi − b∗i for i = 1, . . . ,m. Hence, Db − γ is the

same design as De with e = b− b∗. Equivalently, Db is the same design as De + γ

(mod q).

Lemma A.2. If x is a real number which is not an integer, then

∞∑
n=−∞

(−1)n−1

(n+ x)2
=
π2 cosπx

(sinπx)2
.

Proof. It is known that
∑∞

n=−∞ 1/(n+ x)2 = π2/(sinπx)2. Then

∞∑
n=−∞

(−1)n−1

(n+ x)2
=

∞∑
n=−∞

1

(n+ x)2
− 2

∑
even n

1

(n+ x)2

=
π2

(sinπx)2
− 1

2

π2

(sin(πx/2))2

=
π2 cosπx

(sinπx)2
.

Lemma A.3. Let p1(x) = ρ[x − (q − 1)/2] be the linear orthogonal polynomial,

where ρ =
√

12/[(q + 1)(q − 1)]. Then for x = 0, . . . , q − 1,

p1(x) = − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(x+ 0.5)

q

}
.

where

g(v) =
cos(π(v + 0.5)/q)

{sin(π(v + 0.5)/q)}2
. (A.1)

Proof. For x ∈ (0, q), the Fourier-cosine expansion of x− q/2 is given by

x− q

2
=

∞∑
v=1

av cos

(
vπx

q

)
,

with

av =
2

q

∫ q

0

(
x− q

2

)
cos

(
vπx

q

)
dx =

0, if v is even;

− 4q

v2π2
, if v is odd.

Then

p1(x) = −4ρq

π2

∑
odd v>0

1

v2
cos

(
vπ(x+ 0.5)

q

)
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= −2ρq

π2

∞∑
v=−∞

1

(2v + 1)2
cos

{
(2v + 1)π(x+ 0.5)

q

}

= −2ρq

π2

∞∑
k=−∞

q−1∑
v=0

1

(2kq + 2v + 1)2
cos

{
(2kq + 2v + 1)π(x+ 0.5)

q

}
.

Since for any integers k and x,

cos

{
(2kq + 2v + 1)π(x+ 0.5)

q

}
= (−1)k cos

{
(2v + 1)π(x+ 0.5)

q

}
,

we have

p1(x) = −2ρq

π2

q−1∑
v=0

∞∑
k=−∞

(−1)k

(2kq + 2v + 1)2
cos

{
(2v + 1)π(x+ 0.5)

q

}
.

By Lemma A.2 and (A.1), we have

p1(x) = − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(x+ 0.5)

q

}
.

Proof of Theorem 1. Denote e = b− b∗ and De = (yij). By Lemma A.1, Db is

the same design as (De + γ) (mod q), so Eb = W (Db) = W (De + γ). By Lemma

A.3,

p1 (W (x)) = − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(W (x) + 0.5)

q

}

= − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(2x+ 0.5)

q

}
because cos {(2v + 1)π(W (x) + 0.5)/q} = cos {(2v + 1)π(2x+ 0.5)/q} for any in-

teger v. Then we have

β3(Eb) = β3(W (De + γ))

= N−2
∑

y1,y2,y3

∣∣∣∣∣
N∑
i=1

p1(W (yi1 + γ))p1(W (yi2 + γ))p1(W (yi3 + γ))

∣∣∣∣∣
2

= N−2
(
ρ

2q

)6 ∑
y1,y2,y3

∣∣∣∣∣
q−1∑
v1=0

q−1∑
v2=0

q−1∑
v3=0

g(v1)g(v2)g(v3)S(y, v)

∣∣∣∣∣
2

, (A.2)

where
∑

y1,y2,y3
sums over all three different columns y1, y2, y3 in De, yj = (y1j ,
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. . . , yNj) for j = 1, 2, 3, and

S(y, v) =

N∑
i=1

3∏
j=1

cos

{
(2vj + 1)π(2yij + 2γ + 0.5)

q

}

=

N∑
i=1

3∏
j=1

(−1)(q+1)/2+vj sin

{
2(2vj + 1)πyij

q

}

= (−1)(q+1)/2+v1+v2+v3

N∑
i=1

3∏
j=1

sin

{
2(2vj + 1)πyij

q

}
.

If b = b∗, e = 0 and De = D. Because D is a regular design, it is a linear space

over Zq. Thus, (q − yi1, . . . , q − yin) ∈ D whenever (yi1, . . . , yin) ∈ D. Then

S(y, v) = 0 for any y = (y1, y2, y3) and v = (v1, v2, v3). By (A.2), β3(Eb∗) = 0.

Proof of Theorem 2. Following the proof of Theorem 1, if b 6= b∗, then e =

b − b∗ has nonzero components. Since D is ordinary-recursive, there exist three

columns, say z1, z2, z3, in D such that z3 = c1z1 + c2z2, c1 = 1 or −1, c2 ∈ Zq,

and z1, z2 and z3 + e0 are three columns in De, where e0 is a nonzero component

of e. We only consider c1 = 1 below as the proof for c1 = −1 is similar. Let d

be the design formed by z1, z2, and z3 + e0. By (A.2), we only need to show that

β3(W (d)) 6= 0. Note that

β3(W (d)) = N−2
(
ρ

2q

)6
∣∣∣∣∣
q−1∑
v1=0

q−1∑
v2=0

q−1∑
v3=0

(−1)v1+v2+v3g(v1)g(v2)g(v3)S(z, v)

∣∣∣∣∣
2

,

(A.3)

where g(v) is defined in (A.1), and

S(z, v) =

N∑
i=1

sin

(
2(2v1 + 1)πzi1

q

)
sin

(
2(2v2 + 1)πzi2

q

)
sin

(
2(2v3 + 1)π(zi3 + e0)

q

)
.

By applying the product-to-sum identities twice, we have

S(z, v) =
1

4

{
N∑
i=1

sin

(
2π(t1zi1 − t4zi2 + (2v3 + 1)e0)

q

)

+

N∑
i=1

sin

(
2π(t2zi1 + t4zi2 − (2v3 + 1)e0)

q

)
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−
N∑
i=1

sin

(
2π(t1zi1 + t3zi2 + (2v3 + 1)e0)

q

)

−
N∑
i=1

sin

(
2π(t2zi1 − t3zi2 − (2v3 + 1)e0)

q

)}
, (A.4)

where t1 = 2(v1 + v3) + 2, t2 = 2(v1 − v3), t3 = 2(v2 + v3c2) + c2 + 1, and

t4 = 2(v2 − v3c2)− c2 + 1. Let

v10 = q − 1− v3 and v20 = v3c2 + (c2 − 1)(q + 1)/2 (mod q). (A.5)

When v1 = v10 and v2 = v20, t1 = t4 = 0 (mod q) and the first item in

the right hand side of (A.4),
∑N

i=1 sin (2π(t1zi1 − t4zi2 + (2v3 + 1)e0)/q), equals

N sin(2π(2v3 + 1)e0/q). When v1 6= v10 or v2 6= v20, the item is zero. By similar

analysis to other items in (A.4), we have

S(z, v) =



N

4
sin

{
2π(2v3 + 1)e0

q

}
, if (v1, v2) = (v10, v20) or

(q − 1− v10, q − 1− v20);

−N
4

sin

{
2π(2v3 + 1)e0

q

}
, if (v1, v2) = (v10, q − 1− v20) or

(q − 1− v10, v20);
0, otherwise.

Note that g(q − 1− v) = −g(v) for any v. Then by (A.3),

β3(W (d)) =

(
ρ

2q

)6
∣∣∣∣∣
q−1∑
v3=0

(−1)v3c2g(v20)(g(v3))
2 sin

{
2π(2v3 + 1)e0

q

}∣∣∣∣∣
2

, (A.6)

where v20 is defined in (A.5). Applying g(q−1−v) = −g(v) again, we can simply

(A.6) as

β3(W (d)) =
ρ6

16q6

∣∣∣∣∣∣
(q−1)/2∑
v3=0

(−1)v3c2g(v20)(g(v3))
2 sin

{
2π(2v3 + 1)e0

q

}∣∣∣∣∣∣
2

. (A.7)

By considering the Taylor expansion of g(v), we can see that the sum in (A.7) is

dominated by the first two items with v3 = 0 and v3 = 1. It can be verified that

(A.7) is nonzero for e0 = 1, . . . , q − 1. This completes the proof.

Proof of Theorem 3. Following the same process as in the proof of Theorem 2,
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if D is recursive, then for the three columns z1, z2, and z3 in D, z3 = c1z1 + c2z2,

where both c1 and c2 can be any value in Zq. Then we can get (A.4) with t1 and

t2 replaced by t′1 = 2(v1 + v3c1) + 1 + c1 and t′2 = 2(v1 − v3) + 1− c1, which will

in turn result in a change of v10 in (A.5) to

v′10 =


q − 1

2
− c1

2
− v3c1 (mod q), if c1 is an even number;

q − c1 + 1

2
− v3c1 (mod q), if c1 is an odd number.

Similar to (A.7), we have

β3(W (d)) =
ρ6

16q6

∣∣∣∣∣∣
(q−1)/2∑
v3=0

(−1)v3c2g(v′10)g(v20)(g(v3)) sin

{
2π(2v3 + 1)e0

q

}∣∣∣∣∣∣
2

.

(A.8)

It can be verified that, for q ≤ 13, (A.8) is nonzero for e0 = 1, . . . , q − 1 for any

c1, c2 ∈ Zq. This completes the proof.

Proof of Theorem 4. We need to show that for any run W (x1, . . . , xn) in Eb∗ ,

(q − 1)−W (x1, . . . , xn) also belongs to Eb∗ . This is equivalent to show that for

each run (x1, . . . , xn) in Db∗ , W−1(q − 1 −W (x1, . . . , xn)) also belongs to Db∗ .

Since the design D contains the zero point (0, . . . , 0), by Lemma A.1, Db∗ contains

the point (γ, . . . , γ). Because all design points of D form a linear space and Db

is a coset of D, then γ − (x1, . . . , xn) belongs to the null space of Db∗ . Hence,

γ − (x1, . . . , xn) + γ = 2γ − (x1, . . . , xn) belongs to Db∗ . For x = 0, . . . , q − 1,

W−1(x) =


x

2
, for even x;

q − x+ 1

2
, for odd x,

and

W−1(q − 1− x) =


q − 1

2
−W−1(x), for even x;

3q − 1

2
−W−1(x), for odd x,

= 2γ −W−1(x).

Then W−1(q − 1 − W (x1, . . . , xn)) = 2γ − (x1, . . . , xn). Hence, W−1(q − 1 −
W (x1, . . . , xn)) belongs to Db∗ . This completes the proof.
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