Statistica Sinica: Supplement

Time series models for realized covariance matrices

based on the matrix-F distribution
Jiayuan Zhou!, Feiyu Jiang?, Ke Zhu?®, and Wai Keung Li**
YUniversity of Florida, * Tsinghua University,

3The University of Hong Kong, * The Education University of Hong Kong

Supplementary Material

This supplement provides four appendices for the paper. Appendix [S1] gives the proofs of

Theorem Appendix [S2] gives the proofs for Theorems Appendix [S3] provides the
proofs of lemmas used in Appendices S1 and S2. Appendix [S4]lists some useful derivatives and

stocks used in Application 2.

S1 Proofs of Theorem 2.1

This appendix contains the proof of Theorem To facilitate the proof,

we recall some results in Boussama et al.| (2011]).

Theorem S1.1. Let there be a multivariate semi-polynomial Markov Chain,
which is of the form X, 11 = E(Xy,0;) , where Xy is of dimension my, 0,

is i.4.d. sequence of dimension ms, and € is a C' continuous map. Let
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V CR™ be an algebraic variety and U be an open subset of R™.

Suppose there exist Ct continuous maps £ and v to satisfy the decom-
position E(z,y) = L(z,v(z,y)) and the reqularity conditions in Section 3 of
Boussama et al. (2011)) hold.

Then if the following assumptions (S1)-(S4) hold, there exists a unique
strict stationary solution to X; which s Harris-recurrent and geometrically

B-mizing.

(S1) & is i.i.d.  with distribution I which is absolutely continuous with

respect to Lebesgue measure on R™2.

(S2) Define for all k € N*\{1}, the function E¥(z,01,...,01) == E(EF (2,81, .., 0k_1), 0k)
forze U, 61,...,0, € R™. Then for any z € VNU we can define an

orbit:

S, = U {Ek(z,yl,...,yk): Yy - Yk EE} = U gk(%Ek),

keN* kEN*

where E denotes the support of I'. There exist a point ay € int(F)
and a point A € WU, where W := ZS 4 as the Zariski closure of
the orbit Sa, such that for all z € WU the sequence {X} : X7 =

F(X? (,a0), X§ = 2z} converges to the point A.

(S3) The strict stationary solution of the Markov chain X; = (X1, )

takes its values in the algebraic variety W (U.
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(S4) The Forster-Lyapunov (FL) condition hold, i.e., there exist a function
VU — [1, 00| and positive constants a < 1, b < 0o as well as a Borel

set I in W NU such that the (FL) condition hold, i.e.
PV(z) <aV(z)+b-lg(z), YoeeW[\U.

ProoF oF THEOREM [2.1]  Applying vec(-) operation to both sides of
M * *
model 1D we have oy =0+ > ., (Afy,—i + Bfoy_;), where o, = vec(X;),

v = vec(Y), and ¢ = vec(Q2). Define process X, as

Ot L+ sz\g (Afys—i + Bfoy—;)
Ot—M+1 Ot—M+1

Yt Yt
Yi—M+1 Ye—M+1

Then, by (S1)-(S4), there exist some maps £, £ and v such that
X = 5(Xt—1, 5t) = E(Xt—ly yt) = £(Xt—1, U(Xt—ly 5t));

where y; = v(X;_1,0;) and &; = vec(A). Since £, L, v are C' continuous by
lemma 4.1 of [Boussama et al.| (2011)), it is obvious that the CBF model has
stationary solution if and only if (S1.1)) has stationary solution, which is the

case by (S1)-(S4) according to Theorem [S1.1, Hence, the proof is completed
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if (S1)-(S4) hold. Notice (S1) automatically holds by (H1). Then, it suffices

to check (S2)-(S4) by Lemmas below, respectively. O

Lemma S1.1. Suppose that (H1)-(H3) hold. For the constructed markov

chain Zy, (S2) holds by choosing ag = vec(l,,) and A defined via the follow-

) B+ A 0
ing equation: A = (U,0,...,0) + VA, where ¥ = €
0 B+ A
R2M7z2><2Mn2 with
Ay AL L AN Ay
0 0 0 0
A: 0 .. .. : . Ez]zMnQXMn2
0 0 0
0 0 0 0
Bi B; By By
I O 0 0
B = 0 .. .. : . ERMnQXMnQ.
L, 0 0
0 0 1,2 0

Lemma S1.2. Suppose that (H1)-(H3) hold. Then, (S3) holds, i.e., the

strict stationary solution of X; takes value in W NU.

Lemma S1.3. Suppose that (H1)-(H3) hold. Then, the (FL) condition in
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(S4) holds.

The proofs of Lemmas [S1.1 can be found in the Appendix [S3|

S2 Proofs of Theorems 3.1-5.6

In this appendix, we only give the proofs of Theorems |5.145.6] The proofs
of Theorems [3.1 and are essentially similar and less complicated,

and hence they are omitted. To facilitate the proofs, we define

Vi = (vec(Yt),, a ,Uec(Yt_M)’)' c RM"2X17
Hi(0) = (vec(Su(0))', - - ;UeC(Eyt,M(é))’)' e RMnx1.

Hi(8) = (vee(Su(9)', -+ vee(Su-n(0))) € RM™,

r(8) = (s' [1n2 ) (A; + B)

i=1

/

/
n2
701><(M—1)n2> GRM Xl-

Then, the recursion ([5.17)) can be rewritten as

~

H,(8) = r(8) + AW Vi_1 + Bw)Hy_1(5), (S2.2)

where A and B defined as in Lemma are functions of u, Yy = Vg and
710(5) = 725 are calculated based on the sequence of given initial constant

matrices h. Similarly, the recursion ((5.19) can be rewritten as

Hy(5) = 7(8) + A(u) Yoy + B(u)Hs_1(6). (52.3)



Zhou et al.

It is worth noting that when F||Y;|| < oo, by Theorem and a similar
argument as for (B.15) in [Pedersen and Rahbek| (2014), there exists 0 <

¢ < 1, such that for any integer ¢ > 0,

sup [|B'(u)|| < U¢', (52.4)

uEB,,

where U > 0 is a generic constant in the sequel.

Moreover, we give five technical lemmas. Lemma provides a list
of useful results in matrix algebra. Lemma presents some moment
conditions related to ¥;(J). Lemma ensures that the effect of the
first-step estimation and the initial values is negligible for the second-step
estimation. Lemma is standard to prove the strong consistency of 01.

Lemma is needed for the identifiability of /Q\U. The proofs of Lemmas

2.1 can be found in the Appendix [S3|

Lemma S2.1. Suppose that A, B, C'" and D are n X n square matrices.
Then,

(i) tr(ABCD) = vec(D") (C' @ A)vec(B) = (vec(D))' (A ® C"vec(B');

(i) tr(A® B) = tr(A)tr(B);

(iif) [[er(AB)[| < [|A [ BII;

(IV) HAHspec S HAH S \/EHA”spec;

(V) [ABI| < [[All gpec 1Bl and A+ Bll oo < [1Allgpec + 1Bl specs

(vi) For A> 0, |A] < tr(A) and (I +A)| < Vii;
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(vii) For A > 0, log |A] < tr(A), log|A| < nlog||A]l and ||log |Al|| <

spec’
tr(A) +tr(A™h);

(viii) For A >0, |A+ B| > |B|;

(ix) For A>0 and B> 0,0 <tr[(A+ B)™'| <tr(B™);

(x) For A>0 and B > 0, ||log |AB~ || < n||A— B| (|B7|| + ||A7).

Lemma S2.2. Let §; be the i-th entry of §. Suppose that Assumption

holds. Then,

(1) sup |25 ()] < U:
6€B;

(ii) sup [|X5'(9)] < U;
0€B;

(iii) If E||Y;|* < oo, E

<sup |X0t(5) ) ] < oo for some k > 1;
0€B;

(iv) If E|V{|F < oo, E (sup 0 8(5<6) ) < 0o for some k > 1 and
0€EB;
eachi=1,2,--+  19;
L@\
(v) If E||Yi|]F < o0, E (sup - ) < oo for some k > 1 and
0EB; 85 8(5

each 1,7 =1,2,--- 7

Lemma S2.3. Suppose that Assumptions[3.1 and|3.4 hold and E||Y;|| < oo.

Then,

220 as T — oo.

v<507u7 V) - Z’U(/S\'U?u7 V)

sup
(u,V)EOLXO,

Lemma S2.4. Suppose that Assumptions[3.1 and|3.4 hold and E||Yy|| < oo.

Then,
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0 B | s (@] < o

0’[}6@1}
(i) sup || Ly(6y) — E[L(6,)]]| 22550 as T — o0.
0,20,

Lemma S2.5. For any (ug, vo) # (u,v), E [ly(S0, uo, 10)] < E [Ly(S0,u, V)]
PROOF OF THEOREM [5.1]. First, by the ergodic theorem, we have

S, 2 g9 as T — 0.
Second, we can show that when T is large, for any ¢ > 0,

E [los(50, T )] < Lo (50, T, ) + % by Lemma [S2.4(ii):
Lo(S0, g, D) < Lo(80, 0, D) + % by Lemma [S2.3}

~

Lo(8, 0, ) < Lo(80, 10, 10) + % by definition of fi,, Dy

Ev(’s\v,uo, Vo) < Ly(S0, ug, o) + % by Lemma [S2.2}

Ly(80, 0, ) < E [ly(s0, uo, )] + % by Lemma [S2.4{ii).
Thus, when T is large, for any € > 0, E [l,;(So0, Uy, V)] < E [lyt(S0, w0, 10)]+e.
By Lemma and the continuity of the log-likelihood function, it follows

that (U, ) —> (uo, ) by Theorem 2.1 in Newey and McFadden| (1994).

This completes the proof. 0

In order to prove Theorem [5.2] we need four more lemmas. Lemmas
present some standard technical conditions, and Lemma en-

sures the negligibility of the initial values. The proofs of Lemmas|52.6
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can be found in the supplementary material.

Lemma S2.6. Let 0,; be the i-th entry of 0,. Suppose that Assumptions

and 3.4 hold and E||Y;||> < co. Then,

0?1,(0,)
N E 0"l (0y) _
) Lfél@pv 96,06, } <00
.. asz(ev) aQZUt(QU) a.s
_ BNy T
(ii) 9f1€l(gu 00,00, E[@&,Z-a@vj} 0 asT — oo,

foreachi,j =1,2,---  Ty.

Lemma S2.7. Suppose that Assumptions and hold and E|Y||* <
oo. Then,

~

Sy — S0

1 T
VT :ﬁ;wﬂr%(l)?

aLv(QUO)/aC

where wy is defined as in Theorem 5.2 and E(w:|Gi—1) = 0.

Lemma S2.8. Suppose that Assumptions and (3.4 hold and E|Y,|?* <
oo. Then,

T
1 d

— E wy — N(0, E [wywy]) as T — oo.
VT =

Lemma S2.9. Suppose that Assumptions and hold and E|Y;||> <

oo. Then,
. 8-[/1)(61)) azv(eﬂ) p
T — T :
(i) 9?2& \/_< a6, 90, =0 asT — o0,
. 0°Ly(0,)  O*Lu(6,)] »
— T
W) sup 1 56,08, ~ 6,00, | 0T oo
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for eachi,7 =1,2,--- 19, where 0,; is the i-th entry of 0,.

PROOF OF THEOREM [5.2] By the mean value theorem, there exist 6,

ALy (0,0) | 02Lu(0.) [~ Ly (0:) (7
ac— + oo (50— 50) + (G —

between 6,7 and (/9\1, such that 0 =

(0). Then, by Lemma we have

0= VT2 4 13t 0, 0] [VT 5 — )]

¢
+ ir + 0p(D] VT (G = o) | + 0u(1), (52.5)
where Jj = % and J5, = 88%8( ) By Lemma [S2.6| and Theorem 3.1

in Ling and McAleer (2003), we have J{, = J1+0,(1) and J3; = Jo+0,(1).

Hence, by (S2.5) and Lemma it follows that

~ In2 0 é\v — S0
VT, — 0,0) = VT +0,(1).  (S2.6)
—J gy = G a

Finally, the proof is completed by Slutzky’s theorem and Lemma [52.8] [

PROOF OF THEOREM [5.3] By Taylor’s expansion and Theorem [5.2] we

can show that

b1 (do) 301 (00) (03wt (00) /00")
~ 1 <~ | Pu2(d0) 1 < | Bui—2 (00) (93 (0) /00)
ﬁVvl((sv) = ﬁ tlz+1 : + ? tlZ—H

byt (do) L1 (00) (830 (60) /08")
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1 s 0 T
X = > wi(do) + 0,(1)
Ny P S e
1 T
= (I,%)—= > ew +0,(1)
\/Tt:l—‘rl

Since e,; is a martingale difference sequence, the proof follows by standard

arguments. ([l

Next, we consider the proofs of Theorems[5.4 and[5.6] Since the proof of
Theorem [5.5] is essentially similar as the one for Theorem [5.6] it is omitted

for simplicity.

PROOF OF THEOREM |[5.4] Based on Assumptions 5.3], the proof is the
same as the one for Theorem 1 in Shen et al. (2018), hence it is omitted

here. O

PROOF OF THEOREM [5.6] First, it is straightforward to show that (i)

holds by Theorem [5.4(ii). Next, we can claim that

azfv(/s\lfv7 g) _ aLf’U(/S\QfQM C) H

CE(ZSI:(%V ¢ ¢
= O,(B(T)/T) + O,(AY?(n, m, T)B**(T)). (S2.7)

In order to prove ([S2.7), we define

yft = (UGC(}/ft)’7 . ,U€C<th_M)/)/ c Ranxl’
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j}ft = (U@C(}/}ft),, e ,vec(}Afﬁ_M)’)/ € RM”ZM’
Hp(6) = (vec(Spu()), - 7U€C(vat—M(5>),)/ e RMm*x1

ﬁft(é) = (U@C(if,vt<5))/, . 7U€C(§fvt7M(5>>/)/ c RMTL2X1_

Then, as for (82.2)-(S2.3), we have H (51 v, ¢) = H st (Sagus €) = [1(E150, C) —
(S50, Q)] + A(u) D/}ft — V] + B(u) [ﬁft—1(§1fm () — Hyi—1(5270,¢)], and

since P(Zij\il Bf) < 1, it implies that

ﬁft(glfvy C) - Hft(‘/S\ZfIM C)

= Bt(u)(ﬁfo — Hs0(5270,C))
+ Z Bi(u) {[r@fv, () = (5210, )] + Alu) [?ft - yft} }

= B (w)(H 0 — Ho(s0,¢)) = B'(w) (H0(Sa70, C) = Hgols0, )

+ ti B ) { [1Gigr ©) = 7(Bape O + A(w) [T = Vp| |, (528)

where H 70 1s a given initial value. By 1} we can show that

sup Hifvt(/s\lfv;C) - Efvt</5\2fva C)H
EOuxOy (S2.9)

= 0,(¢") + 0p(¢"/VT) + Op(A*(n,m, T) B¥*(T)),
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sup |57 B OV = S Boger OV
(EOLXO,

sup Hz;vlt<§1fv7 Qg — Yye)
(€O, X0,

3 (5250 €) [vat(/s\vayC) — Yot (Saf0, C)] S ot (S0, O Yt

[04(6") + 04(6!VT) + 0, (AV2(n,m, TYBY(T))] [1 + 0,(B(T))]
(S2.10)

where holds by , the compactness of ©, and ©,, Lemma

52.2(iii)-(iv) and Theorems and .4, and holds by the trian-

gular inequality, Lemma [S2.2{1)-(ii), (52.9)), and Assumption [5.2]
Now, by (52.9)-(S2.10) and Lemma [S2.1|(x), we can show that

OLyo(S170:¢)  OLgu(B2p0, ¢
sup | fo(S1p0,€)  OLygo(Say )“
ce@uxey ¢ ¢

—Z (") + Opl(¢' /VT) + Op( A2 (n,m, T) B¥*(T))][1 + Op(B(T)),

i.e., (S2.7) holds. By (S2.7) and Taylor’s expansion, we have

0 _azfv(/s\lfw Cipo)
— 5
:aLfv(/S;évv lev) -+ Op<B(T)/T) —+ Op(Al/?(n, m, T)B5/2(T))
0L Gape Gop) . OLpGapenbp) ~ ~
B oC + aCaC (Cipo — Cogo)

+O,(B(T)/T) + Op(AY*(n,m,T)B**(T))

_!E @lfvt(é\vaagfv)
aCoc!

+ Op(l)} (Z\lfv - @fv)
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+ O,(B(T)/T) + O,(AY?(n, m, T)B>*(T)),

where Efv lies between 21 fo and 62 v, and the fourth equality holds by Lemma
2.6l and the law of large numbers theorem for stationary sequence. Hence,
by Lemma again, it follows that (ii) holds. This competes all of the

proofs. O

S3 Proofs of Lemmas

PROOF OF LEMMA [S1.1| Define W := ZJ, . £4(A, vec(Syy,)?), where

vec(S;h,,,) denotes the space of vectorized positive definite matrices, and

)](2M) =vec(S;,) X -+ X vee(S,) -

N J/
-

2M

nxn

U := [vec(S,,

For fix any z € U, define (X7 )nen- as X§ = 2z, X7 = E(X7 1, a0) for t > 1,
and correspondingly define Y, y7, 37, and o7. Since ag = vec(1,,), Y7 = X}.

By the definition of ¥, we have for t > M,
X;=@,0,...,0) +¥X7 . (83.11)

By (H2) and Proposition 4.5 in Boussama et al. (2011)), the spectral radius

of ¥ is less than 1. Thus, (S2) holds. O

Proor or LEMMA [S1.2| Notice that X; = E(X;1,6:) = L(Xi—1,y1),
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where y; € vec(S,,,

), Thus,

W =2 €A, E) =2 | &(A vee(Sn)) = 2 | L(A vee(Sn)).

1EN* 1EN* 1EN*
: A / / ot / /
By lettlng Vi = (ytv Y15+ ayt—M—l—l) and H, = (Ut’ Op—15--- 70t—M+1) , We

have

H,=(,0,...,0) + AV, + BH, 1

=(,0,...,0) + (A+ B)YH; 1 + AD; 4, (S3.12)

where D, = YV, — H,.
Since A is the fixed point satisfying equation (S3.11J), it is easy to verify

/!
that A is unique and has the form A = < G ) , where 0 =
2Mn2x1

~

vec(X) satisfies that

M
G =vec(Q) + > (A7 + B)G. (S3.13)

i=1

By the definition of W, X, = A, and hence Hy = A and Dy = 0, where

/
A= ( &,...,5 ) . Then, from (S3.12) we have
Mn2x1

t—1 t
M= (A+B)(.0,....0) + (A+B)'A+> (A+B)'AD,_;
=0 i=1
Y
_ t—1

Let d; = y; — oy. It is not hard to see that for i = 1,2,--- [t — 1, (A +

B)~rAD, ; = ij\il[(A + B) ' Aly jd;j, where [-], ; represent the n* x n?



Zhou et al.

block obtained from rows 1 : n? and columns (j — 1)n? : jn? of the matrix.

By (53.14]), it follows that
t—1
o =0+ Kid (S3.15)
i=1

with K; = Z]Ail [(A+B)"7A], ;, where we have used the convention that
A" = J and A* = 0 if i < 0. Thus, we can conclude that W equals the

Zariski closure of the orbit

SA - U {Xt Y1, U € UeC(S:L_XTL)}

neN*

— U { (AL Yty oo Yimnrn) YL s Yt € vec(S;[Xn)}, (S3.16)

neN*

. N

where A, = (/1 + ((222} Kidps)' .o (S0 Kidiaren ) ) ) .
Now, we suppose X(t) is a strict stationary solution to the process
Xy, and define Y(t), H(t), D(t), Y(t), 3(t), y(t) and o(t) correspondingly.

Then,
H(t) = (1,0,...,0) + AV(t — 1) + BH(t — 1)
=(,0,...,0) + (A+ B)H(t — 1) + AD(t — 1)

k k+1
= lim { (A+B)' (1,0,...,0) + > (A+B) ™" AD(t — i)
=0 =1

A+ BT H(E— k- 1)}
= A+ i (A+B)"AD(t — i) as., (S3.17)

i=1
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where the last equation holds by (H3), the stationarity of H (¢ — k), and the

facts that (A+ B)* H(t — k) = 0 a.s. as k — oo and

S (A+B)R.0,...,0) =(,0,...,0) + > (A+B) (1,0,....0/
=0 i=1

which implies 327° (A + B)' (7,0, ...,0) = 5.

Notice that the decomposition of gives us that o(t) = o +
>, Kid(t) a.s. Thus, by (S3.15)-(S3.16) and the closeness of Zariski
closure, the strict stationary solution of X; takes value in W N U. This

completes the proof.

[]

PrOOF OF LEMMA [S1.3] For notation convenience, we consider the
case that K = 1 in model (2.3), since the extension to larger values of K is

essentially the same. Define V' (X;) for any X, € WU as

V(Xt) = tr(VlEt) + .- + tT(VMEt_M+1) —I— tT(VM_HY;) + s —f- tT(‘/QM}/t_MJ,_l) + 1,

where
M—k+1 - M-k+1 &
=k i=k

for 1 < k < M, and ¥ satisfies the following equation 3 = Q—l—Zil A LA+

ijvil B;%Bj. By Proposition 4.3 of Boussama et al.| (2011), the existence
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of such ¥ is guaranteed under (H1)-(H3).

By simple calculation, we have
E(V(X,)|Xo-1)
=E(tr(Vi%) + tr(Vapaa Y) | Xoo1) +tr(VaXq) + - + tr(VarXi_ 1)
+tr(VarsoYio1) + -+ tr(Vanr Yo ) + 1
=tr[(By(Vi + V1) By + Vo) Ba] + -+ + 00 [(Bly 1 (Vi + Vars) By o1 + Var) S pi1]
+tr[(AY (Vi + Vare) AL+ Varea) Vel + -+ tr[( Ay (Vi + Vi) Ay + Vaur) Yie il

+ tr[(By (Vi + Var) Ba) Bee ] + tr[(Ayy (Vi + Vare)) Ay Yeoar] + 8r[(Vi 4 Vi) + 1.

By the definition of V;, we can deduce the following facts:

Q
By, (Vi + V1) Be + Vigr = Vi — 0 1<k<M-1,
Q
B;w(‘/l + VM+1)BM = Vi — m;
Q
AL (Vi + Vi) A + Virgesr = Vigar — SN 1<k<M-1,
Q

Al A = -
r V1 + Vi) A = Vo Wi

Next, we define

Q
ay == max{r'(V}, — m)r cr e R Vir =13,

which is attainable due to the compactness of the sphere r’'Vir = 1, and

we consider the corresponding value of r as r, which gives 0 < a4

1-— r;%rk < 1.
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Furthermore, we define oy = max{ay : 1 < k < 2M}. Then, Vk €
{1,...,2M}, we can show that V} — % < apVj. Therefore, for any matrix

YT eSh

nxn

and for all k € {1,...,2M},

(- 2] < awrin

Thus, it is able to deduce that E(V (X;)|X;—1 = z) < apV () + tr (XQ) +
1—ap. Set a = (ap+1)/2 and b = tr(X2) 4+ 1 — . Then, the FL condition

is satisfied by defining K as

K:{erﬂU:V(x)g b }

o — (g

The compactness of K can be shown by the similar ideas as in Section 4.6

in Boussama et al.| (2011). This completes the proof. O

PROOF OF LEMMA [S2.1|. The proofs of (i)-(ix) can be found in Appendix

S2 of |Pedersen and Rahbek (2014)), and (x) holds by the fact that

|log [AB7||| =1og|AB™| 1 (|JAB7'| > 1) +log |BA™| 1 (|[BA7'| > 1)
< nlog[AB ™ |secl (JAB™'| > 1) + nlog | BA™"||gpecl (|BAT > 1)
= nlog||l, + (A = B)B™"|specl (JAB™'| > 1)
+nlog [l + (B — A)A™ [lapecl (|IBA™'| 2 1)
< nlog (L+[/(A=B)B lspec) 1 (JAB™'| 2 1)

+nlog (1+ (B — A)A™ |gpee) L (|IBA™| > 1)
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<n{log (14 /(A - B)B7|) +1log (1 + ||(B — A)A~Y|)}

<n{l(A=-B)B7Y|+[I(B-A)A|}.

This completes all of the proofs. 0J

PrROOF OF LEMMA [S2.2| (i) From (j5.13) and (5.19)), we have

IZ5 (O) < (2 (8)) < tr(Q7H),

where the first and second inequalities follow from Lemma[S2.1|(vi) and (ix),
respectively. Hence, it follows that (i) holds by the compactness of ©s.

(ii) The proof follows by , , and the similar arguments as
for (i).

(iii) By and (S2.4)), we know that
=> " B'(u) [r(0) + A1) (53.18)
=0

Hence, by ((S2.4] m the triangle inequality, the stationarity of Y;, and

the compactness of Oy, it follows that

sup [H(6)| <UD o' {Sup 1(r(6) + A(u)%—l—i)ll} <UD ¢'(U+U[Viorl).
SCH i—0 0€0; i=0

Together with the Minkowski’s inequality, it entails that

(s 1406 )] {UZ{ (U + U191 ])] }W}k

E
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< {Ui¢i{1 +E||yt_1_z-||’“}1/k}
{UZQS’ {1+ E|v }”’“}

i.e., (iii) holds. Similarly, we can show that (iv) and (v) hold. This com-

pletes all of the proofs. O

PrROOF OF LEMMA [S2.3|. First, by (5.13)), (5.19) and the compactness of

©,, we can obtain

sup  ||Lr(so,u,v) — Lrp(Sp,u, v)|| < & + &2, (S3.19)
(u,V)EOLXO,
where
T T Yot (50, 1)Y,
1 EU s 1 vg—n— 0, U) T
§1= 7D sup log =0 2] and & = > |log R
=1 uEBO,, ‘Evt §U,u)‘ t=1 py— 12 <Sv, )Y;
Next, by Lemma [S2.1|(x), we have
.
< = Zv ) Ev A”U7 H
51_T;5€UgH t(80, 1) — Lt (80, 1)
s =5 o0l + s €5l
u€®u uEG)u
< ne sup |[Xu(s0,u) — ivt(§v,u) , (S3.20)
’U,E@u

t=1
where the last inequality holds by Lemma [S2.2(1)-(ii).

Third, we claim that there exists a constant ¢ € (0, 1) such that for all
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sup |2 (s0, u) — ivt(&,, u)|| < Ugp o' + Ul|3, — sol|, (S3.21)

ue@u

where p; > 0 is to be specified later. By (52.2))-(52.3)), it is straightforward

to see that
Hy (50, 1) — Hy(80, 1) = B (w)(Ho(so, u) — ﬁg) + i[)’i(u)[r(so,u) — (84, u)].

(S3.22)

By (52.4)), (53.22) and the compactness of ©,,, we can show that

sup || He(s0,u) = Hol30, w)| < Upnd' + UlI3, = soll,

uEB,,

where 1 = sup ||[Ho(so, u) — H|| with Ep; < oo by Lemma [32.2(iii).

u€9u

Thus, it follows that (S3.21]) holds.

Now, by (S3.20)-(S3.21f), we can obtain that

T
U .
& < f;m + U3, — soll- (83.23)

0o @t
t=1 t

On one hand, since Fp; < oo, we have ) < 00 a.s., which implies

that

T

1 a.s.

T g ¢ Z50 as T — oo
t=1

by the Kronecker’s lemma. On the other hand, §, — so = 0 as T — o0

by the ergodic theorem. Therefore, by (S3.23)) it follows that & <23 0 as
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T — oo. Similarly, we can show that & <2 0 as T — oo, and hence the

conclusion holds by (S3.19). O

PrOOF OF LEMMA (S2.4[ Let &(60,) = I, +

S 2 6)Y, 52 (6).

V2n1 vt

Then, (i) holds by (5.6) and the fact that

B s la(0,)]

0, €60y

< U+ UE {sup log | S0e(8)] + log || + log |€5(6,)

’UE@’U

|

<U+UE [sup {tr(Zu(8)) + tr(S,1 () } + tr(Yy) + tr(Y,)
0€B;

+ sup {tr(&3(0,)) + tr(ggl(gv))}}

0,€0,

<U+UE[SUP{HZM I+ 554 ||}]+{tr )+ (B}

#VaE [ sup (@l + g @l <o

vev

where the first inequality holds by the triangle inequality and the com-
pactness of ©,, the second inequality holds by Lemma [S2.1|vii), the third

inequality holds by Lemma [S2.1|iii), and the fourth inequality holds by the

fact that

(a) B [sup{uzm W+ 1550

< 0o by Lemma [S2.2{(i) and (iii),

(b) E [ sup ||&3(6,)]|| < oo by the triangle inequality and Lemma [S2.2(i);

91}6 v

() [sup 650,

0,E€0,

< 0o by Lemma [S2.1|(vi);
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(@) (B < VAIE ) = B AL PR )|

n—1

< U||E(L;Y||IER;| < oo, by Lemma [S2.1[(iii), (2.5) and Lemma [S2.2]i).

By (i) and the uniform Law of Large Numbers for the stationary process,

it follows that (ii) holds. This completes all of the proofs. O

PrROOF OF LEMMA (S2.5| By definition, [,;(6,) = —log[f(Y:; v, Xt (0))],
where the density function f(z;v, ¥,(9)) is defined as in (2.2)). Since the

conditional density of Y; given G; 1 is f(x; 19, Xy(do)), it follows that

E (Ly(s0,u0,0)) — E (Lyt(S0, u, ))

f(Y;f;V? th(s()vu))
E (log f()/;h o, th(s(]?u())))

co(fimsies )
o]

E |: f(Y;HV th(‘s[)?u))
f(xS o, th(so, uo))d:v — 1}

(Yt, Vo, Xt (S0, Uo))
f(z; v, X (s0,w))

f xZ; 1/07 vt 307u0))

5 / o Sl e -1 =0,

f f(YVe;0,30¢ (50,u))

TV s cae)) = la.s.,ie. Xyu(se,u) =

where the equality holds if and only i
Yut(S0,u9) = which is equivalent to the condition (u,v) = (ug,vp) by As-

sumption 3.2 and the fact that ¥,(s,u) = ¥;(w,u). This completes the

proof. O
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PROOF OF LEMMA [S2.6| Recall that 6, = (¢’, 7). For simplicity, we only

821yt (0w)

96,95, , where 9; is the i-th entry of §. In view of the

prove (i) for the term

expression of ala%g) in Appendix [S4} it suffices to show that the expected

supremum of each term is finite. Below, we give the proof for its last term,
and the proofs for the remaining terms are similar and hence omitted.
Let &(0,) = I, + 25210, 2(8)Y;7'S,/%(6).  Then, ¢i(6,) defined in

Appendix can be re-written as ¢;(6,) = 1/2( 0)£4(0,)% _1/2((5), and hence

021, (0v)

95,95, becomes

the last term of

trAg; (6)] =
vy + v _ _ 02 (0) _ 0 (0
L s a)e 0502 0) 2 D s gy (0,572 0) 20 |
as, a5,
Note that
_ 4 azv (921,
sup [tr{2,(6,)] zvf/%a)H e @l |5 | e
0,€0,
iy | ) ]
6€06; 5696

where the first inequality holds by Lemma [S2.1(iii), the compactness of

©,, and the fact that Frobenius norm is sub-multiplicative, and the second

inequality holds by Lemma [S2.1|(vi) and Lemma [S2.2(i). Now, by (S3.24),

the Holder’s inequality and Lemma [S2.2(iv), we have

E | sup |[tr[A;(@,)]|

0, €Oy
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<o e[ (| ZON P (o] (a2 ) <

Hence, we know that (i) holds. By (i) and the uniform Law of Large num-

9%, () '
95,

bers for the stationary process, we can show that (ii) holds. This completes

all of the proofs. 0

PROOF OF LEMMA [S2.7| Let 5 = (8,,8,,---,58,) € RM"*1_ Then, it is

v ) ) “v

straightforward to see that

Xi: +(0) =5 — ! ET: — Hy(80)) + 0, (%) (S3.25)

By (S2.3), we have
L T

?ZH(&))—T((S())—FAUO ZJ& 1+BU0 Z%t 1(50

t=1
T 1 1
7(80) + Alug) + B(uy) H(0o) + 0 ,

which implies that

T
1 1
(L2 = B(uo)) = > " Hi(80) = (o) + Alug)s + 0, (ﬁ) . (S3.26)
t=1
Using (S3.25]) and ([S3.26)), it follows that
1 T
(T — Aluo) = B(u10)) 5 = (50) + (Tasae — Bluo) 7 S (V) — Hil60)

t=1

+ 0p (%) : (S3.27)
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Note that 7(dg) = W(Iprn2 — A(ug) — B(ug))30, where 59 = (s, 80, -+, 55)" €

RMn2X1 and
L2 O 0
0 0
W =
0

Multiplying W on both sides of (S3.27)) gives us that
W (Iyin> — Aluo) — B(uo)) (5 = 50)
1 1

Let Vi = (vec(Y;),vec(Y,), ..., vec(Y;)) € RM™*! and

H; (09) = (vec(Xui(00)) s vec(Bpe(80)) - -+ s vec(By(d0))') € RMn?x1

Then, we have

T
%ZJ@*: Zyt+0p and—Z“rl (80) =
t=1

Combined with (S3.28]), it gives us that

IIMH

50 +Op

VT W (Ingmz — Aluo) — Blug)) (5 — 50)]

~ Wl = B0} 7 307 = Hi0) + (1),

=1

which implies that

VT (3, — s0) Z — i(80)) + 0,(1),
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where ®(u) is defined as in Theorem , and vec (Y; — X,:(do)) is the mar-
tingale difference due to the fact that 3,,(d9) = ¥; and E(Y;|Gi—1) = 2.

Hence, the conclusion holds since 0l (6,0)/0¢ is the martingale difference

by Lemma [S2.6[i) and the standard argument for the MLE. O
PrROOF OF LEMMA [S2.8| In view of the expressions of mg—g”) and m’g—f“)

in Appendix [S4] we can show that

2
(s D <o,
0,E€0,

by using the similar argument as for Lemma [S2.6[1). Hence, the conclusion

Ol (0,)
a¢

E

holds by Lemma and the martingale central limit theorem. O

PROOF OF LEMMA [S2.9| Recall that 6, = (¢’, 7). For simplicity, we only
prove (i) with respective to ¢;, where 9; is the i-th entry of 4. The proofs

of (i) with respective to other parameters are similar and hence omitted.

Firstly, by (S2.2)-(52.4)) and Lemma [S2.2] it is not hard to show that

(a) B sup |[30(9) - ivt(‘S)H = 0(¢"); ($3.29)
azJvt(é) 8§vt(5) B

©) Easégi a5, o0, || O(t¢') (S3.30)
) yivt(é) — O(s2 4t

() Esup | 5505, ~ a6.05, ‘ = 0(¢"), ($3.31)

for some constant ¢ € (0, 1).
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o : mv
Next, in view of the expression of t in Appendix [S4], we can show

that

azgg)v) B m”éff”) I (ev)azm(é)} . [ivtl 5, (ev)azm(a)] |

where

wl(0) = 21, = 2226 0,) and G(6,) = 21, - 228 6,)
with
&(0,) = In+”2_y—?_12m<5m—1 and E(6,) = n+”2‘y—7f‘1im(5m—1.

Hence, by Lemma [S2.1|iii) and the triangle’s inequality, it follows that

Olue(0,)  Olur(6)
06; 06;

where by (6,) = [2—1(5) -

vt

S (0)] @ (00) 252 bau(0) = S2(6) [au(8,) — @ (60)] 5

DY
and b3t(9v> _ i;tl (6)at(ev> [6Eggi(5) _ 825§i(6):| )



Zhou et al.

For by,(0,), it is straightforward to see that

sup [0y (6,) |

b,
- s $1(6) [ivt(a) - Evt(é)] 2&1(5>“t<9v>625§f . H
< U sup |S340) [Zuld) = Sul0)] 2:40) 8253,-( : H
0 sup [S500) [Sute) )] 52t 0065 00 )|
- g [550 [20 - 5.00] 5053 |
U sup [S2100) [Bu(8) — Zu0)] S0 0)6 0) &1/2(5)825—555)“
SU(?;& S0t(8) = Bt (0) H) (5666 azvt H)
(83.33)

where the first inequality holds by the triangle’s inequality, and the second
inequality holds by Lemmas - S52.1)(vi) and - (ii). Similarly, we can

obtain that

sup [bar(80)]| < U (sup

821}1&(5) H) “Y—IH
t )

Sut(8) = S (9) H) (5’5&

0,€0, 5€0; d9;
(S3.34)
OSu(8) O (6)
sup ||bs:(68,)|| < U su — S3.35
s [Ibu(6.)] < U sup | =52 — (53.35)

Note that [|Y, || < Utr(L;Y)||Rs|| and L; (or R;) is independent to G;_;.
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By (1S3.32))-(S3.35)), it follows that

Oy (0,) Ol (6,)
FE | su —
i ol T 29,
<UE [(sup 20 (8) — Evt((S)‘D (su 825:5(5) H)] (S3.36)
dEO; 0EO; 7
0% (8) O (6)
E — .
OB s, 26,

Hence, by Chebyshev’s inequality, for any € > 0 and some ¢ € (0,1),

>5>

09; 09;

\/T (aLv(9v> o azv(ev>>'

T A
1 Ol (0,)  Oly(6,)
< E —
v IR i i
U T
S ¢2t +t¢t
Y )

where the last inequality holds by (S3.29), (S3.30), (S3.36]), and Lemma

52.2(iv). Hence, we know that (i) holds. Similarly, we can show that (ii)

holds. This completes all of the proofs.
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S4 Derivatives and Stock Lists

In this appendix, we list the first and second order derivatives of 1,,(6,).

Let
- 121 it V1t
Sg(y)_l/g—n—l’ s4(u)_u2—n—1’ 55(v) = v
02 (0 _ 0 (0
w(6) = S OV, i(0) = S (2 i(6) = w1 (9) 2ol

95, 96,00,

§3(0v) =1I, + 33(’/)2171&1(5)5/15’ a(0y) = I, + 351(V>Yt_12vt(6)-

Then, by direction calculation, we have

algifv) _ agy _ %log 53 (v)0(6)] — 2 + %log l63(60)] + S“;y)tr [ (0,)50(0)]
oll) _900)  mos) L)) — S0 [0, ) 0)],
P Bt - L ek )
and
a”é};(;v) % <> g Ty s )
_ 2—(V28j(2)_ s 0)50(0)s5 (00500
— ) 411G 0815 0l
Plu(0h) _ OC(v) n L[5 _ sa(v) +su(v)

—1
8V13V2 a aylal/g 2(1/2 —n — 1) 2V1 2(V2 o 1) tr |:§3 (91})g0(6):|
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W) 0 )6 (0)s ! (B)0(8)]

2(vry —n—1)
aZZUt(91)> o ]. ]. 1 85(1/) 1 1 1
95,001 Strlau(0)] = Strls qu(d)] - 283(y)t7‘[§4 s1:(0)s M 0(0) 7Y
Plu(0,) 1 ss(v), . 4 . .
06.00, ——§t7~[<4 s1i(9)] + 5 trles Yo (0)sy Yo (0) 7Y
O le(6) v+ 1y

= ﬂtr [62i5(0) — c14(0)s1,(9)] — tr [§2ij(5)§4_1(9v)]

95,05, 2

2

o —g Y240 (61 1 (00) (51 (6)51:(8) + <14(6)s1(6))]

- ; Ztr [ (0)515 ()61 (00)51i(0)]

Similarly, we can easily write down the first and second order derivatives
of 1,(0).

We now give the first and second order derivatives for 3,:(0). Denote
Apiim the (I,m)th entry of Ag;, and By, the (I, m)th entry of By;, Spm
the (I, m)th entry of S, and let Jj,,, be an n x n matrix zeros everywhere

except for a one at the (I, m)th entry.

Q K
82vt (5> / / 82vt, (5)
=T (Vi — )AL+ A (Y — S)J B 1
O i T S A Al = 5) lm+;; 7 0 Aim
0%, (9)
OBy 1 im =Jim(Zt—j, = 5)Biyjy + Bruji (Se—ji — ),
Q K
O0i(0)
+ By I 2B
;; ¥ aBlil im ki

P K Q K A
0%ur(0) =Jim — Z Z Apidim Al — Z Z By [Jim — T@]B’;j’

9Sim i=1 k=1 =1 k=1
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azvt(é)

aBkljhlmaB/@j%qr

821}75(6)

OAkyi,1mOBryjy gr

82vt<5)

aAklz lmasqr

azvt (5)

OBk, jimOSqr

asvt (5>
09;

J/

=1 k) —ky jr =i} [Jlm@t—jl = 8) g + g (Bijy — S)Jllm]

0Xi_j1
OBy qr

L, B
" OBy jyim

Q K .
5 Sppp LI

ot kujr.m Bhojo ar

0¥ j1
B e
o aBkz]Q qr
0o
+ Bkz 2J2 8Bk ]l
1j1,0m

+ Jlm Bllﬁzl,_h + Jlm

/ /
BkQ,Jz Y qr

/
Bk]7

81)66(2;51/2(5)162_1/2(5))

04;

— (S0 0) © 2,7(0)

_quagzk;i;f)l?km + B’“Ulaaxzk—i?%
Q K ,
* ; 2 B aAfiZEéffﬁ Bl
— Jim e Ay s = Ay T + Z Z Brigq a5
j=1 k=1
=T [% - qu} By, j, + Brj [aggwjl
Q K
"L s,
vee(9,,(9))

09;

0Xp—i(0)
— 2 B
Aku lmaSqr K

- qu] ‘]l,m
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Table 1: Symbol of Stocks in Application 2

Number Financial Industrial Health Care Consumer Discretionary
1 AFL BA A AZO
2 AIG CAT ABC BBY
3 ALL FLR ABT BWA
4 AXP FLS AET CCL
5 BAC GD BAX GPC
6 BBT GE BDX GPS
7 BEN GWW BMY HD
8 BK HON BSX HRB
9 BLK IR CAH JWN

10 C ITW CI KMX
11 CMA LLL CVS KSS
12 COF LMT HUM LEG
13 GS LUV JNJ LEN
14 HIG MAS LH LOW
15 JPM MMM LLY MCD
16 KEY NOC MCK NKE
17 LNC NSC MDT NWL
18 MCO PH MRK PHM
19 MET PNR PFE RL
20 MMC PWR PKI TGT
21 MTB RHI SYK TIF
22 PFG ROK T™MO TJX
23 PGR ROP UNH VFC
24 PNC RSG VAR WHR
25 PRU RTN WAT YUM
26 RF SNA

27 STI SWK

28 STT TXT

29 TMK UNP

30 USB UPS

31 WEFC UTX

Note: Full names of selected stocks can be found in https://www.slickcharts.com/sp500
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